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Abstract
Vitamin K is a cofactor required for post-translational gamma-carboxylation of vitamin K-dependent proteins, 

including coagulation and anti-coagulation factors; osteocalcin (OC), essential for bone metabolism; and matrix 
Gla proteins (MGP), an inhibitor of artery calcification. In addition to activation of OC, vitamin K2 induces collagen 
accumulation in the bone matrix. The principle effects of vitamin K on bone health are not to increase bone mineral 
density but to promote bone quality and bone strength. Vitamin K2, as menaquinone-7 (MK-7), is the only major vitamin 
K homolog which can activate OC at nutritional doses. The higher efficacy of MK-7 is due to its better bioavailability 
and longer half-life compared to other vitamin K homologs. Furthermore, a normal nutritional intake of MK-7 has been 
shown to activate MGP, which inhibit artery calcification, and has been associated with prevention of cardiovascular 
diseases. Thus, MK-7 is thought to contribute to calcium homeostasis in arteries as well as bones.
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Introduction
Vitamin K acts as a cofactor for the endoplasmic enzyme γ-glutamyl 

carboxylase, during post-translational conversion of glutamic acid 
residues to γ-carboxyglutamic acid (Gla) in specific proteins. These 
proteins are referred to as vitamin K-dependent proteins, and include 
several blood coagulation factors and anti-coagulation factors, which 
are synthesized in the liver; Osteocalcin(OC), a bone-specific protein 
synthesized by osteoblasts; and Matrix Gla Protein (MGP), which is 
synthesized in several organs. Recently, considerable attention has been 
directed towards these vitamin K-dependent Gla proteins; their role 
in bone metabolism; and their inhibitory effect on artery calcification. 
The current average intake of vitamin K from a normal diet in healthy 
adults is greater than that required for normal blood coagulation, but is 
insufficient for extra hepatic tissue requirements [1,2].

Vitamin K2 has been found to be highly effective in bone 
metabolism compared to vitamin K1. In Japan, a high dose of vitamin 
K2 (45 mg/day), as menaquinone-4 (MK-4), is used as therapeutic 
treatment for osteoporosis. The principle effect of vitamin K2 on 
osteoporosis is prevention of bone fracture by improving bone quality, 
and not increasing bone mineral density. Recently, attention has been 
directed towards another vitamin K2 homolog; menaquinone-7 (MK-
7) extracted from Bacillus subtilis natto. This has been found to be
highly effective in carboxylation of osteocalcin at nutritional doses. This 
review focuses on the effects of vitamin K2 as MK-7 on bone quality.

Structure of Vitamin K and its Distribution in Foods
There are two naturally occurring forms of vitamin K: vitamin 

K1 (phylloquinone), derived from green plants; and vitamin 
K2 (menaquinones, MK-n), which are a series of vitamers with 
multi-isoprene units at position 3 of the common 2-methyl-1,4-
naphthoquinone ring structure.

In food, vitamin K1 is bound to the chloroplast membrane of 
leafy green vegetables; whereas, MK-4 is found in animal products, 
such as eggs, meat, and liver. MK-4 is derived from menadione (a 
synthetic analog of vitamin K, consisting only of the 2-methyl-1,4-
naphthoquinone ring structure), which is given to animals as a feed 
additive nutrient and converted to MK-4 in animal tissues. Long chain 
menaquinones (e.g., MK-7, MK-8, and MK-9) are found in fermented 
foods such as cheese, curd, and sauerkraut [3]. The Japanese fermented 
food “natto” contains MK-7 at an exceptionally high concentration 
[3]. Vitamin K1, MK-4, and MK-7 are currently used as nutritional 
supplements and by the food industry (Figure 1).

Osteocalcin and Vitamin K
OC is produced by osteoblasts and forms bone matrix. Fully-

carboxylated OC binds to calcium and shows affinity for hydroxyl 
apatite in bone [4]. The exact function of OC in bone is unclear, but 
is thought to be involved in calcium modulation. The first study using 
OC-knockout mice found that bone formation was accelerated in the 
knockout mice [5]; in contrast, bone structure turned fragile in OC-
knockout mice after ovariectomy treatment [6]. This suggested that OC 
is important for bone maturation and bone quality.

OC has been used as a biomarker for bone metabolism: deficiency 
in vitamin K, elevates serum undercarboxylated OC (ucOC) levels; 
and high serum ucOC has been associated with hip fracture [7,8], and 
has been recognized as independent risk factor of fracture. In Japan, 
serum ucOC has been used as diagnostic marker to evaluate vitamin K 
deficiency in bone, since 2007.

Bone Quality and Vitamin K2

Murasawa et al. [9] conducted a study on ovariectomized rats 
fed with MK-7 (30 mg/kg bw per day) for 5 months. They observed 
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Figure 1: Structure of vitamin K1, menaquinone-4, and menaquinone-7.
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a significant reduction in the bone mineral density of femurs in 
ovariectomized rats compared to sham-operated rats. MK-7 was 
modestly protective against this decrease (Figure 2); but markedly 
improved bone strength. Therefore, the benefits of MK-7 on bone 
strength were thought to be by maintaining and improving bone 
quality, and not by increasing bone mineral density.

A clinical study on post-menopausal women treated with MK-4 
(45 mg/day) for 3 years, exhibited no effect on bone mineral density; in 
contrast, its effects on the maintenance of bone mass and bone quality 
indices of the femur were significant over the 3 year period [10]. Other 
intervention studies on vitamin K1 (5 mg/day; duration: 2 or 4 years) 
also found that vitamin K1 had no effect on bone mineral density, but 
significantly decreased the fracture rates [11].

Another possible mechanism by which vitamin K maintains and 
improves bone quality has been suggested. In addition to carboxylation 
and activation of OC, MK-4 may also increase collagen accumulation 
[12]. We confirmed this finding by showing that MK-7 increased 
collagen production through osteoblastic cells (Figure 3). Collagen 
occupies more than half the volume of bone and makes the foundations 
on which calcium and other minerals accumulate; and collagen 
accumulation contributes to bone flexibility and elasticity. Therefore, 
along with calcium and other minerals, collagen accumulation is 
critically important for high quality bone formation.

MK-7 has been reported to activate bone formation by osteoblastic 
cells [13], and suppress bone resorption [14]. The mechanism 
was recently demonstrated, and showed that MK-7 stimulates 

osteoblastogenesis and suppresses osteoclastogenesis by inhibiting NF-
κB activation [15].

In addition to OC, many vitamin K-dependent proteins, such as 
MGP; protein S [16]; and periostin [17], are contained within the bone 
matrix; therefore, vitamin K-dependent proteins are thought to have, 
unknown functions in bone until now.

Observational studies of vitamin K intake and many observational 
studies on the relationship between bone metabolism, bone fracture, 
and vitamin K intake have been reported: MK-7 intakes from natto 
were inversely associated with bone fracture rates in Japan [18,19]; 
high serum ucOC was associated with hip fracture [7,8]; and serum 
vitamin K levels were inversely associated with hip fracture rates [20]. 
Furthermore, serum vitamin K levels and ucOC levels were inversely 
associated [21]. These findings clearly showed the close correlation 
between carboxylation of OC by vitamin K and fracture rates. 
Therefore, it is believed that an increased nutritional intake of vitamin 
K could reduce the risk of osteoporosis. 

Vitamin K2 for Children
It is widely recognized that increasing peak bone mass before 20-30 

years of age is very important for the prevention of osteoporosis, since 
bone mass gradually decreases with age. However, decreasing bone 
mass in children has been reported [22]. Bone metabolism is highly 
active in children, serum OC and ucOC levels are also extremely high 
compared to adults [23]. Furthermore, serum ucOC levels in children 
and bone health indices are inversely correlated [24,25]; and 45 μg of 
MK-7 has been shown to activate OC in children [26]. Therefore, it is 
expected that a sufficient intake of vitamin K may contribute children’s 
bone health.

Calcium Paradox and Vitamin K2

Ectopic artery calcification is frequently accompanied by 
osteoporosis in patients. This contradictory association is known 
as the “Calcium Paradox” or “Calcification Paradox” [27]. Vascular 
calcification is associated with increased cardiovascular mortality 
and morbidity [28,29], and is recognized as an independent risk 
factor for cardiovascular death [30]. A vitamin K-dependent protein, 
MGP, is a strong inhibitor of vascular calcification [31,32], and 
an intake of vitamin K, sufficient to fully activate MGP, is thought 
to prevent ectopic artery calcification. Two large epidemiological 
studies have shown inverse associations between vitamin K2 intake 
and cardiovascular death and/or disease [33,34]. Long chain vitamin 
K2 such as MK-7 mainly contributed to the result, while vitamin K1 
showed no associations. Another study has also shown an inverse 
relationship between vitamin K2 intake and artery calcification [35]. 
The difference between vitamin K1 and K2 are due to differences in 
their bioavailability and cofactor activity. Recently, nutritional intake 
of MK-7 has been found to activate MGP [36,37]. Thus, it is expected 
that MK-7 may have therapeutic functions that contribute to both 
artery health and bone metabolism, and may solve the symptoms of 
“Calcium Paradox” [27].

Recent studies indicated that calcium supplements may increase 
cardiovascular rates [38,39]; it was concluded that this potentially 
detrimental effect on cardiovascular health needs to be balanced 
against the probable benefits of calcium on bone health [38]. It 
is widely recognized that calcium alone is not sufficient for bone 
health; therefore, other minerals, such as magnesium and vitamin D, 
are normally added. Vitamin K, through two vitamin K-dependent 
proteins; OC and MGP, has an essential role in modulating calcium 
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Figure 2: Effect of menaquinone-7 on the femurs of ovariectomized rats. 
MK-7 (30 mg/kg bw) was fed to rats for 5 months. Data is expressed as mean 
± SEM; n=10 rats. Sham: sham-operated group; OVX: ovariectomized rats 
control group; OVX+MK-7: ovariectomized rats fed with MK-7 [9].
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Figure 3: Effect of vitamin K2 on collagen accumulation in vitro. MK-4 (10 
μM) or MK-7 (10 μM) was added to osteoblastic MG63 cells. The cells were 
cultured for 10 days; and collagen levels in culture were determined by ELISA. 
Data is expressed as mean ± SEM; n=4 cultures.
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homeostasis. As such, vitamin K2 should be recommended as an 
addition to calcium supplements.

Nutritional Features of Menaquinone-7
The effect of long chain vitamin K2, such as MK-7, on normal 

blood coagulation in rats was found to be higher and long lasting, 
than vitamin K1 and MK-4 [40,41]. A human study demonstrated that 
MK-7 derived from natto has a very long half-life time in the serum, 
and induced more complete carboxylation of OC compared to vitamin 
K1 [2]. It was also demonstrated that a high dose of MK-4 has a very 
short-half life in humans [42]. Our study found that a nutritional dose 
of MK-4 (420 μg) was not absorbed; whereas, MK-7 was absorbed well 

in healthy women (Figure 4) [43]. The minimum dose of 1500 μg/day 
of MK-4 is required to activate OC in healthy subjects [44]; in contrast, 
45-150 μg MK-7 was able to activate OC in healthy subjects [2,26,45].

Because all vitamin K homologs are converted to MK-4 in 
organs, MK-4 has been thought to have specific functions, other than 
γ-carboxylation of vitamin K-dependent proteins [46,47]. However, 
our previous rat study [48] found that an adequate nutritional intake of 
MK-4 did not increase the MK-4 levels in extrahepatic organs; whereas, 
MK-7 increased MK-4 significantly in organs, such as the femur, brain, 
testis, kidney, and pancreas, indicating that MK-7 is better than MK-4 
as an MK-4 precursor in vivo (Figure 5).
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Figure 4: Change in serum vitamin K2 levels following a single oral dose (420 μg) of MK-4 or MK-7. Each point represents the mean ± SEM of 5 subjects, at 0, 2, 4, 
6, 10, 24, 48, and 72 h. ■=MK-4; ○=MK-7 [43].
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Figure 5: Menaquinone-4 levels in extrahepatic tissues after administration of menaquinone-4 or menaquinone-7 in rats. Rats were fed with an adequate vitamin 
K diet (1.1 nmol/kg; required dose for normal coagulation for rats); or a high vitamin K diet (3.3 nmol/kg), for 21 days. Menaquinone-4 levels were determined in (A) 
brain; (B) kidney; (C) femur; and (D) testis. Data is expressed as mean ± SEM; n=5 rats. Values with different superscript letters are significantly different (P<0.05) [48].
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MK-4 appears to be the logical choice for the pharmacological use of 
vitamin K (at high dose; 45 mg/day) for the treatment for osteoporosis. 
The long half-life and better bioavailability of MK-7 would mean that 
a regular intake of physiological or nutritional doses of MK-7 (50-150 
μg/day) would lead to the accumulation of vitamin K2 in extrahepatic 
tissues, at levels that could only be achieved by MK-4 at much higher 
doses.

Conclusion
The principle effects of vitamin K on bone health are to maintain 

and promote bone quality, and not to increase bone mineral density. 
Possibly the mechanisms may be activating osteocalcin, increasing 
collagen matrix, and regulating differentiation of osteoblasts and 
osteoclasts. Among the vitamin K homologs, MK-7 shows highest 
activity and bioavailability in humans. Therefore, it is believed 
that MK-7 at nutritional doses will promote bone health. A larger 
intervention trial for MK-7 is justified.
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