A Case of a Primary Radiation-Induced Malignant Peripheral Nerve Sheath Tumor in the Cauda Equina in a Patient with Neurofibromatosis Type 2

Takafumi Mitsuhara**, Satoshi Yamaguchi†, Masaaki Takeda†, Kuniki Eguchi†, Mizuki Morishige†, Kazuhiko Sugiyama‡ and Kaoru Kurisu†

1Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
2Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan
3Department of Clinical Oncology and Neuro-oncology Program, Hiroshima University Hospital, Hiroshima, Japan

Abstract

Background: Radiation-induced malignant peripheral nerve sheath tumors (MPNSTs) may occur in any irradiated area of the body where primary malignant lesions existed. However, there have been isolated reports regarding the radiation-induced transformation of spinal schwannomas into MPNSTs in patients with neurofibromatosis type 2 (NF2).

Case material: A 47-year-old woman presented with gradually progressive paraparesis, bowel-bladder dysfunction, and acute consciousness disturbance. Fifteen years previously, she had undergone radical hysterectomy with adjuvant intraoperative para-aortic radiotherapy for the treatment of uterine cervical cancer. Magnetic resonance (MR) images of the brain revealed hydrocephalus and multiple intracranial tumors in bilateral oculomotor and vestibular nerves. Spinal MR images revealed numerous tumors in the cervical cord and cauda equina. Signal alteration in the lumbosacral vertebral bodies on MR images, which implies fatty degeneration, suggested that the cauda equina was included in the previous radiation field. Because the patient complained of severe pain in the lower back region and lower extremities, we partially resected the lumbosacral tumors to achieve pain control. Histological examination of the resected tumors revealed the lesions to be MPNSTs. Despite postoperative radiation therapy, the residual tumor regrew. The patient is now under palliative care.

Conclusion: We report a rare case of a primary MPNST in the cauda equina occurring 15 years after the administration of intraoperative irradiation for uterine cancer. In patients with NF2 who undergo irradiation for malignancies, long-term observation is mandatory because tardive malignant transformation may occur in pre-existing schwannomas in the irradiated field.

Keywords: Cauda equina; Intradural; Irradiation; Malignant peripheral nerve sheath tumor; Neurofibromatosis

Introduction

Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors arising from a peripheral nerve or extraneural soft tissue that exhibits nerve sheath differentiation [1]. Although the incidence of MPNSTs in the general population is 0.001% [2,3], the incidence is 5% in patients with neurofibromatosis type 1 (NF1) [2,4,5]. Conversely, MPNST is rarely associated with neurofibromatosis type 2 (NF2). Another predisposing factor for MPNSTs is a history of radiation therapy [6]. MPNSTs can occur in any area of the body that was exposed to irradiation to treat a primary malignancy. However, primary radiotherapy-induced MPNSTs in spinal intradural structures are very rare, with only 4 cases reported so far [6-8]. In this study, we discuss a new case of a primary radiotherapy-induced MPNST of the cauda equina in a patient with NF2.

Case Material

A 47-year-old woman presented with gradually progressive paraparesis, bowel-bladder dysfunction, and acute consciousness disturbance. Physical examination revealed slight bilateral facial nerve palsy, hearing disturbance in the right ear, and paraparesis with muscle atrophy in her right leg. Her skin exhibited no café au lait spots or terminal nerve twigs. Fifteen years previously, she had undergone radical hysterectomy with adjuvant intraoperative para-aortic radiotherapy (22 Gy) for the treatment of stage Ib uterine cervical cancer at another hospital. She had remained in good health without metastasis after postoperative chemotherapy until the current presentation. Magnetic resonance (MR) images of the brain revealed hydrocephalus and multiple intracranial tumors in bilateral oculomotor and vestibular nerves (Figure 1). Spinal MR images revealed small tumors in the cervical cord and massive tumors in the cauda equina (Figure 2). Signal alteration in the lumbosacral vertebral bodies, which implies fatty degeneration, on MR images suggested that the cauda equina was included in the previous radiation field.

Although a ventriculoperitoneal shunt eliminated her headache and restored her consciousness, the patient complained of severe pain in her lower back region and lower extremities. Because the pain was in her right leg and bladder and bowel dysfunction were so severe that nerve function below the L5 level was considered unserviceable, we decided to remove the tumor in the cauda equina to achieve pain control. Partial removal of the tumor was performed via L3–5 lumbar laminectomy. Multiple reddish gray-colored tumors showed firm attachment to and strongly compressed the intact nerve roots. After internal decompression of the tumor, dural plasty with fascia was performed to achieve external decompression.
Histological examination of the specimen revealed infiltrating tumors composed of spindle cells arranged in a herringbone pattern with irregular nuclei and nuclear hyperchromasia (Figure 3). Immunohistochemical examination revealed focal positivity for S-100P in the tumor cells. The Ki-67 index of 47% confirmed the highly proliferative nature of the tumor. These histopathological findings were consistent with a diagnosis of MPNST.

The patient was relieved of the persistent lumbar pain after surgery by decompressing the spinal canal. She received adjuvant radiotherapy at a total dose of 50.4 Gy fractioned over 28 sessions: 36 Gy for the entire spine and brain and a booster dose of 14.4 Gy for the lumbosacral lesion. Despite these treatments, subsequent MR images revealed a residual tumor refilling the resected tumor cavity. The patient has been transferred to another hospital for palliative care.

Discussion

MPNST: Location and Association with NF1 and NF2

MPNSTs usually affect adults ranging in age from 20 to 50 years without a distinct gender preponderance, and it is rare in children younger than 6 years [9,10]. The most common locations are the trunk, limbs, and head and neck [5], and MPNSTs rarely affect the intradural components of the cerebrospinal axis.

The incidence of MPNSTs in the general population is 0.001% [2,3] but, the incidence is 5% among patients with NF1 [2,4,5]. During their lifetimes, 8–13% of patients with NF1 develop MPNSTs arising from the malignant transformation of pre-existing plexiform neurofibroma. MPNST remains the single biggest contributing factor to reduced life expectancy in NF1 [11-13]. Such malignant transformation of schwannomas in patients with NF2 is extremely rare.

When MPNSTs affect intracranial structures, they arise de novo in 50% of cases, and MPNSTs associated with NF1 and NF2 account for 13% and 6% of all of these tumors, respectively [14]. Because spinal MPNSTs usually affect nerve roots, primary spinal intradural MPNSTs are rare. Xu et al. reviewed 24 cases of primary spinal intradural MPNSTs [15]. The median patient age was 35 years (range: 4–70 years), and 20% of the patients were children less than 14 years old. With regard to tumor site, 33.3% of the tumors were cervical, 25% were in thoracic, and 41.6% were located in the lumbar and sacral spine. In total, 4 of 24 tumors (16.7%) occurred in patients with NF1, whereas none of these tumors developed in patients with NF2.

In the present case, the patient had bilateral vestibular tumors, and she was diagnosed with NF2. As mentioned previously, there is no other reported case of primary spinal intradural MPNSTs associated with NF2.

Radiation-induced MPNSTs

Radiation increases the risk of malignant transformation of a tumor or the risk of inducing additional tumor formation within the radiation field [6,13,14]. The deleterious effect of radiation on peripheral nerves was described initially in early animal experimental work [16,17] and supported by reports of nerve sheath tumors occurring in previously irradiated fields [18]. The incidence of radiation-induced MPNSTs reported in large series ranged from 5.5% to 11% [5,6].

Although details of the radiation protocol that the patient
underwent 15 years ago were not available, fatty degeneration of the
marrow of the lumbar sacral vertebral bodies strongly suggested that the
cauda equina was included in the radiation field. Thus, we believed
that the MPNST in the present case was caused by radiation-induced
malignant transformation of a pre-existing schwannoma in the cauda
equina. We reviewed 5 cases of intradural MPNSTs associated with
previous radiotherapy, including our case (Table 1) [6-8]. All patients
were less than 50 years old and had a prior history of radiotherapy for
malignancies. One tumor developed in a patient with NF1, and the
present case was of a patient with NF2. All patients underwent surgery,
2 patients received postoperative radiotherapy, and 1 patient received
chemotherapy. Although a negative surgical margin is the most
significant factor for survival and local control for MPNSTs, complete
removal without morbidity is impossible in cases of spinal intradural
MPNSTs [3,15]. Among the cases of MPNSTs associated with previous
radiotherapy, 3 cases had a fatal outcome within a year. Four of the 5
cases showed a latent period of more than 10 years after radiotherapy,
and therefore, long-term observation is mandatory for patients who
undergo radiotherapy along the spinal column.

Conclusion
We report a rare case of a primary spinal intradural MPNST in
a patient with NF2 occurring 15 years after intraoperative irradiation
for uterine cancer. If radiation is administered to patients with NF2,
the patients should be carefully followed-up, and the possibility of
malignant transformation of pre-existing schwannomas induced by
initial irradiation should be kept in mind if the radiation field includes
the spinal cord.

References
The 2007 WHO classification of tumours of the central nervous system. Acta
Neurosurg Focus 22: E12.
peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann
Surg Oncol 19: 878-885.
 schwannomas: clinical and prognostic remarks. Acta Neurochir (Wien) 135:
52-55.
Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120
induced malignant peripheral nerve sheath tumor of the cauda equina. Spine
29: E506-E509.
sheath tumor of the spine after radiation therapy for Hodgkin’s lymphoma. Clin
Neuropathol 23: 245-255.
malignant peripheral nerve sheath tumor: the Italian and German soft tissue
neurofibromatosis. Archives of pathology & laboratory medicine 121: 139-143.
transformation and new primary tumours after therapeutic radiation for benign
disease: Substantial risks in certain tumour prone syndromes. J Med Genet
nerve: a case series review. Auris Nasus Larynx 37: 539-545.
nerve sheath tumor of the cauda equina with metastasis to the brain in a child:
17. Bergstrom R (1962) Changes in peripheral nerve tissue after irradiation with
schwannoma following irradiation. Report of a patient treated in infancy for

Table 1: Summary of this case and previously reported cases of radiation-induced primary intradural malignant peripheral nerve sheath tumors.

<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Age / sex</th>
<th>NF</th>
<th>Previous disease</th>
<th>Years after irradiation</th>
<th>Level</th>
<th>Removal</th>
<th>Adjuvant therapy</th>
<th>Metastasis</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seppäla and Haltia [8]</td>
<td>13 / M</td>
<td>NF1</td>
<td>Wilms’ tumor</td>
<td>12 years</td>
<td>Lumbosacral</td>
<td>Incomplete</td>
<td>Null</td>
<td>Brain, Systemic</td>
<td>Dead at 2 mo.</td>
</tr>
<tr>
<td>2</td>
<td>Amin et al. [6]</td>
<td>38 / M</td>
<td>No</td>
<td>Testicular seminoma</td>
<td>10 years</td>
<td>Lumbosacral</td>
<td>Biopsy</td>
<td>Chemotherapy</td>
<td>Null</td>
<td>Null</td>
</tr>
<tr>
<td>3</td>
<td>Adamson et al. [7]</td>
<td>37 / M</td>
<td>No</td>
<td>Hodgkin’s lymphoma</td>
<td>6 years</td>
<td>Cervical</td>
<td>Incomplete</td>
<td>Radiotherapy</td>
<td>No</td>
<td>Dead after 1y and a few months</td>
</tr>
<tr>
<td>4</td>
<td>Adamson et al. [7]</td>
<td>30 / F</td>
<td>No</td>
<td>Hodgkin’s lymphoma</td>
<td>16 years</td>
<td>Cervical</td>
<td>Incomplete</td>
<td>No</td>
<td>Dead after 1y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Present case</td>
<td>47 / F</td>
<td>NF2</td>
<td>Cervical cancer</td>
<td>15 years</td>
<td>Lumbosacral</td>
<td>Incomplete</td>
<td>Radiotherapy</td>
<td>No</td>
<td>Alive at 6 mo.</td>
</tr>
</tbody>
</table>