
Volume 9(2) 076-092 (2016) - 76
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Research Article Open Access

Sapaty, J Comput Sci Syst Biol 2016, 9:2
DOI: 10.4172/jcsb.1000224

Review Article Open Access

*Corresponding author: Peter Simon Sapaty, Institute of Mathematical Machines
and Systems, National Academy of Sciences of Ukraine, Kiev, Ukraine, Tel: 380-
67-4199224; E-mail: peter.sapaty@gmail.com

Received February 17, 2016; Accepted February 26, 2016; Published March
01, 2016

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language
(SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Copyright: © 2016 Sapaty PS. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Gestalt psychology; Spatial intelligence; Spatial pattern
matching; Spatial grasp language; Self-evolving scenarios; Parallel
networked interpretation; Hybrid operations; Integral solutions;
Distributed control

Introduction
We are witnessing a dramatic change in the character of national

and international activity, especially in crisis and conflict areas, with
the use of asymmetric, unconventional, and hybrid solutions. They
may simultaneously involve economy, ecology, international relations,
ethnicity, culture, law, religion, etc., defense and military too, occupying
both physical and virtual environments. And these solutions may need
to be multidimensional and highly integral in order to succeed, aiming
at the whole from start rather than parts in hope to achieve this whole.

A new philosophy, methodology, and supporting high-level
networking technology are being developed oriented on effective
management of distributed, dynamic and hybrid systems [1-6], which
may be useful within the context mentioned above. They are based on
holistic and gestalt ideas [7-9] rather than traditional communicating
agents stemming from [10].

The approach (called over-operability [11] rather than traditional
interoperability) allows for integral global-goal-driven solutions in
distributed environments. It has certain psychological background in
trying to follow existing ideas of how human mind operates by solving
complex problems (like in waves, streams, states, etc. [12]) and inherit
them by information technologies [13].

The resultant Spatial Grasp Technology (SGT) with Spatial Grasp
Language (SGL) as its key element has been prototyped and tested with
numerous researched applications [14-35]. In the most general terms it
operates as shown in Figure 1.

A high-level scenario for any task in a distributed world is
represented as an active self-evolving pattern rather than traditional
program, sequential or parallel. This pattern, expressing top semantics
and key decisions of the problem to be solved spatially propagates,
replicates, modifies, covers and matches the world, creating distributed
operational infrastructures throughout it, with the final results retained
in the environments or returned as high level knowledge to the starting
point.

The current paper describes, first time, the full specification of the
latest, updated and improved, version of SGL being currently used in
a number of projects related to intelligent management and control
of large distributed dynamic systems with both civil and defence

applications. It also serves as an exemplary reference in a new patent
on parallel and distributed mechanisms for SGL types of languages,
which is currently in progress (succeeding the previous patent on the
approach [14]).

SGL is the latest and most advanced version in a sequence of
spatial languages using free however globally controlled movement of
program code in networks, with the previous ones named as WAVE
[1], WAVE-WP (World Processing) [2] and DSL (Distributed Scenario
Language) [15].

SGL Orientation and Peculiarities
SGL differs fundamentally from traditional programming

languages. Rather than working with information in a computer
memory it allows us to directly move through, observe, and make
any actions and decisions in fully distributed environments, whether
physical or virtual. In general, the whole distributed world, which may
be dynamic and active, is considered in SGL as a substitute to traditional
computer memory, with multiple “processors” (humans, robots, any

Abstract
A full description of a high-level language for solving arbitrary problems in heterogeneous, distributed and

dynamic worlds, both physical and virtual, will be presented and discussed. The language is based on holistic
and gestalt principles representing semantic level solutions in distributed environments in the form of self-evolving
patterns. The latter are covering, grasping and matching the distributed spaces while creating active distributed
infrastructures in them operating in a global-goal-driven manner but without traditional central resources. Taking into
account the existing sufficient publications on the approach developed, the paper will be showing only elementary
examples using the Spatial Grasp Language and key ideas of its networked implementation.

A Brief Introduction to the Spatial Grasp Language (SGL)
Peter Simon Sapaty*
Institute of Mathematical Machines and Systems, National Academy of Sciences of Ukraine, Kiev, Ukraine

Arbitrary complex search &
processing pattern in SGL

Resultant
knowledge D i s t r i b u t e d W o r l d

Spatial growth & matching
& processingInitially applied

from any world
point

Figure 1: How SGT operates in general.

Journal of
Computer Science & Systems BiologyJo

ur
na

l o
f C

om
pu

ter Science & System
s Biology

ISSN: 0974-7230

mailto:peter.sapaty@gmail.com

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 77
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Top SGL Syntax
SGL has a recursive structure with its top level shown in Figure

2. Such organization allows us to express any spatial algorithm, create
and manage any distributed structures and systems, static or dynamic,
passive or active, also solve any problem in, on, and over them, and
this often can be expressed in a compact, transparent and unified way.

Let us explain the language basics in a stepwise top-down manner.
The SGL topmost definition with scenario named as grasp (reflecting
the spatial navigation-grasp-conquest model explained in previous
chapters, rather than the usual program) can be as follows:

grasp → constant | variable | rule [({ grasp,})]

where syntactic categories are shown in italics, vertical bar separates
alternatives, square brackets identify optional constructs, and
parentheses and commas being the language symbols. Braces indicate
repetitive parts with the delimiter (here comma) at the right.

As follows from this notation, an SGL scenario, or grasp (applied
from a certain world point, i.e., of PW, VW, EW or their combination)
in its simplest form can be just a constant presenting the result explicitly.
It can also be a variable containing data assigned to it previously, say, by
another SGL scenario branch which visited this point before (otherwise
empty, or nil). The third variant is called a rule, which can be optionally
supplied with parameters (enclosed in parentheses and separated by
comma if more than one). These parameters, due to recursion, can
generally be arbitrary grasps again (as constants or variables in the
simplest cases, as above, up to scenarios of any complexity and space-
time coverage).

The rules, starting their influence in the current world positions,
can be of different natures and levels -- from local matter or information
processing to full depth management and control. They can produce
results which may reside in the same or other world positions. The
results obtained and world positions reached by rules may become
operands and/or starting positions for other rules, with new results and
new positions (single or multiple) obtained after their completion, and
so on.

The SGL scenario can dynamically spread and process and match
the world or its parts needed, with the scenario code capable of virtually
or physically splitting, replicating, and moving in the distributed spaces
(accompanied with transitional data). This movement can take place
in single or multiple scenario parts dynamically linked with each other

manned or unmanned units or devices, etc.) directly operating in it in a
cooperative or competitive manner. An SGL program (called scenario)
can be viewed from different angles:

•	 As the first linguistic means towards describing and formalizing
the notion of gestalt [7], often allowing us to grasp top semantics,
integrity and super-summative features of large complex systems.

•	 As an active recursive self-matching pattern which if applied
against distributed physical, virtual, executive, or combined
worlds, can cover, rule and change these worlds in the way
required.

•	 As a sort of a universal genetic mechanism expressed in a special
integral formalism and allowing any distributed systems, whether
passive or active, to be created, grown, extended, evolved, and
modified.

•	 As a symbolic “soul” implanted into the distributed world
and self-spread throughout it, providing local and global
awareness and control, also the world’s meaning, sense, life, and
consciousness.

•	 As a powerful and globally controlled super-virus which when
injected from any point into the world’s body can cause different
effects on it, from full control and direction of evolution to
complete destruction, if required.

The SGL Worlds
SGL directly operates with:

•	 Physical World (PW), continuous and infinite, where each point
can be identified and accessed by physical coordinates expressed
in a proper coordinate system (terrestrial or celestial) and with
the precision given.

•	 Virtual World (VW), which is discrete and consists of nodes and
semantic links between them, both nodes and links capable of
containing arbitrary information, of any nature and volume. VW
may be considered as finite as regards the volume of information
the mankind accumulated by today, but taking into account it’s
continuing and rapid growth, also possible existence of other
civilizations in space, it may potentially be treated as infinite too.

•	 Executive world (EW), consisting of active doers with
communication channels between them, where doers may
represent any devices or machinery capable of operating on the
previous two worlds and include humans, robots, mainframes,
laptops, smartphones, etc.

Different kinds of combination of these worlds can also be possible
within the same formalism. For example, Virtual-Physical World
(VPW) may allow not only for a mere mixture of the both worlds
but also their deep integration, where individually named VW nodes
can be associated with certain PW coordinates, thus allowing for
their presence in physical reality too. On the other side, the whole
regions of PW of arbitrary shape and size may have certain virtual
names identifying them, and this naming can be hierarchical. Another
possibility is Virtual-Execution World (VEW), where doer nodes may
be associated with virtual nodes (say, in the form of special names
or nicknames) assigned to them, with semantic relations in between,
similarly to pure VW nodes. Execution-Physical World (EPW) can
pin some or all doer nodes to certain PW coordinates and consider
them inseparable of each other, and Virtual-Execution-Physical World
(VEPW) can combine all features of the previous cases.

rule [({ grasp , })]

constant variable

grasp

{ grasp }

global
heritable
frontal
nodal
environmental

information
matter
custom
special

{ grasp }

movement
creation
echoing
verification
assignment
advancement
branching
transference
timing
granting
type
usage
application

Figure 2: SGL recursive syntax.

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 78
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

under the overall control, the latter (both forward and backward)
spreading and covering the navigated world too.

SGL constants can represent information, physical matter
(physical objects including), self-identifying custom items (relating
to information, matter or both), or special words used throughout the
language as standard parameters or modifiers for different constructs:

constant → information | matter | custom | special | grasp

The word “constant” is used rather symbolically in SGL definition,
as the last option is recursively defined as grasp again. This capable
of representing any objects (passive or with embedded activities) and
with any structures within the recursive SGL syntax for their further
processing by SGL rules.

SGL variables, called “spatial”, containing information and/or
matter and serving different features of distributed scenarios, can be
stationary or mobile. They are classified as global (with residence and
mobility usually undefined), heritable (event-born and remaining
stationary to it, being shared by all subsequent events), frontal
(accompanying evolution, mobile), nodal (temporarily associated with,
and stationary to, accessed world nodes), and environmental (external
and internal world-accessing, stationary or mobile):

variable → global | heritable | frontal | nodal | environmental

And rules belonging to the following classes:

rule → movement | creation | echoing | verification |

 assignment | advancement | branching | transference |

 timing | granting | type | usage | application | grasp

The final rule’s option, grasp, brings another level of recursion into
SGL where operations may not only be explicitly set up in advance but
rather represent results of spatial development of SGL scenarios (of any
world coverage and complexity), also act in aggregates with other rules
and modifiers or data on the same operands.

SGL Main Features
How scenarios evolve

In order to explain main SGL features, we will show how its
scenarios generally evolve in distributed worlds, with the points
following.

•	 SGL scenario is considered developing in steps, which can be
parallel, with new steps produced on the basis of previous steps.

•	 Any step, including the starting one, is always associated with
a certain point or position of the world (i.e., physical, virtual,
executive, or combined) in which the scenario (or its particular
part, as there may be many parts working simultaneously) is
currently developing.

•	 Each step provides a resultant value (which may be single,
multiple, and/or structured) representing information, matter
or both, and a resulting control state (as one of possible states,
ranging by their strength), in the same or other world point (or
points) reached.

•	 Different scenario parts may evolve from the same step in ordered,
unordered, or parallel manner, providing new independent or
interdependent steps.

•	 Different scenario parts can also succeed each other, with new

parts evolving from final steps produced by the previous parts.

•	 This (potentially parallel and distributed) scenario evolution
may proceed in synchronous or asynchronous mode, also their
any combinations.

•	 SGL operations and decisions in evolving scenario parts can
use control states and values returned from other scenario parts
whatever complex and remote they might be, thus combining
forward and backward scenario evolution in distributed spaces.

•	 Different steps from the same or different scenario parts can
be associated with the same world points, sharing persistent or
temporary information in them.

•	 Staying with world points, it is possible to change local
parameters in them, whether physical or virtual, thus impacting
the worlds via these locations.

•	 Scenarios navigating distributed spaces can create arbitrary
distributed physical or virtual infrastructures in them, which
may operate on their own after becoming active, with or without
external control. They can also subsequently (or even during
their creation) be navigated, updated, and processed by the same
or other scenarios.

•	 Overall organization of the world creation, navigation, coverage,
modification, analysis, and processing can be provided by a
variety of SGL rules which may be arbitrarily nested.

As will be shown throughout this book, any sequential or parallel,
centralized or distributed, stationary or mobile algorithm operating
with both information and physical matter can be written in SGL at any
levels and their combinations. These can range from top semantic (like
setting global goals, basic operations, and key decisions only) to those
detailing system partitioning, composition, subordination between
components and overall management and control.

Sense and nature of rules

In explaining the language basics further, let us shed some light
on the general sense and nature of rules, to be explained later in detail.
A rule representing in SGL any action or decision may, for example,
belong to the following categories:

•	 Elementary arithmetic, string, or logic operation.

•	 Move or hop in a physical, virtual, execution or combined space.

•	 Hierarchical fusion and return of (potentially remote) data.

•	 Distributed control, both sequential and parallel, and in breadth
or depth.

•	 A variety of special contexts detailing navigation in space and the
character of embraced operations and decisions.

•	 Type and sense of a value or its chosen usage, guiding automatic
language interpretation.

•	 Creation or removal of nodes and/or links in distributed
knowledge networks, allowing us to work with arbitrary
structures, including their initial creation and any modification.

•	 A rule can also be a compound one integrating other rules
whether elementary or compound again, due to recursion.

 All rules, regardless of their nature, sense or complexity, are
pursuing the same ideology and organization, as follows.

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 79
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

•	 They start from a certain world position, being initially linked
to it.

•	 Perform or control the needed operations in a distributed space,
which may be stepwise, parallel, and arbitrarily complex.

•	 Produce concluding results by the final steps, expressed by
control states and values there.

•	 These final steps may associate with the same (where the rule
started) or new world positions, reached by the rule’s activity.

This uniformity allows us to effectively compose integral and
transparent spatial algorithms of any complexity and world coverage,
operating altogether under unified and automatic (generally parallel
and distributed) control.

Spatial variables

Let us consider some more details on the nature and sense of spatial
variables, stationary or mobile, which can be used in fully distributed
physical, virtual or executive environments, effectively serving multiple
cooperative processes under the unified control. They are created upon
declaration by special rules, see later, or by first assignment to them.

•	 Global variables – the most expensive ones, which can serve any
SGL scenarios and can be shared by their different branches. Their
locations, mobility capabilities, and life span can depend on the
features of distributed environments and SGL implementations.

•	 Heritable variables – stationary, appearing within a scenario step
and serving only all subsequent steps, generally multiple and
parallel (not from other branches), which can share them in both
read and write operations.

•	 Frontal variables – mobile, temporarily associated with the
current step and not shared with other parallel steps; they
are following scenario evolution being transferred between
subsequent steps. These variables replicate if from a step a number
of other steps directly emerge. (The replication procedure, also
physical mobility, may have implementation peculiarities if
working with physical matter rather than information.)

•	 Environmental variables – these allow us to access, analyze,
and possibly change different features of physical, virtual and
execution words during their navigation. Most of them are
stationary, associated with the world positions reached, but
some, especially related to the language execution, can be mobile,
some even global like the absolute time.

•	 Nodal variables – stationary, being a sole property of the world
positions reached by the scenarios. Staying at world nodes, they
can be accessed and shared by all activities having reached these
nodes under the same scenario identity, and at any time.

These types of variables, especially when used together, allow
us to create advanced algorithms working directly in space, actually
in between components of distributed systems rather than in them,
providing flexible, robust and self-recovering solutions (stealthy as well
if needed). Such algorithms can freely self-replicate, partition, spread
and migrate in distributed environments (partially or as an organized
whole), while always preserving overall awareness and global goal
orientation.

Control states and their hierarchical merge

The following control states can appear after performing different

scenario steps. Indicating local progress, they can be used for distributed
control of multiple processes, allowing us to make proper decisions at
a variety of levels.

•	 Thru – reflects full success of the current branch of the scenario
with capability of further development (i.e., indicating successful
operation not only in but also through this step of control). The
following scenario steps, if any, will be allowed to proceed from
the current step.

•	 Done – indicates success of the current scenario step as its
planned termination, after which no further development of
this branch from the current step will be possible. This state can,
however, be subsequently changed to thru at higher levels by a
special rule, as explained later.

•	 Fail – indicates non-revocable failure of the current branch, with
no possibility of further development. This state directly relates
to the current branch and step only. It, however, can influence
decisions at higher levels by rules concerning engagement of
other branches (same can be said about the previous two states).

•	 Fatal – reports fatal, terminal failure with nonlocal effect,
triggering abortion of all currently evolving scenario processes
and removal of all associated temporary data, regardless of their
current world locations and operational success. The scope of
this spreading termination process may be the whole scenario,
by default, or it may be restricted by a certain rule explained later
(supervising the scenario part in which this state may potentially
occur).

These control states appearing in different branches of a parallel
and distributed scenario at bottom levels can be used to obtain
generalized control states for higher levels, up to the whole scenario,
for making proper decisions. The hierarchical bottom-up merge and
generalization of states is based on their comparative importance, or
power, where the stronger state will always dominate when ascending
towards the decision root.

For example, merging states thru and done will result in thru, thus
generally classifying successful development at a higher scenario level
with possibility of further expansion from at least some of its branches.
Merging thru and fail will result in thru too, indicating general success
with possibility of further development despite some branch (or
branches) terminated with failure, while the others remaining open to
further evolution. Merging done and fail will result in done indicating
generally successful termination while ignoring local failures, however,
without possibility of further development in all these directions. And
fatal will always dominate when merging with any other states unless
its destructive influence is contained within a certain higher level rule,
as already mentioned (the latter will itself terminate with fail in such a
case). So ordering these four states by their powers from maximum to
minimum will be as follows: fatal, thru, done, fail.

These four states, their merge, and use in control rules are standard,
language-embedded ones. SGL, as a universal spatial language, also
allows us to artificially set up any possible control states, with any
numbers and any merge or generalization procedures, which may
include the mentioned standard ones or be completely different.

Description of Main SGL Constructs
Constants

Information: String can be represented as any sequence of

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 80
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

characters embraced by opening-closing single quotation marks. This
sequence should not contain the single quotes itself or they should
appear in opening-closing pairs only, with any nesting allowed.

Examples: ‘John’, ‘Peter and Paul’.

Instead of single quotes, a sequence of characters can also be placed
into opening-closing curly brackets (or braces {}), which can be used
inside the string in pairs too. Braces will indicate the text as a potential
scenario code which can be immediately optimized (like removing
unnecessary spaces and/or adjusting to the standard SGL syntax, say,
after using constructs typical to other programming languages for
convenience, as explained later). If single quotes are used to embrace
texts as a potential SGL code, such code optimization will have to be
done during its interpretation, not before, and each time it is involved,
with the original text remaining intact.

Number can be represented in a standard way, similar to traditional
programming languages, generally in the form: [sign]{digit}[.{digit}
[E[sign]{digit}]].

Examples: 105, 88.56, -15, 3.3E-5.

Numbers can also use words instead of digits and accompanying
characters (using underscore as separator if more than a single word
needed), as follows:

Zero, one, two, three, four, five, six, seven, eight, nine, ten, eleven,
twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen,
twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, hundred,
thousand, million, billion, trillion, dot, minus, plus.

The four examples above may look like follows.

a) With mixed representation:

hundred_five, eighty_eight.56, minus_fifteen, three.3E-five

b) Up to the full and detailed wording:

one_zero_five, eight_eight_dot_fifty_six, minus_one_five, three_
dot_three_E_minus_five

Physical matter: Physical matter (incl. physical objects) can be
represented by a sequence of characters embraced by opening-closing
double quotation marks.

Examples: “truck”, “white sand”, “brick”, “water”.

The above mentioned self-identified constants (i.e., strings,
scenarios, numbers, and matter) may also be set up by explicit naming
their types with the use of corresponding rules.

Custom constants: For extended applications, other self-identified
constants can be introduced too, if not conflict with the language
syntax, to be directly interpreted by an extended SGL interpreter. For
example, these may be coordinates in physical spaces similar to x17.5,
y44.2, z-77, as well as their combination: x17.5_y44.2_z-77, or internet
addresses like http://www.amazon.com/. Special type-defining rules
can be used for more complex cases.

Special constants: Special verbal constants can be used as standard
parameters (or modifiers) in different language rules, as will be shown
later. The basic list of such words (consisting of lower case letters only)
with comments on their possible use is as follows:

thru – indicates (or sets) control state as a success with possibility
of further evolution.

done – indicates (or sets) control state as a successful termination,
with blocking further development.

fail – indicates (or sets) control state as failure, without further
development.

fatal – indicates (or sets) control state as absolute failure, with
abortion of active distributed processes.

infinite – indicates infinitely large value.

nil – indicates no value at all.

any, all, other – stating that any, all, or other (i.e., except the current
one) elements under consideration can be used.

passed – hinting that the world nodes to be considered have already
been passed by the current scenario branch.

existing – hinting that world nodes with the given names are
already existing and should not be created again (i.e., duplicated).

neighbors – stating that the nodes to be accessed are among direct
neighbors of the current node, i.e., within a single hop from it by
existing links.

direct – stating that the mentioned nodes should be accessed or
created (if not exist) from the current node directly, regardless of
possible (non)existence of direct links to them.

noback – not allowing to return to the previously occupied node.

firstcome – allowing to access the next-hop nodes only first time
with the given scenario ID.

forward, backward – allowing to move from the current node via
existing links along or against their orientations (ignored when dealing
with non-oriented links, which can be traversed in both directions).

global, local – may indicate the scope of operations or the world
access in different rules.

sync[hronous], async[hronous] – a modifier setting synchronous
or asynchronous mode of operations induced by different rules.

virtual, physical, executive – indicating or setting the type of a
node the scenario is currently dealing with (the node can also be of a
combined type).

engaged, vacant – indicating or setting the state of a resource the
current scenario is dealing with (like, say, human or robot, or any
physical, virtual or combined world node).

existing – indicating that the node (or nodes) of interest are already
existing.

passed – indicating that the nodes under consideration have
already been passed by the current scenario branch.

Compound constants, grasps: Constants can also be arbitrarily
complex, as aggregates (possibly hierarchical) from elementary types
(not necessarily the same) described above, being supported by the
full SGL syntax (i.e., generally as grasps again). They can be composed
by using either standard rules described later or, if not sufficient, any
additional, custom ones oriented on specific application areas.

Variables

Different types of variables can be self-identifiable, i.e., by the way
their names are written. Variables of different types can also have any
identifiers if explicitly declared by special rules, explained later.

http://www.amazon.com/

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 81
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Global, heritable, frontal, and nodal variables: The sense and
use of these variables have been explained before, in Section Top
SGL Syntax. In the case of self-identification, they should start with
capital letters G, H, F or N, respectively, followed by a sequence of
alphanumeric characters (letters and digits only). Examples: Globe,
H214b, Frontal5, Nina37.

Environmental variables: All these variables have specific names
written in all capital letters, with brief explanation of their sense and
usage following.

TYPE – indicates the type of a node the current step associates with.
This variable returns the node’s type (i.e., virtual, physical, executive,
or their combination as a list with more than one value). It can also
change the existing type by assigning to it another value (simple or
combined too) if needed.

CONTENT – returns content of the current node (only if having
virtual or executive dimension, or both), which can be any string of
characters (in the simplest case the latter just serving as its name).
Assigning to CONTENT allows us to change the existing node’s
content when staying in it. In a purely physical node CONTENT
returns nil (as physical nodes can be identified by their addresses only).
If a node is of both virtual and executive nature, this variable deals with
the virtual one.

ADDRESS – returns address of the current virtual node. This is
read-only variable as node addresses are set up automatically by the
underlying distributed interpretation system during the creation of
virtual nodes, or by a system it has been put on top of (for example, it
can be an internet address of the node).

QUALITIES – identifies a list of available physical parameters
associated with the current physical position, or node, depending on
the chosen implementation and application (for example, these may
be temperature, humidity, air pressure, visibility, radiation, noise or
pollution level, density, salinity, etc.). These parameters (generally as
a list of values) can be obtained by reading the variable. They may also
be changed (depending on their nature and implementation system
capabilities) by assigning new values to QUALITIES, thus locally
influencing the world from its particular point (or at least attempting to).

WHERE – keeps physical coordinates of the current physical
node in the chosen coordinate system (the node can be combined
one, additionally having virtual and/or executive features). These
coordinates can be obtained by reading the variable. Assigning a new
value to this variable causes physical movement of the current node
into the new position (while preserving its identity, all information
surrounding, and control and data links with other nodes).

BACK – keeps internal system link to the preceding world
node (virtual, executive or combined one with virtual or executive
dimension), allowing the scenario to most efficiently return to the
previously occupied node, if needed. Referring to internal interpretation
mechanisms only, the content of BACK cannot be lifted, recorded, or
changed from the scenario level.

PREVIOUS – refers to an absolute and unique address of the
previous virtual node (or combined with execution and/or physical
dimensions), allowing us to return to the node directly. This may be
more expensive than using BACK, but the content of PREVIOUS,
unlike BACK, can be lifted, recorded, and used elsewhere in the
scenario.

PREDECESSOR – refers to the content/name of the preceding

world node (the one with virtual or executive dimension). Its
content can be lifted, recorded, and used subsequently, including for
organization of direct hops to this node. Such hops, however, can also
lead to other nodes with the same content/name, as node contents/
names are generally not unique throughout the world operated in
SGT. Assigning to PREDECESSOR can change content/name of the
previous node.

DOER – keeps a name of the device (say, laptop, robot, smart
sensor, or even a human) which interprets the current SGL code. This
device can be chosen for the scenario automatically, say, from the list
of offered ones, or just picked up from those known or guessed to be
available. It can also be appointed explicitly by assigning its name to
DOER, causing the current SGL code move into this device and execute
there unless it terminates or another device is assigned to DOER, say,
when the current one becomes inefficient or fails.

RESOURCES – keeps a list of available or recommended resources
(human, robotic, electronic, mechanical, etc., by their types or names)
which can be used for execution of the current and subsequent parts of
the SGL scenario. This list can contain potential doers too, which after
being selected by different scenario branches appear (by their names)
in variables DOER associated with the branches. RESOURCES can be
accessed and changed by assignment, and in case of distributed SGL
interpretation it can be replicated with its content, the latter, possibly,
partitioned between different branches by the internal interpretation
planning and optimization procedures.

LINK – keeps a name (same as content) of the virtual link which
has just been passed. By assigning new value to it you can change the
link’s content/name. Assigning nil or empty to LINK removes the link
passed.

DIRECTION – keeps direction (along, against, or neutral) of the
passed virtual link. Assigning to this variable values like plus, minus,
or nil (same as +, -, or empty) can change its orientation or make non-
oriented.

WHEN – assigning value to this variable sets up an absolute starting
time for the following scenario branch, thus allowing us to suspend and
schedule certain operations and their groups in time.

TIME – returns current absolute time, being read-only global
variable.

SPEED – reflects speed of physical movement of the node (physical,
executive or combined, the latter may include virtual dimension too) in
which control (represented by the current step) is staying. By assigning
to this variable, you can change the speed of the current node. In case
of a pure virtual node, the notion of speed is irrelevant and will return
nil when accessed, also causing no effect when assigned to.

STATE – can be used for explicit setting of control state of the
current step by assigning to it one of the following: thru, done, fail, or
fatal. (These states, as mentioned before, are also generated implicitly,
automatically on the results of success or failure of different operations,
belonging to the overall internal control of scenarios.) Reading STATE
will always return thru as this could only be possible if the previous
operation terminated with thru too, thus letting this operation to
proceed. A certain state explicitly set up in this variable can be used
subsequently at higher levels (possibly, together with termination states
of other branches) within distributed control provided by SGL rules,
whereas assigning fatal to STATE causes already mentioned abortion
of distributed processes with associated data.

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 82
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

VALUE – when accessed, returns the resultant value of the latest
operation (say, an assignment to a variable or just naming a variable
or constant). Assignment to VALUE leaves its content available to the
next operation. This variable allows us to organize balanced processing
combining sequences of operations with their representation as nested
expressions in SGL. (As follows from syntax of Figure 1, the resultant
values of operations can also be accessed implicitly if these operations
or their sequences are themselves standing as operands of higher level
rules.)

COLOR – keeps identity of the current SGL scenario or its branch,
which propagates together with the scenario and influences grouping of
different nodal variables under this identity at world nodes. This means
that different scenarios or their branches with different identities are
protected from influencing each other via the use of identically named
nodal variables. However, scenarios with different colors can penetrate
into each other information areas if they know the other’s colors, by
temporarily assigning the needed new identity to COLOR (to perform
cooperative or stealth operations) while restoring the previous color
afterwards. Any numerical or string value can be explicitly assigned
to COLOR. By default, different scenarios are implicitly assigning the
same value in COLOR at the start, thus being capable of sharing all
information at navigated nodes, unless change their personal color
themselves.

IN – special variable reading from which asks for data from the
outside world in the current point of it; this input data becoming its
resultant value.

OUT – special variable allowing us to send information from the
scenario to the outside world in its current point, by assigning the
output value to this variable.

STATUS – retrieving or setting the status of a doer node in
which the scenario is currently staying (engaged or vacant, possibly,
with a numerical estimate of the level of engagement or vacancy).
This feedback from the implementation layer could be useful for
a higher-level supervision, planning, and guidance of the use and
distribution of resources executing the scenario, rather than doing this
fully automatically by standard procedures which may not always be
optimal, especially under resource shortages.

Other environmental variables for extended applications can be
introduced and identified by unique words in all capitals too, or they
may use any names if explicitly set up by a special rule, as mentioned
later.

As can be seen, most environmental variables are serving as
stationary ones, except RESOURCES and COLOR, which are mobile.
The global variable TIME may symbolically be considered as stationary
too but in reality may depend on implementation details.

Rules

The concept of rule is not only dominant in SGL for setting most
diverse activities ranging from elementary data and knowledge and
physical matter processing to overall management and control, but also
the only one. This provides a universal, integral and unified approach
to expressing any operations in distributed dynamic worlds, and if
needed, in parallel and fully distributed mode. This section describes
the main repertoire of introduced and researched SGL rules with
summary of their sense and possible applications.

Movement: Rules of this class result in virtual hopping to the
existing nodes (the ones having virtual or executive dimensions) or

real movement to new physical locations, associating the remaining
scenario (with current frontal variables and control) with the nodes
reached. The resultant values of the movements are represented by
the reached node names (in case of virtual, executive or combined
nodes) or nil in case of pure physical nodes, with control state thru in
them if the movement was successful. If no destinations reached, the
movement results with state fail and value nil.

hop – sets virtual propagation to node(s) in virtual, execution,
or combined worlds (the latter may have physical dimension too),
directly or via links connecting them. In case of a direct hop, except
node name or address, special modifier direct should be included into
parameters of the rule. If a hop to take place from a node to a node via
an existing link, both destination node name/address and link name
(with orientation if needed) should be among parameters of the rule.
This hop rule can also cause independent and parallel propagation to
a number of nodes if there are more than one node connected to the
current one by the named link, and only link name mentioned (or
given by indicator all, for all links involved). In a more general case,
parallel hops can be organized from the current node if the destination
attributes are given by a list of names/addresses of nodes and names of
links (or direct or all indicators) which should lead to them.

move – sets real movement in physical world to a particular
location given by coordinates in a chosen coordinate system. The
destination location becomes a new temporary node with no name
(or nil) which disappears when all current scenario activities leave it
for other nodes. If, however, the destination node is to have virtual
dimension too (indicated by virtual in the parameters of the rule,
possibly, accompanied by a certain name otherwise default name used),
it will remain intact and can be accessed by other scenarios or different
branches of the current one unless removed explicitly.

shift – differs from the move only in that movement in physical
world is set by deviations of physical coordinates from the current
position rather than by absolute physical coordinates.

follow – allows us to propagate in both virtual and physical spaces
by following arbitrary routes set up by sequences of links, nodes,
physical coordinates, etc., or via obtained internal interpretation tracks
using recorded entries to them (as explained later).

Creation: This class of rules creates or removes nodes and/or
links leading to them during distributed world navigation. After the
creation, the resultant values will be their names (there may be more
than one destination node created) with termination state thru, and the
next steps will be associated with the nodes reached, starting in them.
If the operation fails, its resultant value will be nil and control state fail
in the node it started. After the node(s) successful removal operation,
the resultant value in the starting node will be the same as before and
control state thru.

create – starting in the current world position, creates either new
virtual link-node pairs or new isolated nodes. For the first case, the rule
is supplied with names and orientations of new links and names of new
nodes these links should lead to, which may be multiple. For the second
case, the rule has to use modifier direct indicating direct nodes creation,
i.e., without links to them. If to use modifiers existing or passed for the
link-node creation hinting that such nodes already exist (also if nodes
are given by addresses, thus indicating their existence) only links will
be created to them by create.

linkup – just simplifies the latest rule, creating only links with
proper names from the current node to the already existing nodes,

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 83
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

without the need to use modifiers existing or passed. However, still
using modifier passed may help us narrow direct search of the already
existing nodes.

delete – removes links together with nodes they should lead to,
starting from the current node. Links and nodes to be removed should
be either explicitly named or represented by modifiers any or all. Using
modifier direct instead of link name together with node name will allow
us to remove such node (or nodes) from the current node directly. In
all cases, when a node is deleted, all it’s links with other nodes will be
removed too.

unlink – removes only links leading to neighboring nodes where,
similar to the previous case, they should be explicitly named or
modifiers any or all used instead. The resultant values on the rule will
be represented by these node names, with states thru in them, similar
to hop and linkup operations. The next scenario step will start in these
neighboring nodes.

he above creation rules, depending on the implementation, can also
be used in a broader sense and scale, as contexts embracing arbitrary
scenarios and influencing hop operations within their scope (the same
scenarios will be capable of operating in creation or deletion mode with
them).

Echoing: The rules of this class use terminal control states and
terminal values from the embraced scenario (which may be remote)
to obtain the resultant state and value in the world point it started, also
being it’s terminal point (from which the rest of the scenario, if any, will
develop). The usual resultant control state for these rules is thru (fail
occurs only when certain terminal values happen to be unavailable or
result unachievable, say, as division by zero). Depending on the rule’s
semantics, the resultant value can be compound, like a list of values,
which may be nested.

state – returns the resultant generalized state of the embraced
SGL scenario upon its completion, whatever its complexity and space
coverage. This state being the result of the ascending fringe-to-root
generalization of terminal states of the scenario embraced, where
states with higher power (from max to min as: fatal, thru, done, fail)
dominate in this potentially distributed and parallel process, as already
mentioned. The resultant state returned is treated as the resultant value
on the rule, the latter always terminating with own control state thru,
even in the case of resultant fatal, thus restricting its spreading by echo
rules. (Another restriction of influence of fatal by a special rule will be
explained later.)

order – returns an ordered list of final values of the scenario
embraced corresponding to the order of launching related branches
rather than the order of their completion. For parallel branches these
orders may, for example, relate to how they were activated, possibly,
with the use of time stamping upon invocation.

rake – returns a list of final values of the scenario embraced in an
arbitrary order. This order may, for example, depend on the order of
completion of branches; it can also be influenced by peculiarities of the
echoing collection procedure of the results.

sum – returns the sum of all final values of the scenario embraced.

count – returns the number of all resultant values associated with
the scenario embraced, rather than values themselves as by the previous
rules.

first, last, min, max, random, average – return, correspondingly,

the first, the last, minimum, maximum, random, or average value from
all terminal values returned by the scenario embraced, where first and
last will depend on ordering of the results with details similar to the
rule order above.

element – returns the value of an element of the list on its left
operand by index or content (see corresponding usage rules later) given
by the right operand. If the right operand is a list of indices/contents,
the result will be the list of corresponding values from the left operand.
If element is used within the left operand of assignment (explained
later), instead of returning values it will be providing an access to them.

sortup, sortdown return an ordered list of values produced by the
operand embraced, starting from maximum or minimum value and
terminating, correspondingly, with minimum or maximum one.

reverse – changes to the opposite the order of values from the
embraced operand.

add, subtract, multiply, divide, degree – perform the corresponding
operations on two or more operands of the scenario embraced. If
the operands represent multiple values as lists, these operations are
performed between the peer elements, with the resulting value being
multiple too.

separate – separates the left operand string value by the string at
the right operand used as a delimiter in a repeated manner for the left
string, with the result being the list of separated values. If the right
operand is a list of delimiters, its elements will used sequentially and
cyclically unless the string at the left is fully partitioned. If the left
operand represents a list of strings, each one is separated by the right
operand as above, with the resulting lists of separated values merged
into a common list in the order they were received.

unite – integrates the list of values at the left (as strings, or to be
converted into strings automatically if not) by a repeated delimiter as a
string (or a cyclic list of them) at the right into a united string.

attach – makes the resultant string by connecting the right string
operand to the end of the left one. If operands are lists with more than
one element, the attachment is made between their peer elements,
receiving the resultant list of united strings. This rule can also operate
with more than two operands.

append – forms the resultant list from left and right operands,
appending the latter to the end of the former, where both operands
may be lists themselves. More than two operands can be used too.

common – returns intersection of two or more lists as operands,
with the result including same elements of all lists, if any, otherwise nil.

withdraw – its result will be the first element of the list provided
by the embraced operand, with this element also simultaneously
withdrawn from the list (the latter makes sense only for a variable
containing a list of values as the operand). This rule can work with more
than one element by adding another operand providing the number of
elements to be withdrawn and represented as the result.

access – returns an internal access (which can be recorded, say, in a
variable) to all terminal positions of the embraced scenario, which can
be used to reenter them most efficiently afterwards (on internal system
level). This reentry may be performed by the rule follow described
before.

Verification: These rules provide control state thru or fail reflecting
the result of certain verification procedures, also nil as own resultant
value, while remaining in the same world positions after completion.

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 84
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

equal, notequal, less, less[or]equal, more, more[or]equal, bigger,
smaller, heavier, lighter, longer, shorter – make comparison between
left and right operands, which can represent information or physical
matter, or both. In case of vector operands, state thru appears only if
all peer values satisfy the condition set up by the rule (except notequal,
for which even a single non-correspondence between peers will result
in thru). The list of such rules can be easily extended for more specific
applications, if supported properly on implementation level.

empty, nonempty – checks for emptiness (i.e., non-existence, same
as nil) or non-emptiness (existence) of the resultant value obtained
from the embraced scenario.

belongs, notbelongs – verifies whether the left operand value (single
or a list) belongs as a whole to the right operand, potentially a list too.

intersects, notintersects – verifies whether there are common
elements (values) between left and right operands, being generally lists.
More than two operands can be used for this rule too, with at least a
same single element to be present in all of them to result in thru.

Assignment: This class of rules assigns the result of the right
scenario operand (which may be arbitrarily remote, also as a list of
values) to the variable or set of variables directly named or reached by
the left scenario operand, which may be remote too. The left operand
can also provide pointers to certain elements of the reached variables
which should be changed by the assignment rather than the whole
variables (see rule element above). These rules will leave control in the
same world position they’ve started, its resultant state thru if assignment
was successful otherwise fail, and the same value as assigned to the left
operand. There are two options of the assignment.

assign – assigns the same value of the right operand (which may
be a list) to all variables accessed (or their elements pointed) by the left
operand. If the right operand is represented by nil or empty, the left
operand variables as a whole (or only their elements pointed) will be
removed.

assignpeers – assigns values of different elements of the list on
the right operand to different variables (or their pointed elements)
associated with the destinations reached on the left operand, in a peer-
to-peer mode.

Advancement: Rules of this class organize forward or “in depth”
advancement in space and time. They can work in synchronous or
asynchronous mode using modifiers sync[hronous] or async[hronous]
(the second one optional as asynchronous is default mode).

advance – organizes stepwise advancement in physical, virtual,
executive or combined spaces, also in a pure computational space while
staying in the same world nodes (thus moving in time only). For this,
the embraced SGL scenarios are used in a sequence, as written, where
each new scenario applies from all terminal world nodes reached by the
previous scenario (these nodes may happen to be the same as before
if only computations took place). The resultant world positions and
resultant values on the rule are associated with the final steps of the final
scenarios on the rule. And the rule’s resultant state is a generalization of
control states associated with its final steps. The frontal variables, if any,
are being inherited at new steps from the preceding steps (with their
copies removed from the previous positions), thus moving from one
step to another, and between scenario operands, being also replicated if
multiple steps emerge from a previous step.

If no final step occurs with states thru or done, the whole
advancement on this rule is considered as failed (with generalized state

fail), resulting in no possibility to continue the scenario evolution in
this direction. On default or with modifier asynchronous, the sequence
of scenarios develops in space and time independently in different
directions, and different operand scenarios in the sequence may happen
to be active at the same time. With the use of synchronous modifier, all
invocations of every new scenario in their sequence can start only after
full completion of all invocations of the previous scenario.

slide – works similar to the previous rule unless the next scenario
fails to produce resultant state thru or done from some world node; in
this case the next scenario from their sequence will be applied from
the same starting position, and so on. The resultant world nodes and
values in them will be from the last successfully applied scenario (not
necessarily the same in their sequence when independently developing
in different directions). The results on the whole rule, in their extreme,
may even happen to correspond to the existing results in the node the
rule started (including node’s position) before the rule’s application,
with state thru always being the resultant state in any cases.

Both synchronous and asynchronous modes of parallel
interpretation of this rule, similar to the previous rule advance, can be
possible, where in the synchronous case different scenarios can start
only after full completion of the previous ones.

repeat – invokes the embraced scenario as many times as possible,
with each new iteration taking place from all final positions with state
thru reached by the previous invocation. If no final steps of the scenario
invocation completed with state thru, the starting position from which
this iteration failed together with its value will be included into the set
of final positions and values on the whole rule (and this set may have
positions from different iterations).

Similar to the previous rule slide, in the extreme case the final set
of positions on the whole rule may happen to contain only the position
from which the rule started, with state thru and value it had at the
beginning. By supplying additional numeric modifier to this rule, it
is possible to explicitly limit the number of allowed repetitions of the
embraced scenario (of course, the operand scenario may be organized
to properly control the needed number of iterations itself, but with
additional modifier this may be more convention is come cases).

Both synchronous and asynchronous modes of parallel
interpretation of this rule, similar to the previous rules advance and
slide are possible. In the synchronous mode, at any moment of time
only the same scenario iteration can develop in a potentially distributed
space-time continuum, whereas in the asynchronous case these may
happen to be different iterations working in parallel.

Branching: These rules allow the embraced set of scenario operands
to develop “in breadth”, each from the same starting position, with the
resultant set of positions and order of their appearance depending on
the logic of a concrete branching rule. Branching may be static and
explicit if we have a clear set of individual operand scenarios separated
by comma. It can also be implicit and dynamic, as explained later. For
all branching rules that follow, the frontal variables associated with
the starting position will be replicated together with contents, with the
copies obtained developing independently within different branches.
The original variable will be removed from the starting position then.
Details of this replication if variable holds physical matter rather than
information can depend on the application and implementation details.

branch – most general variant with logical independence of scenario
operands from each other, and any possible order of their invocation
and development from the starting position (from strictly sequential

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 85
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

to fully parallel, and from chaotic to absolutely ordered). The resultant
set of positions and associated values will unite all terminal positions
and values on all scenario operands involved, and the resultant control
state on the whole rule is the generalization of generalized states on all
scenario branches.

sequential – organizing strictly sequential invocation of all scenario
operands, regardless of their resultant generalized control states, and
launching the next scenario only after full completion of the previous
one. The resultant set of positions, values, and rule’s control state will
be same as for branch.

parallel – organizing fully parallel development of all scenario
operands from the same starting position (at least as much as this can be
achieved within existing environment, resources, and implementation).
The resultant set of positions, values, and rule’s control state will be
same as for the previous two rules.

if – usually has three scenario operands. If the first one results
with generalized termination state thru or done, the second scenario
is activated, otherwise the third one will be launched. The resultant set
of positions and associated values will be exactly the same as achieved
by the second or third scenarios after their completion. If the third
scenario is absent and the first one results with fail, the resultant
position will be the one the rule started from, with state thru and value
it had at the start. If only a single operand (i.e., the first one) is under
the rule, it will also result with its starting position, initial value in it,
and state thru, regardless of the generalized termination state of this
single operand, its positions reached and values in them (all these will
be ignored for the further scenario development, if any).

or – allows only one operand scenario in their sequence (not
specifying which, may be any) with the resulting state thru or done to
be registered as successful and resultant, with the resulting positions
and associated values on it to be the resulting ones on the whole rule.
The activities of all other scenario operands and all results produced by
them will be cancelled. If no branch results with thru or done, the rule
will terminate with fail and nil value. Used in combination with the
previous rules sequential and parallel, it may have the following more
clarified and detailed options.

orsequential – launches the scenario operands in a strictly
sequential manner, one after the other as they are written, waiting for
their full completion before launching the next one, unless the first
one replying with generalized state thru or done, providing the result
on the rule as a whole. Invocation of the remaining scenarios in the
sequence will be aborted, and all results of the previous scenarios will
be removed.

orparallel – activates all scenario operands in parallel from the same
current position, with the first one in time replying with generalized
thru or done being registered as the resultant branch for the rule. All
other branches will be forcefully terminated without waiting for their
completion (or just ignored, depending on implementation, which in
general may not be the same as the termination for global results)

The resultant scenario in all three cases above provides its final set
of positions with values and states in them as the result on the whole
rule. If no scenario operand returns states thru or done, the whole rule
will result with state fail in its starting position and nil as resultant
value.

and – activates each scenario operand from the same position,
demanding all of them to return generalized states thru or done. If at
least a single operand returns generalized fail, the whole rule results

with state fail and nil value in the starting position while forcefully
terminating the development of all other branches, which may still
be in progress. If all operand scenarios succeed, the resulting set of
positions unites all resultant positions on all operands with their
associated values. Combining the rule with rules sequential and parallel
(as we did for or) clarifies their activation and termination order, as
follows. (These two options can, in principle, produce differing general
results if different scenario operands work in intersecting domains and
share intermediate results.)

andsequential – activates each scenario operand from the same
position in the written order, terminating the rule when first one
resulting with fail, while ignoring other operands and removing all
results produced by this and all previous operands.

andparallel – activates each scenario operand from the same
position, terminating the rule when the first one in time results with
fail, while aborting all other operands activity and removing all results
produced by the current one.

choose – chooses a scenario branch in their sequence before its
execution, using certain parameters among which, for example, may
be its numerical order in the sequence (or a list of such orders to select
more than one branch). This rule can also be aggregated with other
rules like first, last, random, or any clarifying the branch to be chosen
(used here as modifiers among parameters rather than rules). The
resultant set of positions, their values and states will be taken from the
branch(es) chosen.

firstrespond – selects the first branch in time replying its complete
termination, regardless of its generalized termination state, which may
happen to be fail too, even though the other branches (to be forcefully
terminated afterwards) could respond later with thru or done. The
set of positions on this selected branch and their associated values (if
any) will be taken as those for the whole rule. This rule assumes that
different branches are launched independently and in parallel. But it
differs fundamentally from the rule orparallel as the latter selects the
first in time branch replying with success (i.e., thru or done) for which,
in the worst case, all branches may need to be executed in full to find
the branch needed. A modification of this rule may have an additional
parameter establishing, for example time limit within which replies are
expected or allowed from branches (where there may be more than one
branch as the result), otherwise failure if no branch responded in time.

cycle – repeatedly invokes the embraced scenario from the same
starting position until its resultant generalized state remains thru
or done, where on different invocations same or different sets of
resultant positions with different values may emerge. The resultant set
of positions on the rule will be an integration of all positions on all
successful scenario invocations with their values. If no invocation of
the embraced scenario succeeds, the resultant state fail in the starting
position and nil value will emerge.

loop – differs from the previous rule in that the resultant set
of positions on it being only the set produced by the last successful
invocation of the embraced scenario (it will terminate, as before, with
fail and nil in the starting position if no invocation succeeds).

sling – invokes repeatedly the embraced scenario until it provides
state thru or done, resulting in the same starting position with state
thru and its associated value when the last iteration results with fail.

whirl – endlessly repeating the embraced scenario from the starting
position regardless of its success or failure with no resultant positions
or values produced. External forceful termination of this construct may

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 86
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

be needed, like using first in time termination of a competitive branch
(say, under higher-level rule orparallel).

It could also be possible to set a limit on the number of repetitions
(or duration time) in these cycling-looping-slinging-whirling rules – by
supplying them with an additional parameter restricting the repeated
scenario invocations.

split – performs, if needed, additional static or dynamic partitioning
of the embraced scenario to different branches, especially in complex
and not clear at first sight cases, all starting from the same current
position. It may be used alone or in combination with the above
mentioned branching rules, preparing separate branches for the latter.
Some examples follow.

•	 If split embraces explicit branches separated by commas, it does
nothing as the branches are already declared.

•	 It the embraced single operand represents broadcasting move
or hop (creative or destructive including) in multiple directions,
the branches are formed from all possible variants of elementary
moves or hops, before their execution.

•	 If the rule’s operand is an arbitrary scenario (not belonging to the
two cases above), the branches are formed after their completion,
where each position reached (with associated values) starts a new
branch.

•	 If an arbitrary scenario terminates with a single or multiple
positions which have multiple values associated with them (i.e.,
lists), each constituent value in these lists starts an individual
branch, becoming its sole value.

fringe – being the most general variant of splitting for any scenario
after its execution, is considering all final positions reached by the
scenario as individual branches. It may also have additional parameters
helping us to select or reject the received branches as candidates for a
further scenario evolution (possibly, with involvement of both forward
and echo operations over the control hierarchy produced by the
scenario, for making proper decisions).

Transference: This class of rules organizes different control or data
transference activity.

run – transfers control to the SGL code (treated as a procedure)
resulting from invocation of the embraced scenario (which can be
of arbitrary complexity and space coverage). The procedure (or
procedures, if a list of them) obtained in such a way and activated
will produce the resultant set of positions with associated values and
control states as the result on the rule, similar to other rules.

call – transfers control to a code produced by the embraced
scenario which may represent activation of external systems (including
those working in other formalisms), with resultant position being the
same where the rule started, value in it corresponding to what has been
returned from the external call, and state thru if the call was successful,
otherwise fail.

input – provides input of external information or physical matter
(objects) on the initiative of SGL scenario, resulting in the same
position but with value received from the outside. The rule may have an
additional argument clarifying a particular external source from which
the input should take place. The rule extends possibilities provided by
reading from environmental variable IN explained before.

output – outputs the resultant value obtained by the embraced

scenario, which can be multiple, with the same resultant position as
before but associated value just sent outside (for virtual data only).
The rule may have an additional pointer to a particular external sink.
The rule extends possibilities provided by assignment to the previously
explained environmental variable OUT.

transmit – represents a variant of output for specific applications,
say, involving long distance radio communications and broadcasting
features, with potentially multiple addresses. It may have additional
parameters clarifying the action needed.

send – staying in the current position associated with physical,
virtual, executive (or combined) node, transfers information or
matter obtained by the scenario on the first operand to other similar
node given by name, address or coordinates provided by the second
operand, assuming that a companion rule receive is engaged there. The
rule may have an additional parameter setting acceptable time delay
for a consumption of this data at the receiving end. If the transaction is
successful, the resultant position will be the same where the rule started
with state thru and value sent (virtual only) otherwise nil and state fail.

receive – a companion to rule send, naming the source of data to
be received from (defined similarly to the destination node in send).
Additional timing (as a second operand) may be set up too, after
expiration of which the rule will be considered as failed. In case of
successful receipt of data, the rule will result in the same position with
the value obtained from send and state thru, otherwise with nil and
state fail.

Timing: sleep – establishes time delay defined by the embraced
scenario operand, with no activities in the meantime by this particular
scenario branch. The starting position and its existing value will
be the result on the rule after the time passed, with state thru. Such
time delay of the related branch can also be achieved by assigning the
current absolute time (received from environmental variable TIME),
incremented by the delay value returned from the scenario embraced
by sleep, to environmental variable WHEN described before.

allowed – sets time limit by the first operand for activity of the
scenario on second operand. If the scenario terminates before time
limit expires, its resultant positions with values and states will define
the result on this rule. Otherwise the scenario will be forcefully aborted
with state fail in the starting position as the rule’s result.

Granting: contain – restricts the spread of destructive
consequences caused by control state fatal within the ruled scenario.
This state may appear automatically or can be assigned explicitly to
environmental variable STATE, triggering emergent completion of all
scenario processes and removal of data associated with the scenario.
The resultant position will the one the rule started, its value nil, and
state fail. Without occurrence of fatal, the resultant positions, their
values and states on the rule will be exactly the same as of the scenario
embraced.

release – allows the embraced scenario develop free from the main
scenario, abandoning bilateral control links with it, starting from the
current position (the main scenario after the rule’s activation “will not
see” this construct any more). The released, now independent, scenario
will develop using standard subordination and command and control
mechanisms, as usual. For the main scenario, this rule will result in its
starting position with state thru and original value there.

free – differs from the previous case in that despite its independence
and control freedom from the main scenario, as before, it is nevertheless

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 87
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

obliged to return data obtained in its terminal positions if such a
request has been issued by rules at higher levels.

blind – blocks the embraced scenario from engagement in further
development after its completion, but retains the possibility to reply to
higher levels with values associated with final positions reached. This
being equivalent to setting control state done in each terminal position.

lift – removes the blocking of further development caused by states
done in terminal positions of the embraced scenarios (including the
effect caused by rule blind), substituting them with thru, thus allowing
further development from these positions by a subsequent scenario.

none – sets nil (or empty) as a returned value of the whole scenario
embraced, with the rule resulting in the same starting position with
sate thru.

stay – whatever the scenario embraced and its evolution in space,
the resultant position will always be the same this rule started from,
with the latest value in it and state thru. As can be seen, this rule differs
from the previous one only by its resultant value.

seize – establishes, seizes, an absolute control over the resources
associated with the current virtual, physical, executive or combined
node, blocking these from any other accesses and allowing only the
embraced scenario to work with them, thus preventing possible
competition for the node’s assets which may lead to unexpected results.

This resource blockage is automatically lifted after the embraced
scenario terminates. The resultant set of positions on the rule with
their values and states will be the ones from the scenario embraced (the
latter may potentially be of any complexity and space-time coverage).
If the node has already been blocked by another scenario exercising
its own rule seize, the current scenario will be waiting for the release
of the node. If more than two scenarios are competing for the node’s
resources, they will be organized in a FIFO manner at the node.

Type: These rules explicitly assign types to different constructs
generally represented as strings (given explicitly or being the result
of an arbitrary operand scenario with single or multiple elements).
These rules result in the same positions the rule started, nil value and
state thru (fail appears only if a string element does not satisfy certain
constrains mentioned below).

global, heritable, frontal, nodal, environmental – allow different
types of variables to have any identifiers (letter and/or digits only) rather
than those restricted for self-identification, as explained before. These
new names will continue represent the variables with their types in the
subsequent scenario development to its full depth unless redefined by
these rules. As regards environmental variables, their names differing
from the standard ones and new kinds of such variables may need
special adjustment with the implementation layer which is directly
accessing corresponding physical or virtual resources.

matter, number, string, scenario – allow arbitrary strings (with
letters, digits and some other characters but not violating the SGL
syntax) obtained by the scenario embraced to represent corresponding
values rather than using self-identifiable representations mentioned
before (with automatic internal types conversion, if needed).

Usage: Address, coordinate, content, index, time, speed, name,
place, center, range, doer, human, robot, node[s], link[s] – explicitly
clarify the purpose or usage of different values in other rules, adding
flexibility to composition of SGL scenarios for which strict order of
operands and presence all of them may be optional. The rules result
in the same positions they’ve started with the values clarified by them.

unit – identifies the set of values produced by the embraced
scenario as an integral unit (like list) for further processing. This may
also be useful for hierarchical structuring of data, where elements
within declared units may be other units themselves, and so on. The
rule results in the same position it started with the value being the unit
formed.

Application: Additional application, or custom, rules can allow
SGL to be extended unlimitedly while effectively embracing and
embedding specifics of different application areas. They can be used
similarly to other language rules while obeying established internal
interpretation principles and unified command and control. These
rules will, however, need extension of and adjustment to the standard
language interpretation system.

Aggregated, grasp: This brings another level of recursion into the
language structure where rules can themselves be defined by arbitrary
scenarios, or grasps (and not only by the explicit names described
above), possibly, aggregated with each other and their modifiers,
to operate jointly on the scenarios embraced. Such aggregation
can increase and sharpen the power and flexibility of the language
and reduce redundancy in complex operations over distributed
environments.

Full SGL Summary
The following is full SGL formal description summarizing the listed

above language constructs, where, as already mentioned, syntactic
categories are shown in italics, vertical bar separates alternatives, parts
in braces indicate zero or more repetitions with a delimiter at the
right if more than one, and constructs in brackets are optional. The
remaining characters and words are the language symbols (including
boldfaced braces).

grasp → constant | variable | rule [({ grasp,})]

constant → information | matter | custom | special | grasp

variable → global | heritable | frontal | nodal |

 environmental

rule → movement | creation | echoing | verification |

 assignment | advancement | branching |

 transference | timing | granting | type | usage |

 application | grasp

information → string | scenario | number

string → ‘{character}’

scenario → {{character}}

number → [sign]{digit}[.{digit}[e[sign]{digit}]]

matter → “{character}”

special → thru | done | fail | fatal | infinite |

 nil | any | all | other | passed |

 existing | neighbors | direct |

 noback | firstcome | forward |

 backward | global | local |

 sync[hronous] | async[hronous] |

 virtual | physical | executive |

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 88
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

 engaged | vacant | existing |

 passed

global → G{alphameric}

heritable → H{alphameric}

frontal → F{alphameric}

nodal → N{alphameric}

environmental → TYPE | CONTENT | ADDRESS |

 QUALITIES | WHERE | BACK | PREVIOUS |

 PREDECESSOR | DOER | RESOURCES |

 LINK | DIRECTION | WHEN | TIME |

 SPEED | STATE | VALUE | COLOR | IN |

 OUT | STATUS

movement → hop | move | shift | follow

creation → create | linkup | delete | unlink

echoing → state | order | rake | sum | count | first | last | min | max

 random | average | element | sortup |

 sortdown | reverse | add | subtract |

 multiply | divide | degree |

 separate | unite | attach | append | common | withdraw |
 access

verification → equal | notequal | less |

 less[or]equal | more | more[or]equal |

 bigger | smaller | heavier | lighter |

 longer | shorter | empty | nonempty |

 belongs | notbelongs |

 intersects | notintersects

assignment → assign | assignpeers

advancement → advance | slide | repeat

branching → branch | sequential | parallel | if |

 or | orsequential | orparallel | and |

 andsequential | andparallel |

 choose | firstrespond | cycle | loop |

 sling | whirl | split | fringe

transference → run | call | input | output |

 transmit | send | receive

timing → sleep | allowed

granting → contain | release | free | blind |

 lift | none | stay | seize

type → global | heritable | frontal | nodal |

 environmental | matter | number |

 string | scenario

usage → address | coordinate | content |

 index | time | speed | name | place |

 center | range | doer | human |

 soldier |robot | node[s] | link[s] |

 unit

Elementary Examples in SGL
Let us consider some elementary scenarios in SGL from the

mentioned three worlds (PW, VW, and EW).

(a) Assignment of the sum of three constants 27, 33, and 55.6 to a
variable named Result:

assign (Result, add(27, 33, 55.6))

(b) Independent moves in physical space to coordinates (x1, y3)
and (x5, y8):

branch (move (place(x1, y3)),

 move (place (x5, y8)))

(c) Creation of a virtual node Peter:

create (direct, node (‘Peter’))

(d) Extending the previous virtual network (so far containing node
Peter only) with a new link-node pair father of Alex:

advance (

 hop (direct, node (‘Peter’)),

 create (link (+‘fatherof’), node (‘Alex’)))

(e) Giving direct order to robot Shooter to fire at certain coordinates
(x, y):

advance (hop (direct, robot (‘Shooter’)),

 fire (place(x, y)))

(f) Ordering soldier John to engage robot Shooter to fire at
coordinates (x, y), with John confirming completion of the robot’s
action:

advance (

 hop (direct, soldier (‘John’)),

 if (advance (hop (direct, robot (‘Shooter’)),

 fire (place (x, y))), output (OK)))

Simplifications and Use of Conventional Notations
To simplify SGL programs, traditional to existing programming

languages abbreviations of operations, also conventional delimiters
can be used too. These can include semicolons for separation of actions
following one another in space (i.e., without the rule advance, but not
related to its modification slide), just using commas for separating of
independent branches (omitting the most general rule branch for such
cases), omitting single quotes for strings used as names which do not
intersect with the language variables, the use of traditional characters
for arithmetic operations and infix notations, skipping identification
rules in cases where contents are clear without them, or reduction
of the number of parentheses with the help of other characters, like
semicolon.

These and similar simplifications should, however, be used with a

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 89
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

good deal of caution, especially for complexly structured and nested
scenarios, otherwise may distort the scenario structures, also leading to
their wrong interpretation. With the presence of such deviations, the
scenario text can be readily updated to SGL standards by a preprocessing
converter, with subsequent distributed execution by the networked
interpreter oriented and optimized on the universal syntax of Figure
2. For the examples of the previous section these simplifications may
look like follows.

(a) Assignment of the sum of constants to a variable:

Result = 27 + 33 + 55.6

(b) Independent moves in physical space to given coordinates:

move (x1, y3), move (x5, y8) or

move ((x1, y3), (x5, y8)) or

move (x1_y3, x5_y8)

(c) Creation of a virtual node:

create (Peter)

(d) Extending the virtual network with a new link-node pair:

hop (Peter); create (+fatherof, Alex)

(e) Giving direct command to a robot to fire:

hop (Shooter); fire (x, y) or

hop (Shooter); fire (x_y)

(f) Ordering soldier to engage robot to fire by given coordinates,
confirming the action’s completion:

hop (John);

if ((hop (Shooter); fire (x, y)), output (OK))

or even more compact

hop:John;

if ((hop:Shooter;fire:x_y),output:OK)

SGL Networked Interpretation
The developed technology if used in distributed environments

operates as follows. A network of SGL interpreters (as universal control
modules U, Figure 3) embedded into key system points (humans,
robots, sensors, mobile phones, etc.) collectively interprets high-level
mission scenarios written in SGL. Capable of representing any parallel
and distributed algorithms, these scenarios can start from any node,
covering at runtime the whole world or its parts needed with operations
and control.

The spreading scenarios can create knowledge infrastructures
arbitrarily distributed between system components, as in Figure 4.
Navigated by same or other scenarios, these can effectively support
distributed databases, command and control (C2), situation awareness
and autonomous decisions, also simulate any other existing or
hypothetic computational and/or control models.

Many SGL scenarios can operate within the same environments,
spatially cooperating or competing in the networked space as
overlapping fields of solutions, see Figure 5.

The dynamic network of SGL interpreters covering any distributed
spaces, the whole world including, can be considered as a new type
of parallel supercomputer, which can have any (including runtime
changing) networking topology and operate without any central
facilities or control. A backbone of the networked interpreter is its
spatial track system providing global awareness and automatic C2 over
multiple distributed processes, also creating, supporting, and managing
(including removing when becoming useless) different distributed
information and control resources.

Some SGT Application Areas
The following are only some researched, discussed, and reported

applications of SGT and SGL summarizing their advantages, with other
application areas and possible solutions in them described in detail in
the existing publications.

Intelligence, Surveillance and Reconnaissance (ISR) [16,17].
SGT can integrate distributed ISR facilities into flexible goal-driven
systems operating under unified command and control, which can be

Mission Scenario

Emergent
resources

Casual
communications

Universal control
modules

Program code
Local data
States
Command
Control

Figure 3: Self-spreading spatial scenarios in SGL.

Figure 4: Creation of spatial infrastructures.

Universal
control
modules

Virtual
nodes

Virtual
links

Figure 5: Spatial interaction of different scenarios.

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 90
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

automatic. These integrated systems can analyze and properly impact
critical infrastructures, both native and adversary’s, as well as create
new infrastructures for a variety of purposes.

Military robotics [18-21]. SGT paves the way for unified transition to
automated up to fully unmanned systems with massive use of advanced
robotics. One of practical benefits may be effective management
of advanced robotic collectives, regardless of their size and spatial
distribution, by only a single human operator, due to high level of their
internal self-organization and integral external responsiveness.

Human terrain [22,23]. SGT allows this new topic, originally
coined in military, to be considered and used in a much broader sense
and scale than initially planned, allowing us to solve complex national
and international conflicts and problems by intelligent and peaceful,
predominantly nonmilitary means, while fully obeying existing ethical
standards.

Air and missile defense [24,25]. Providing flexible and self-
recovering distributed C2 infrastructures it can, for example, effectively
use distributed networks of cheap ground or low-altitude sensors to
discover, trace and destroy multiple cruise missiles with complex
routes, versus existing expensive high-altitude planes, drones, and
aerostats (with an example already shown above). Other examples,
also related to ballistic missiles, show the applicability of SGT for the
defence against.

Command and Control [26]. Description in SGL of semantic-level
military missions is much clearer and more compact (up to 10 times)
than if written in traditional Battle Management Languages (BML).
This simplicity may allow us redefine the whole scenario or its parts
at runtime when goals and environment change rapidly, especially in
asymmetric situations and operations, also naturally engage robotic
units.

Distributed interactive simulation [27,28]. The technology can be
used for both live control of large dynamic systems and distributed
interactive simulation of them (the latter serving as a look-ahead to
the former), also any combination thereof, with watershed between the
two changing at runtime.

Relevance to other Works
This paper orients on full specification of the main subset of SGL

and does not provide overview of a great number of existing works
on parallel and distributed processing and control in computer
networks, which are covered by other publications, the ongoing book
on SGT including. Here we only mention the relevance of SGL to
Battle Management Languages (BML) intensively developed for the
last decades.

Formalization of Command Intent (CI) and Command and
Control (C2) are among the most challenging problems on the way
to creation of effective multinational forces, integration of simulations
with live control, and transition to robotized armies. The existing
specialized languages for unambiguous expression of CI and C2 (BML,
C-BML, JBML, geoBML, etc.) [35-37] are not programming languages
themselves, requiring integration with other linguistic facilities
and organizational levels. Working directly with both physical and
virtual worlds, SGL as a universal programming language allows us to
effectively express any military scenarios and orders. Typical battlefield
scenario example, borrowed from Ref. [35], is shown in Figure 6.

The task is to be performed by two armoured squadrons BN-
661 Coy1, and BN-661 Coy3, which are ordered to cooperate in

coordination. The operation is divided into four time phases: from TP0
to TP1, from TP1 to TP2, from TP2 to TP3, and from TP3 to TP4, to
finally secure objective LION, and on the way to it, objective DOG.
Their coordinated advancement should be achieved by passing Denver,
Boston, Austin, Atlanta, and Ruby lines, while fixing and destroying
enemy units Red-1-182, Red-2-194, Red-2-196, and Red-2-191.

Tasks assigned to Coy1 in BML for this scenario will be as follows:

deploy BN-661 Coy1 at Denver end before TP0

in-order-to enable label-o11 label-o10;

advance BN-661 Coy1 from Denver to Boston start at TP0 in-
order-to enable label-o12 label-o11;

fix BN-661 Coy1 Red-1-182 at Boston end nlt TP1

in-order-to enable label-o33 label-o12;

advance BN-661 Coy1 to Austin start at TP1

in-order-to enable label-o14 label-o13;

fix BN-661 Coy1 Red-2-194 at Dog end nlt TP2

in-order-to enable label-o35 label-o14;

advance BN-661 Coy1 to Atlanta start at TP2

in-order-to enable label-o16 label-o15;

fix BN-661 Coy1 Red-2-196 at Atlanta end nlt TP3

in-order-to enable label-o37 label-o16;

advance BN-661 Coy1 to Ruby start at TP3

in-order-to enable label-o18 label-o17;

fix BN-661 Coy1 Red-2-191 at Lion end nlt TP4

in-order-to enable label-o39 label-o18;

seize BN-661 Coy1 Lion at Lion end nlt TP4

in-order-to cause label-ci1 label-o19;

Tasks Assigned to Coy3 in BML will be as:

deploy BN-661 Coy3 at Denver end before TP0

in-order-to enable label-o32 label-o30;

support BN-661 Coy3 Coy1 at Troy start at TP0 end at TP4
label-031;

attspt BN-661 Coy3 Red-1-182 from Denver to Boston start at TP0

Figure 6: Example of a battlefield scenario.

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 91
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

end nlt TP1 in-order-to enable label-o12 label-o32;

destroy BN-661 Coy3 Red-1-182 at Boston end nlt TP1

in-order-to enable label-o13 label-o33;

attspt BN-661 Coy3 Red-2-194 from Boston to Dog start at TP1
end nlt TP2 in-order-to enable label-o14 label-o34;

destroy BN-661 Coy3 Red-2-194 at Dog end nlt TP2 in-order-to
enable label-o15 label-o35;

attspt BN-661 Coy3 Red-2-196 from Dog to Atlanta start at TP2
end nlt TP3 in-order-to enable label-o16 label-o36;

destroy BN-661 Coy3 Red-2-196 at Atlanta end nlt TP3

in-order-to enable label-o17 label-o37;

attspt BN-661 Coy3 Red-2-191 from Atlanta to Lion start at TP3
end nlt TP4 in-order-to enable label-o18 label-o38;

destroy BN-661 Coy3 Red-2-191 at Lion end nlt TP3

in-order-to enable label-o19 label-o39;

The same scenario can be presented in SGL on a much higher,
semantic level, also much shorter, as follows:

fixer (BN_661_Coy1);

supporter_destroyer (BN_661_Coy3);

deploy (Denver,time (TP0));

advance_destroy (

 (pl(Boston),target (Red_1_182),time (TP1)),

 (pl(Austin),obj (DOG),target (Red_2_194),time (TP2)),

 (pl(Atlanta),target (Red_2_196),time (TP3)),

 (pl(Ruby),obj (LION),target (Red_2_191),time (TP4)));

seize (LION,time (TP4))

Expressing operations in the integral spatial formalism provided by
SGL enables us to drastically clarify and simplify mission descriptions
and increase flexibility of their possible implementations with any
available resources, both manned and unmanned, which can appear
and change at runtime.

Conclusions
We have described ideology, syntax, basics of semantics, and

main constructs of a completely different language, oriented on
programming and processing of distributed spaces directly. With the
use of it, the whole distributed world, equipped with communicating
SGL interpreters, can be considered as an integral and universal spatial
machine capable of solving arbitrary complex problems in this world
(machine rather than computer as it can directly operate with physical
matter and objects too).

Multiple communicating “processors” or “doers” of this machine,
being stationary or mobile, can include humans, computers,
robots, smart sensors, any mechanical and electronic equipment
capable of cooperatively solving problems formulated in SGL.
Being understandable and suitable for both manned and unmanned
components, the language offers a real way to unified transition to
massively robotized systems, including fully unmanned ones, as within
the SGL operational scenarios any component can easily change its

manned to unmanned status and vice versa, and at any moment of
time.

References

1. Sapaty PS (1999) Mobile Processing in Distributed and Open Environments.
John Wiley & Sons, New York, USA.

2. Sapaty PS (2005) Ruling Distributed Dynamic Worlds. John Wiley & Sons, New
York, USA.

3. Sapaty PS (2014) The World as an Integral Distributed Brain under Spatial
Grasp Paradigm. In Intelligent Systems for Science and Information 542: 65-85.

4. Sapaty PS (2011) Meeting the world challenges with advanced system
organizations. In: Juan AC, Joaquim F, Jean-Louis F (eds.) Informatics in
Control Automation and Robotics. Springer Berlin Heidelberg, Germany.

5. Sapaty PS (2012) Logic flow in active data. In: Delgado-Frias JG, Moore WR
(eds.) VLSI for Artificial Intelligence and Neural Networks. Springer, New York,
USA.

6. Sapaty PS (2008) Distributed technology for global dominance. Proceedings
of SPIE, Defence transformation and net-centric systems, SPIE Optical
Engineering Press, France.

7. Wertheimer M (1924) Gestalt theory, Erlangen, Berlin.

8. Sapaty PS (2009) Gestalt-Based Ideology and Technology for Spatial Control
of Distributed Dynamic Systems. International Gestalt Theory Congress, 16th
Scientific Convention of the GTA, University of Osnabrück, Germany.

9. Sapaty PS (2009) Gestalt-based integrity of distributed networked systems.
SPIE Europe Security + Defence, bcc Berliner Congress Centre, Berlin,
Germany.

10. Minsky M (1988) The Society of Mind, Simon & Schuster, New York, USA.

11. Sapaty PS (2002) Over-Operability in Distributed Simulation and Control. The
MSIAC’s M&S Journal Online 4: 1-8.

12. Wilber K (2000) Waves, Streams, States and Self: Further Considerations for
an Integral Theory of Consciousness. Journal of Consciousness Studies 7:
145-176.

13. Sapaty PS (1990) The Wave Model for advanced knowledge processing.
In CAD Accelerators, Ambler AP, Agrawal P, Moore WR (Eds.) Elsevier,
Netherlands.

14. Sapaty PS. A Distributed Processing System. European Patent No. 0389655,
European Patent Office.

15. Sapaty PS (2006) Crisis Management with Distributed Processing Technology.
International Transactions on Systems Science and Applications 1: 81-92.

16. Sapaty PS (2015) Providing Over-operability of Advanced ISR Systems
by a High-Level Networking Technology. SMI’s Airborne ISR, Holiday Inn
Kensington Forum, London, United Kingdom.

17. Sapaty PS (2014) Integration of ISR with Advanced Command and Control for
Critical Mission Applications. SMI’s ISR conference, Holiday Inn Regents Park,
London, United Kingdom.

18. Sapaty PS (2015) Military Robotics: Latest Trends and Spatial Grasp Solutions.
International Journal of Advanced Research in Artificial Intelligence 4: 9-18.

19. Sapaty PS (2014) Unified Transition to Cooperative Unmanned Systems under
Spatial Grasp Paradigm. International journal Transactions on Networks and
Communications 2: 23-45.

20. Sapaty PS (2010) High-Level Technology to Manage Distributed Robotized
Systems. Military Robotics, Jolly St Ermins, London UK.

21. Sapaty PS (2014) From Manned to Smart Unmanned Systems: A Unified
Transition. SMi’s Military Robotics, Holiday Inn Regents Park, London, UK.

22. Sapaty PS (2014) Distributed Human Terrain Operations for Solving National
and International Problems. International Relations and Diplomacy 2: 597-622.

23. Sapaty PS (2015) Solving Social Problems by Distributed Human Terrain
Operations. Journal of Mathematical Machines and Systems 3: 30-43.

24. Sapaty PS (2012) Distributed air & missile defence with spatial grasp
technology. Intelligent Control and Automation 3:117-131.

http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471655759.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471655759.html
http://link.springer.com/chapter/10.1007/978-3-319-04702-7_4
http://link.springer.com/chapter/10.1007/978-3-319-04702-7_4
http://www.springer.com/in/book/9783642197291?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook
http://www.springer.com/in/book/9783642197291?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook
http://www.springer.com/in/book/9783642197291?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook
http://link.springer.com/chapter/10.1007%2F978-1-4615-3752-6_8
http://link.springer.com/chapter/10.1007%2F978-1-4615-3752-6_8
http://link.springer.com/chapter/10.1007%2F978-1-4615-3752-6_8
http://link.springer.com/chapter/10.1007/978-3-642-00271-7_1
http://link.springer.com/chapter/10.1007/978-3-642-00271-7_1
http://link.springer.com/chapter/10.1007/978-3-642-00271-7_1
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=789518
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=789518
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=789518
http://philpapers.org/rec/WILWSS
http://philpapers.org/rec/WILWSS
http://philpapers.org/rec/WILWSS
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N9022291.xhtml
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N9022291.xhtml
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N9022291.xhtml
https://data.epo.org/gpi/EP0389655A1-A-distributed-processing-system
https://data.epo.org/gpi/EP0389655A1-A-distributed-processing-system
https://spie.org/SID/conferencedetails/airborne-intelligence-surveillance-reconnaissance
https://spie.org/SID/conferencedetails/airborne-intelligence-surveillance-reconnaissance
https://spie.org/SID/conferencedetails/airborne-intelligence-surveillance-reconnaissance
https://thesai.org/Downloads/IJARAI/Volume4No4/Paper_2-Military_Robotics_Latest_Trends_and_Spatial_Grasp_Solutions.pdf
https://thesai.org/Downloads/IJARAI/Volume4No4/Paper_2-Military_Robotics_Latest_Trends_and_Spatial_Grasp_Solutions.pdf
http://scholarpublishing.org/index.php/TNC/article/view/130/90
http://scholarpublishing.org/index.php/TNC/article/view/130/90
http://scholarpublishing.org/index.php/TNC/article/view/130/90
http://www.davidpublishing.com/davidpublishing/Upfile/10/21/2014/2014102182858337.pdf
http://www.davidpublishing.com/davidpublishing/Upfile/10/21/2014/2014102182858337.pdf
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19233
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19233

Citation: Sapaty PS (2016) A Brief Introduction to the Spatial Grasp Language (SGL). J Comput Sci Syst Biol 9: 076-092. doi:10.4172/jcsb.1000224

Volume 9(2) 076-092 (2016) - 92
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

25. Sapaty PS (2015) Distributed Missile Defence with Spatial Grasp Technology.
SMI’s Military Space, Holiday Inn Regents Park, London, United Kingdom.

26. Sapaty PS (2014) Unified Transition to Cooperative Unmanned Systems under
Spatial Grasp Paradigm.19th International Command and Control Research
and Technology Symposium, Alexandria, Virginia.

27. Sapaty PS, Corbin MJ, Borst PM (1995) Towards the development of large-
scale distributed simulations. 12th Proc. Workshop on Standards for the
Interoperability of Distributed Simulations, IST UCF, Orlando, FL.

28. Sapaty PS (2015) Advanced Naval Operations under Spatial Grasp Technology.
International Conference Naval Combat Systems, Park Plaza Victoria, London,
United Kingdom

29. Sapaty PS (2013) Night Vision under Advanced Spatial Intelligence: A key
to Battlefield Dominance. SMi’s Night Vision Conference, London, United
Kingdom.

30. Sapaty PS (2009) Providing Spatial Integrity for Distributed Unmanned
Systems. 6th International Conference in Control, Automation and Robotics
ICINCO, Milan, Italy.

31. Sapaty PS, Sugisaka M, Delgado-Frias J, Filipe J, Mirenkov N (2008) Intelligent
management of distributed dynamic sensor networks. Artificial Life and
Robotics 12: 81-87.

32. Sapaty PS, Sugisaka M, Finkelstein R, Delgado-Frias J, Mirenkov N (2006)
Emergent Societies: An Advanced IT Support of Crisis Relief Missions. 11th
International Symposium on Artificial Life and Robotics, Beppu, Japan.

33. Sapaty PS (2008) Grasping the Whole by Spatial Intelligence: A Higher Level
for Distributed Avionics. International conference Military Avionics, Café Royal,
London, UK.

34. Sapaty PS (2014) Unified transition to cooperative unmanned systems
under Spatial Grasp paradigm. International Symposium on Artificial Life and
Robotics, B-Con Plaza, Beppu, Japan.

35. Schade U, Hieb MR, Frey M, Rein K (2010) Command and Control Lexical
Grammar (C2LG) Specification. FKIE Technical Report.

36. Hieb MR, Schade U (2007) Formalizing Command Intent through Development
of a Command and Control Grammar. 12th International Command and Control
Research and Technology Symposium, Newport, Rhode Island, USA.

37. www.cso.nato.int/pubs/rdp.asp?RDP=RTO-TR-MSG-048

http://www.navalcombatsystemsevent.com/why-attend
http://www.navalcombatsystemsevent.com/why-attend
http://www.navalcombatsystemsevent.com/why-attend
http://www.slideshare.net/smidale/smi-groups-night-vision-conference
http://www.slideshare.net/smidale/smi-groups-night-vision-conference
http://www.slideshare.net/smidale/smi-groups-night-vision-conference
https://www.researchgate.net/publication/221645658_Providing_Spatial_Integrity_for_Distributed_Unmanned_Systems
https://www.researchgate.net/publication/221645658_Providing_Spatial_Integrity_for_Distributed_Unmanned_Systems
https://www.researchgate.net/publication/221645658_Providing_Spatial_Integrity_for_Distributed_Unmanned_Systems
http://link.springer.com/article/10.1007%2Fs10015-007-0446-8
http://link.springer.com/article/10.1007%2Fs10015-007-0446-8
http://link.springer.com/article/10.1007%2Fs10015-007-0446-8
http://link.springer.com/article/10.1007%2Fs10015-006-0412-x
http://link.springer.com/article/10.1007%2Fs10015-006-0412-x
http://link.springer.com/article/10.1007%2Fs10015-006-0412-x
http://c4i.gmu.edu/eventsInfo/conferences/2011/BMLsymposium2011/papers/BML-Symposium-Schade.pdf
http://c4i.gmu.edu/eventsInfo/conferences/2011/BMLsymposium2011/papers/BML-Symposium-Schade.pdf
http://publica.fraunhofer.de/dokumente/N-305709.html
http://publica.fraunhofer.de/dokumente/N-305709.html
http://publica.fraunhofer.de/dokumente/N-305709.html
http://www.cso.nato.int/pubs/rdp.asp?RDP=RTO-TR-MSG-048

	Title
	Corresponding author
	Keywords
	Introduction
	SGL Orientation and Peculiarities
	The SGL Worlds
	Top SGL Syntax
	SGL Main Features
	How scenarios evolve
	Sense and nature of rules
	Spatial variables
	Control states and their hierarchical merge
	Description of Main SGL Constructs
	Constants
	Variables
	Rules

	Full SGL Summary
	Elementary Examples in SGL
	Simplifications and Use of Conventional Notations
	SGL Networked Interpretation
	Some SGT Application Areas
	Relevance to other Works
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

