alexa A Better Understanding of the Role of TGF-and#195;and#381;and#194;and#178; Family Members in Tissue Fibrosis | OMICS International
ISSN: 2576-1471
Journal of Cell Signaling

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

A Better Understanding of the Role of TGF-β Family Members in Tissue Fibrosis

Jose M Muñoz-Felix1,2 and Carlos Martinez-Salgado1,2*

1Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK

2Department of Physiology and Pharmacology, University of Salamanca, Spain

*Corresponding Author:
Carlos Martinez-Salgado
Department of Physiology and Pharmacology
University of Salamanca, Spain
E-mail: [email protected]

Received date: November 10, 2016; Accepted date: November 28, 2016; Published date: December 19, 2016

Citation: Muñoz-Felix JM, Salgado CM (2016) A Better Understanding of the Role of TGF-β Family Members in Tissue Fibrosis. J Cell Signal 1:130.

Copyright: © 2016 Muñoz-Felix JM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Cell Signaling


Traditionally two different subfamilies of the transforming growth factor-β (TGF-β) superfamily have been associated with different effects on tissue fibrosis: the profibrotic TGF-β subfamily (TGF- β1,TGF-β2 andTGF-β3) and the antifibrotic bone morphogenetic proteins (BMPs) subfamily. TGF-β1 is the most widely studied profibrotic cytokine, as it regulates numerous processes involved in tissue fibrosis: synthesis of extracellular matrix proteins (ECM), apoptosis of the parenchymal cells, regulation of epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition [1,2]. On the other hand, BMPs (especially BMP7) have been considered as antifibrotic proteins [2-4]. TGF-β subfamily members activate ALK5 type I receptors –thus activating Smad2 and Smad3 proteins- whereas BMPs activate ALK1, ALK2, ALK3 and ALK6 receptors and thus activating Smad1, Smad5 and Smad8 proteins.

BMP9 and BMP10 were described as high affinity ligands for ALK1 receptors in endothelial cells [5,6]. These proteins show redundancy in several biological processes such as vascular development, and share numerous similarities in their functions, although BMP10 is necessary for embryonic development and BMP9 is not [7]. Our group has demonstrated that the ALK1 receptor has an antifibrotic role in an experimental model of obstructive nephropathy [8], as ALK1 (previously considered as an endothelial specific receptors) is expressed in fibroblasts and has an important regulatory role in ECM proteins synthesis [8]. In order to explore the antifibrotic role of the ALK1 receptor, we studied the effects of its canonical and high affinity ligand, the BMP9 protein, on renal fibrosis and ECM proteins regulation. We have recently observed that BMP9 stimulates cellular responses in fibroblasts through ALK1 and ALK5 receptors. Although previous studies demonstrated that BMP9 stimulates cellular responses in other non-endothelial cell types such as liver tumour cells, those studies did not show whether the effects are due to ALK1 activation [9]. We demonstrate that BMP9 behaves as a profibrotic factor in vitro, promoting the synthesis of ECM proteins such as collagen I, fibronectin and connective tissue growth factor (CTGF) [10]. The identification of BMP9 as a profibrotic factor complicates the scheme of the BMP/TGF-β network. BMP9 does not induce the same effects than BMP7 –the most powerful antifibrotic cytokine, as their mechanisms of action are different. While BMP7 activates Smad1/5/8 through ALK3 we observed that BMP9 activates Smad1/5/8 through the ALK1 receptor and Smad2/3 proteins through the ALK5 receptor, being ALK1 essential in both processes. In this experimental scenario, both Smad1/5/8 and Smad2/3 are necessary for the induction of ECM proteins synthesis (Figure 1). In several cellular types, BMP9 can induce non-Smad signalling (MAPK, PI3K/AKT, NF-κB, Wnt etc.) [11]. In our experimental model with mouse embryonic fibroblasts, BMP9 induces Erk1/2 phosphorylation, which is necessary for BMP9- induced fibrogenic response [10]. However, further studies should be performed to determine if Erk1/2 activation induced by BMP9 is an indirect effect of Smad phosphorylation.This is not the first time that BMP9 is related to ECM protein synthesis, as it was previously shown that this cytokine stimulates the synthesis of the ECM components Col2A1 and aggrecan in human multipotent mesenchymal cells [12]. Moreover, BMP9 regulates Col9a1, Col9a3 and Col1a synthesis in forebrain cholinergic neurons [13]. In endothelial cells, BMP9 regulates CTGF expression through a Yes-associated protein (YAP)- dependent mechanism [14]. BMP9 and BMP10 stimulate the expression of fibronectin and collagen I in cultured endothelial cells [15].


Figure 1: Induction of ECM proteins synthesis

Recently, Bailly et al. have demonstrated that BMP9 and BMP10 are both necessary for the proper closure of the ductus arteriosus in newborns; one of the mechanisms involved in this process is BMP9- promoted ECM deposition [15].

The findings that we show in our recent studies address a profibrotic role of BMP9 in vitro, but further analysis is needed to unveil the potential interest of this molecule in fibrotic diseases. It will be necessary to evaluate the levels of BMP9 in fibrotic tissues as well as in plasma, either in patients or in in vivo experimental models of fibrosis. It is well known that BMP9 is produced by hepatocytes in the liver and circulates in an active form at concentrations ranging between 2 and 12 ng/ml [16]. Zhu et al. have discovered 4-fold increased levels of BMP9 in the serum of dialysis-patients with chronic kidney disease with respect to pre-dialysis patients [17]. It will be interesting to elucidate whether there is any correlation between BMP9 levels and kidney fibrosis. Previous work from our laboratory showed that the predominant form of endoglin (L-endoglin), which is now considered as a receptor required for BMP9-induced signalling [7,18] promotes renal tubule-interstitial fibrosis after the unilateral ureteral obstruction experimental model through Smad1/5 and Smad2/3 activation. The possible involvement of BMP9 in these mechanisms should be addressed.

Moreover, the study of the role of BMP9 in liver fibrosis is of undoubted relevance for different reasons: First, BMP9 shows its major expression in the liver in physiological conditions. Second, during the development of fibrosis, ALK1 activates Id1 through the Smad1 pathway promoting the transdifferentiation of hepatic stellate cells into myofibroblasts [19]. Moreover, BMP9 induces EMT in hepatocellular carcinoma cells [20]. Finally, another important target of BMP9 in liver cells is hepdicin, a polypeptide involved in the inhibition of iron absorption and recycling, being these processes associated with liver fibrosis and cirrhosis [21].

Further studies will be needed for the complete characterization of BMP9 as a regulator of tissue fibrosis and to its validation as a good therapeutic target. The deeper knowledge of the complex and large TGF-β superfamily is widening as new members and their roles are being identified. New studies will be necessary to integrate the interaction of all these molecules that share receptor complexes and intracellular Smads.


This work was supported by grants from Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, PI12/00959 and PI15/01055, co-funded by FEDER), Junta de Castilla y León (IES095U14) and Fundación Mutua Madrileña (IX Call for Grants and Aids for Medical Research).


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Article Usage

  • Total views: 569
  • [From(publication date):
    December-2016 - Jun 23, 2018]
  • Breakdown by view type
  • HTML page views : 468
  • PDF downloads : 101

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7