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Abstract

Let n,m be integers such that n ≥ 3, m > 0 and Ck a cyclic group of order k. All groups
which can be presented as a semidirect product (C2n+m × C2n) h C2 are described.
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1 Introduction

All non-Abelian groups of order < 32 are described in [1] (Table 1 at the end of the book).
M. Jr. Hall and J. K. Senior [3] have given a fully description of all groups of order 2n, n ≤ 6.
There exist exactly 51 non-isomorphic groups of order 32. Some of them can be presented as a
semidirect product (C22 ×C22)hC2 and some of them as a semidirect product (C23 ×C2)hC2.
As a generalization of the first case, in [2] all groups of the form (C2n × C2n) h C2, n > 3, are
described. It turned out that there exist only 17 non-isomorphic groups of this form (for a fixed
n). In this paper we generalize the second case. Namely, we shall describe all finite 2-groups
which can be presented in the form (C2n+m ×C2n) h C2, where n ≥ 3 and m > 1. Clearly, each
such group G is given by three generators a, b, c and by the defining relations

a2n+m
= b2n

= c2 = 1, ab = ba, c−1ac = apbq, c−1bc = arbs (1.1)

for some p, r ∈ Z2n+m and q, s ∈ Z2n (Z2k – the ring of residue classes modulo 2k).
The aim of this paper is to prove

Theorem 1.1. For fixed m > 0 and n > 3 the number of groups which can be given by relations
(1.1) is

3 · 4n + 32 (if m = 1), 4 · 4n + 32 (if m = 2), 5 · 4n + 32 (if m > 3)

All possible values of (p, q, r, s) are given in Propositions 3.1, 3.2, 3.3 if m < n, in 3.1, 3.2 if
m = n and in 3.4, 3.5 if m > n.

2 Main concepts for the proof of Theorem 1.1

Let G = (〈a〉×〈b〉)h〈c〉 be a group given by (1.1). An element c induces an inner automorphism
ĉ of order two (the case ĉ = 1 is also included) of group 〈a〉 × 〈b〉:

aĉ = c−1ac = apbq, bĉ = c−1bc = arbs
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Therefore, we have to find all automorphisms of 〈a〉 × 〈b〉 of order two. The map aϕ = apbq,
bϕ = arbs induces an endomorphism of group 〈a〉×〈b〉 if and only if r ≡ 0 (mod 2m). This endo-
morphism is an automorphism, if and only if p ≡ s ≡ 1 (mod 2). This map is an automorphism
of order two if and only if (p, q, r, s) satisfy the system

{
p2 + rq ≡ 1
pr + rs ≡ 0

(mod 2n+m) ,

{
pq + sq ≡ 0
qr + s2 ≡ 1

(mod 2n) (2.1)

p ≡ s ≡ 1 (mod 2), r ≡ 0 (mod 2m)

Our purpose is to solve system (2.1). Note that the two first subsystems of (2.1) imply the
following system modulo 2n:

p2 + rq ≡ 1, pr + rs ≡ 0, pq + sq ≡ 0, qr + s2 ≡ 1 (2.2)

The solutions (p, q, r, s) of system (2.2) form a set M which was described in [2]. In [2] the set
M was given as the union of disjoined subsets M1,M2, . . . ,M10.

Let (p, q, r, s) = (f, q, g, s) ∈M be a solution of system (2.2), where q, g ∈ Z2n and f, s ∈ Z∗2n

(Z∗2n denotes the set of all invertible elements of Z2n). Then p and r can be replaced in (2.1) by

p = f + 2nx, r = g + 2ny, where x, y ∈ Z2m

Now it is easy to see that system (2.1) is equivalent to the system

(f + 2nx)2+(g + 2ny) q ≡ 1 (mod 2n+m), (g + 2ny) (f + 2nx + g) ≡ 0 (mod 2n+m) (2.3)

where (f, q, g, s) ∈M, q, g ∈ Z2n , f, s ∈ Z∗2n and

g ≡ 0 (mod 2m) if m 6 n, y ≡ 0 (mod 2m−n) and g = 0 if m > n (2.4)

Remark, that h ∈ Zk means the representative of residue class; moreover, we always can choose
h ∈ {0, 1, . . . , k − 1}.

Because the length of the paper is limited, for most of statements we give only idea of proof.

3 Solving system (2.1)

3.1 The case m 6 n

Assume that m 6 n. Then g ≡ 0 (mod 2m) and system (2.3) takes the form

f2 + 2n+1fx + (g + 2ny) q ≡ 1 (mod 2n+m), (g + 2ny) (f + s) ≡ 0 (mod 2n+m) (3.1)

Proposition 3.1. Assume that m 6 n and q is odd. Then the solutions (p, q, r, s) of (2.1) are
of the form (i + 2nx, j, g + 2ny,−i), where

y ≡ ((
1− i2 − gj

)
/2n − 2ix

)
j−1 (mod 2m), x ∈ Z2m

and g = (1 − i2)j−1, i = i0 + 2mk, k ∈ Z2n−m , where i0 ∈
{
1,−1 + 2m,±1 + 2m−1

}
if m > 3,

i0 ∈ {1,−1 + 2m} if m = 2, i0 = 1 if m = 1. There are exactly 22n+1 solutions of this form if
m > 3, exactly 22n solutions if m = 2 and exactly 22n−1 solutions if m = 1.

Proof. The condition of the proposition, conditions (2.4) and f, s ∈ Z∗2n by [2] are satis-
fied for solution of (2.2) from the set M2 =

{(
i, j, (1− i2)j−1,−i

) | i ∈ Z∗2n , j ∈ Z∗2n

}
. While

g = (1− i2)j−1 ≡ 0 (mod 2m), we have i2 ≡ 1 (mod 2m), i.e i = i0+2mk, where k ∈ Z2n−m and
i0 ∈

{
1,−1 + 2m,±1 + 2m−1

}
if m > 3, i0 ∈ {1,−1 + 2m} if m = 2, i0 = 1 if m = 1. Since
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f +s = 2n and g ≡ 0 (mod 2m), the second congruence of (3.1) holds for every x, y ∈ Z2m . From
the first congruence of (3.1) we get the value for y. Now let us find the number of solutions of the
system (2.1). We have 2n−m choices for number k, 2n−1 choices for odd number j, 2m choices for
number x. For i0 we have z = 4 choices if m > 3, z = 2 choices if m = 2 and z = 1 choice if m = 1.
This implies that for the number i we have z · 2n−m choices and the number of solutions of the
system is equal to the number of triples (i, j, x) and |{(i, j, x)}| = z·2n−m·2n−1·2m = z·22n−1.

Proposition 3.2. Assume that m 6 n, q is even and i ∈ {
ε, ε + 2n−1

}
(ε = ±1). Then the

solutions of (2.1) are:

1)
(
i + 2nx, 2su, 2tv + 2ny,−i + 2n−1z

)
, where y ∈ Z2m (if m < n or if m = n and z = 0),

y ∈ 2Z2m−1 (if m = n and z = 1), 1 ≤ s ≤ n, u ∈ Z∗2n−s ,m + z 6 t 6 n, v ∈ Z∗2n−t and in
the case m < n if i = ε then x = x1, s + t > n, if i = ε + 2n−1 then x = x2, s + t = n; in
the case m = n then i = ε, x = x1, 2tv = 0, where

x1 ≡ (−1 + ε) 2−εx0

(
mod 2m−1

)
, x2 ≡ −ε

(
2n−3 + (ε + uv) /2 + 2s−1yu

) (
mod2m−1

)

and x0 = 2t+s−n−1u
(
v + 2n−ty

)
(if m < n), x0 = 2s−1uy (if m = n). There are exactly

(2n− 2m + 1) 2n+m+1 solutions of this form if m < n and 3 · 22n solutions if m = n.

2)
(
i + 2nx, 2n−1u, 2ny, i + 2n−1z

)
, i ∈ {1,−1 + 2n}, u, z ∈ Z2, y ≡ 0 (mod 2m−1) and

x ≡ 0 (mod 2m−1) if i = 1, x ≡ −1 (mod 2m−1) if i = −1 + 2n

There are exactly 32 solutions of this form.

Proof. To prove the proposition, by [2] we must consider the following sets of solutions of (2.2):

M4 ∪M7 =
{(

i, 2su, 2tv,−i + 2n−1z
) | 1 ≤ s, t ≤ n; s + t ≥ n; u ∈ Z∗2n−s , v ∈ Z∗2n−t

}

M5 ∪M6 =
{(

i + 2n−1z, 2n−1u, 2n−1v, i + 2n−1z
) |u, v ∈ Z2, i = ±1

}

M8 ∪M9 =
{(

i, 2n−1u, 2n−1v, i + 2n−1
) |u, v ∈ Z2

}

where z ∈ Z2. Solving system (3.1) for each solution of (2.2) from given sets we get from the
second congruence in (3.1) the condition for y and from the first congruence in (3.1) the values
for x. The solutions of system (2.2) belonging to set M4 ∪M7 give us solution 1) of system
(2.1). The solutions of system (2.2) belonging to sets M5 ∪M6, M8 ∪M9 give solution 2) of
system (2.1).

Proposition 3.3. Assume that m 6 n, q = 2tu and g = 2rv are both nonzero even num-
bers, s /∈ {±1,±1 + 2n−1

}
is odd (s = ε + 2t+r−1p, p ∈ Z∗2n−t−r+1 , ε = ±1, 1 ≤ t < n,

m + k ≤ r ≤ n − 1, 3 6 t + r < n, v = − (
ε + 2t+r−2p

)
pu2n−t−r−1 + 2n−t−r+1l (l ∈ Z2t−1))

and k ∈ {0, 1}. Then system (2.1) have solutions only if m < n, and these solutions are(
s + 2nx, 2tu, 2rv + 2ny,−s + 2n−1k

)
, where x, y ∈ Z2 (if m = 1) and if m > 1 then y ∈ Z2m ,

x ≡ s−1
(− (

εp + uv + 2t+r−2p2
)
/2n+1−t−r − 2t−1yu

)
(mod 2m−1). If m = 1 there are

2n+2
(
5 · 2n−3−2n+1

)
solutions of this form. If m > 1 there are 3 · 22n−2n+m+1 (2n−2m+1)

solutions.

Proof. Let us now consider the set M10. The solutions of system (2.2) from this set have
the form

(
i, 2tu, 2rv,−i + 2n−1k

)
, where 1 ≤ r, t ≤ n − 1, 3 ≤ r + t ≤ n − 1, p ∈ Z∗2n−t−r+1 ,

k ∈ Z2, u ∈ Z∗2n−t , v ∈ Z∗2n−r , and

uv + (±1 + 2t+r−2p)p ≡ 0 (mod 2n−r−t) (3.2)

The condition g = 2rv ≡ 0 (mod 2m) holds only if r > m. The second congruence of (3.1), i.e
(
2n + 2n−1k

)
(2rv + 2ny) + 2nx2rv ≡ 0 (mod 2n+m)
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holds in the case if k = 0 for every r > m and in the case if k = 1 it holds for every r > m + 1.
Since s2 − 1 = ±2t+rp + 22(t+r−1)p2, the first congruence of (3.1), i.e

s2 + 2n+1sx + (2rv + 2ny) 2tu ≡ 1 (mod 2n+m)

implies

2n+1−t−rsx + 2n−tyu +
(±p + uv + 2t+r−2p2

) ≡ 0 (mod 2n+m−t−r) (3.3)

Since n− t > n + 1− t− r, this congruence holds if and only if

±p + vu + 2t+r−2p2 ≡ 0 (mod 2n+1−t−r)

The last condition is stronger than (3.2) and implies v ≡ − (±1+2t+r−2p
)
pu−1 (mod 2n+1−t−r),

where u−1 is the inverse of the odd number u by modulo 2n+1−t−r, i.e u−1 = u2n−t−r−1. Since
v ∈ Z∗2n−r , for v we have 2n−r/2n+1−t−r = 2t−1 values by modulo 2n−r in the form

v = − (±1 + 2t+r−2p
)
pu2n−t−r−1 + 2n−t−r+1l, where l ∈ Z2t−1

It follows from (3.3), that in the case m = 1 we have x, y ∈ Z2 and in the case m > 1 we have

x ≡ s−1
(− (±p + uv + 2t+r−2p2

)
2n+1−t−r − 2t−1yu

)
(mod 2m−1)

Calculating the number of all obtained solutions, we get the second statement of proposition.

3.2 The case m > n

The condition g + 2ny ≡ 0 (mod 2m) implies g = 0 and y ≡ 0 (mod 2m−n), i.e y is even,
y = 2m−nz, z ∈ Z2n , where z = 0 or z = 2kw (k ∈ Zn and w ∈ Z∗

2n−k). System (2.3) has now
the form

(f + 2nx)2 + 2mzq ≡ 1 (mod 2n+m), 2mz (f + s) ≡ 0 (mod 2n+m) (3.4)

Lemma 3.1. The solution of the congruence

(f + 2nx)2 ≡ 1 (mod 2n+m), where f ∈ {±1,±1 + 2n−1
}

is: 1) x ∈ {
0, 2m−1

}
if f = 1, 2) x ∈ {−1 + 2m−1,−1 + 2m

}
if f = −1, and 3) x ∈ ∅ if

f = ±1 + 2n−1.

Proof. The solutions of b2 ≡ 1 (mod 2n+m) are b ∈ {
1,−1 + 2n+m, 1 + 2n+m−1,−1 + 2n+m−1

}
,

i.e 2nx ∈ {
1− f,−1− f + 2n+m, 1− f + 2n+m−1,−1− f + 2n+m−1

}
. 1) If f = 1, then

2nx ∈ {
0,−2 + 2n+m, 2n+m−1,−2 + 2n+m−1

}
, 2nx ∈ {

0, 2n+m−1
}

and x ∈ {
0, 2m−1

}
. 2) If

f = −1 = −1 + 2n, then 2nx ∈ {2− 2n + 2n+m, −2n + 2n+m, 2− 2n + 2n+m−1, −2n + 2n+m−1},
2nx ∈ {−2n + 2n+m,−2n + 2n+m−1

}
and x ∈ {−1 + 2m,−1 + 2m−1

}
. 3) If f = ±1+2n−1, then

2nx ∈ {−2n−1+2n+m,−2n−1+2n+m−1,∓2− 2n−1+2n+m,∓2−2n−1+2n+m−1
}

and x ∈ ∅.

Lemma 3.2. The solution of the congruence

(f + 2nx)2 ≡ 1− 2mzq (mod 2n+m)

where f ∈ {±1,±1 + 2n−1
}
, q = 2su, z = 2kw, (k = 1, 2, ..., n − 1 and w ∈ Z∗

2n−k) and zq 6= 0
(mod 2n) is: 1) x = 2m−n+k+s−1p (if f = 1, ε = +1), 2) x = 2m−n+k+s−1p − 1 (if f = −1,
ε = −1), and 3) x ∈ ∅ (if f = ±1 + 2n−1), where p ∈ Z∗

2n−k−s+1, i ∈ Z2s and

z = 2k
(
−

(
ε + 2m+k+s−2p

)
pu2n−k−s−1−1 + 2n−k−si

)
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Proof. Denote f +2nx = a, s+k = l. Then a2−1 ≡ −2m+luw (mod 2n+m). Using (2.1)–(2.10)
in [2], we get that the solution of the last congruence is

a = ε + 2m+l−1p, q = 2su, z = 2k
(
−

(
ε + 2m+l−2p

)
pu2n−l−1−1 + 2n−li

)

where s, k = 1, 2, ..., n− 1, s + k < n, ε = ±1, u ∈ Z∗2n−s , p ∈ Z∗
2n−l+1 , i ∈ Z2s .

Now let us find x. Since f + 2nx ∈ {
1 + 2m+l−1p,−1 + 2m+l−1p

}
, it follows that

2nx ∈ {
1− f + 2m+l−1p,−1− f + 2m+l−1p

}
. 1) If f = 1, then 2nx ∈ {

2m+l−1p,−2 + 2m+l−1p
}
,

2nx ∈ {
2m+l−1p

}
and x = 2m−n+l−1p. 2) Analogously, if f = −1 = −1 + 2n, then

2nx ∈ {
2− 2n + 2m+l−1p,−2n + 2m+l−1p

}
, 2nx ∈ {−2n + 2m+l−1p

}
and x = 2m−n+l−1p − 1.

3) If f = ±1 + 2n−1, then 2nx ∈ {∓2− 2n−1 + 2m+l−1p,−2n−1 + 2m+l−1p
}

and x ∈ ∅.

Denote by x1 solutions from Lemma 3.1 and by x2, z2 solutions from Lemma 3.2.

Proposition 3.4. Assume that m > n and the number q is odd (q = j ∈ Z∗2n). Then the
solutions of (2.1) are: 1)

(
i + 2nx, j, 2m+kw,−i

)
, where x = 2m−n+k−1p+−1+i

2 , i = ±1, k ∈ Zn,
p ∈ Z∗

2n−k+1, w = − (
i + 2m+k−2p

)
pj2n−k−1−1; 2) (i + 2nx, j, 0,−i), where x ∈ {

0, 2m−1
}

if i = 1
and x ∈ {−1 + 2m−1,−1 + 2m

}
if i = −1. There are 22n+1 solutions of these forms.

Proof. Consider the solutions of system (2.2) belonging to the set M3. The second congruence
of (3.4) holds for every z ∈ Z2n . To solve the first congruence of (3.4), consider two cases for z:
1) z = 2kw, w ∈ Z∗

2n−k , k ∈ Zn and 2) z = 0 (i.e y = 0). In the first case using Lemma 3.2, we
get solution 1) and in the second case, using Lemma 3.1, we get solution 2).

Proposition 3.5. Assume that m > n, f ∈ {±1,±1 + 2n−1
}

and both numbers q and g are
even. Then (2.1) have solutions only in case f = i = ±1 and these solutions are:

1)
(
i + 2nx1, 2su, 0,−i + 2n−1r

)
(s = 1, 2, ..., n)

2)
(
i + 2nx1, 0, 2mz,−i + 2n−1r

)
(z ∈ (1 + r)Z2n−r r {0})

3)
(
i + 2nx1, 2su, 2m+kw,−i + 2n−1r

)
(r 6 k 6 n− 1, w ∈ Z∗

2n−k , n− k 6 s 6 n− 1)
4)

(
i + 2nx2, 2su, 2mz2,−i + 2n−1r

)
(k = r, r + 1, ..., n− 1, s = 1, ..., n− k − 1)

5)
(
i + 2nx1, 2n−1h, 2mz, i + 2n−1r

)
(h ∈ Z2, z ∈ {

0, 2n−1
}
)

where u ∈ Z∗2n−s, r ∈ Z2. There are 3 · 4n + 32 solutions of these forms.

Proof. Consider solutions of system (2.2) belonging to the sets M4∪M7, M5∪M6, M8∪M9.
Solving system (3.4) and using lemmas 3.1 and 3.2, we get from the set M4 ∪M7 solutions 1),
2), 3), 4) and from sets M5∪M6, M8∪M9 solution 5). Calculating the number of all obtained
solutions, we get the second statement of the proposition.
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