A characterization of a class of 2-groups by their defining relations ${ }^{1}$

Tatjana GRAMUSHNJAK
Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia
E-mail: tatjana@tlu.ee

Abstract

Let n, m be integers such that $n \geq 3, m>0$ and C_{k} a cyclic group of order k. All groups which can be presented as a semidirect product $\left(C_{2^{n+m}} \times C_{2^{n}}\right) \lambda C_{2}$ are described.

2000 MSC: 20E22, 20D40

1 Introduction

All non-Abelian groups of order <32 are described in [1] (Table 1 at the end of the book). M. Jr. Hall and J. K. Senior [3] have given a fully description of all groups of order $2^{n}, n \leq 6$. There exist exactly 51 non-isomorphic groups of order 32 . Some of them can be presented as a semidirect product $\left(C_{2^{2}} \times C_{2^{2}}\right) \lambda C_{2}$ and some of them as a semidirect product $\left(C_{2^{3}} \times C_{2}\right) \lambda C_{2}$. As a generalization of the first case, in [2] all groups of the form $\left(C_{2^{n}} \times C_{2^{n}}\right) \lambda C_{2}, n \geqslant 3$, are described. It turned out that there exist only 17 non-isomorphic groups of this form (for a fixed n). In this paper we generalize the second case. Namely, we shall describe all finite 2 -groups which can be presented in the form $\left(C_{2^{n+m}} \times C_{2^{n}}\right) \lambda C_{2}$, where $n \geq 3$ and $m \geqslant 1$. Clearly, each such group G is given by three generators a, b, c and by the defining relations

$$
\begin{equation*}
a^{2^{n+m}}=b^{2^{n}}=c^{2}=1, \quad a b=b a, \quad c^{-1} a c=a^{p} b^{q}, \quad c^{-1} b c=a^{r} b^{s} \tag{1.1}
\end{equation*}
$$

for some $p, r \in \mathbb{Z}_{2^{n+m}}$ and $q, s \in \mathbb{Z}_{2^{n}}\left(\mathbb{Z}_{2^{k}}\right.$ - the ring of residue classes modulo $\left.2^{k}\right)$.
The aim of this paper is to prove
Theorem 1.1. For fixed $m>0$ and $n \geqslant 3$ the number of groups which can be given by relations (1.1) is

$$
3 \cdot 4^{n}+32 \quad(\text { if } m=1), \quad 4 \cdot 4^{n}+32 \quad(\text { if } m=2), \quad 5 \cdot 4^{n}+32 \quad(\text { if } m \geqslant 3)
$$

All possible values of (p, q, r, s) are given in Propositions 3.1, 3.2, 3.3 if $m<n$, in 3.1, 3.2 if $m=n$ and in 3.4, 3.5 if $m>n$.

2 Main concepts for the proof of Theorem 1.1

Let $G=(\langle a\rangle \times\langle b\rangle) \lambda\langle c\rangle$ be a group given by (1.1). An element c induces an inner automorphism \widehat{c} of order two (the case $\widehat{c}=1$ is also included) of group $\langle a\rangle \times\langle b\rangle$:

$$
a \widehat{c}=c^{-1} a c=a^{p} b^{q}, \quad b \widehat{c}=c^{-1} b c=a^{r} b^{s}
$$

[^0]Therefore, we have to find all automorphisms of $\langle a\rangle \times\langle b\rangle$ of order two. The map $a \varphi=a^{p} b^{q}$, $b \varphi=a^{r} b^{s}$ induces an endomorphism of group $\langle a\rangle \times\langle b\rangle$ if and only if $r \equiv 0\left(\bmod 2^{m}\right)$. This endomorphism is an automorphism, if and only if $p \equiv s \equiv 1(\bmod 2)$. This map is an automorphism of order two if and only if (p, q, r, s) satisfy the system

$$
\begin{align*}
& \left\{\begin{array}{c}
p^{2}+r q \equiv 1 \\
p r+r s \equiv 0
\end{array} \quad\left(\bmod 2^{n+m}\right), \quad\left\{\begin{array}{c}
p q+s q \equiv 0 \\
q r+s^{2} \equiv 1
\end{array} \quad\left(\bmod 2^{n}\right)\right.\right. \tag{2.1}\\
& p \equiv s \equiv 1 \quad(\bmod 2), \quad r \equiv 0 \quad\left(\bmod 2^{m}\right)
\end{align*}
$$

Our purpose is to solve system (2.1). Note that the two first subsystems of (2.1) imply the following system modulo 2^{n} :

$$
\begin{equation*}
p^{2}+r q \equiv 1, \quad p r+r s \equiv 0, \quad p q+s q \equiv 0, \quad q r+s^{2} \equiv 1 \tag{2.2}
\end{equation*}
$$

The solutions (p, q, r, s) of system (2.2) form a set \mathcal{M} which was described in [2]. In [2] the set \mathcal{M} was given as the union of disjoined subsets $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{10}$.

Let $(p, q, r, s)=(f, q, g, s) \in \mathcal{M}$ be a solution of system (2.2), where $q, g \in \mathbb{Z}_{2^{n}}$ and $f, s \in \mathbb{Z}_{2^{n}}^{*}$ $\left(\mathbb{Z}_{2^{n}}^{*}\right.$ denotes the set of all invertible elements of $\mathbb{Z}_{2^{n}}$). Then p and r can be replaced in (2.1) by

$$
p=f+2^{n} x, \quad r=g+2^{n} y, \quad \text { where } \quad x, y \in \mathbb{Z}_{2^{m}}
$$

Now it is easy to see that system (2.1) is equivalent to the system

$$
\begin{equation*}
\left(f+2^{n} x\right)^{2}+\left(g+2^{n} y\right) q \equiv 1 \quad\left(\bmod 2^{n+m}\right), \quad\left(g+2^{n} y\right)\left(f+2^{n} x+g\right) \equiv 0 \quad\left(\bmod 2^{n+m}\right) \tag{2.3}
\end{equation*}
$$

where $(f, q, g, s) \in \mathcal{M}, q, g \in \mathbb{Z}_{2^{n}}, f, s \in \mathbb{Z}_{2^{n}}^{*}$ and

$$
\begin{equation*}
g \equiv 0 \quad\left(\bmod 2^{m}\right) \quad \text { if } m \leqslant n, \quad y \equiv 0 \quad\left(\bmod 2^{m-n}\right) \quad \text { and } g=0 \quad \text { if } m>n \tag{2.4}
\end{equation*}
$$

Remark, that $h \in \mathbb{Z}_{k}$ means the representative of residue class; moreover, we always can choose $h \in\{0,1, \ldots, k-1\}$.

Because the length of the paper is limited, for most of statements we give only idea of proof.

3 Solving system (2.1)

3.1 The case $m \leqslant n$

Assume that $m \leqslant n$. Then $g \equiv 0\left(\bmod 2^{m}\right)$ and system (2.3) takes the form

$$
\begin{equation*}
f^{2}+2^{n+1} f x+\left(g+2^{n} y\right) q \equiv 1 \quad\left(\bmod 2^{n+m}\right), \quad\left(g+2^{n} y\right)(f+s) \equiv 0 \quad\left(\bmod 2^{n+m}\right) \tag{3.1}
\end{equation*}
$$

Proposition 3.1. Assume that $m \leqslant n$ and q is odd. Then the solutions (p, q, r, s) of (2.1) are of the form $\left(i+2^{n} x, j, g+2^{n} y,-i\right)$, where

$$
y \equiv\left(\left(1-i^{2}-g j\right) / 2^{n}-2 i x\right) j^{-1} \quad\left(\bmod 2^{m}\right), \quad x \in \mathbb{Z}_{2^{m}}
$$

and $g=\left(1-i^{2}\right) j^{-1}, i=i_{0}+2^{m} k, k \in \mathbb{Z}_{2^{n-m}}$, where $i_{0} \in\left\{1,-1+2^{m}, \pm 1+2^{m-1}\right\} \quad$ if $m \geqslant 3$, $i_{0} \in\left\{1,-1+2^{m}\right\}$ if $m=2, i_{0}=1$ if $m=1$. There are exactly $2^{2 n+1}$ solutions of this form if $m \geqslant 3$, exactly $2^{2 n}$ solutions if $m=2$ and exactly $2^{2 n-1}$ solutions if $m=1$.

Proof. The condition of the proposition, conditions (2.4) and $f, s \in \mathbb{Z}_{2^{n}}^{*}$ by [2] are satisfied for solution of (2.2) from the set $\mathcal{M}_{2}=\left\{\left(i, j,\left(1-i^{2}\right) j^{-1},-i\right) \mid i \in \mathbb{Z}_{2^{n}}^{*}, j \in \mathbb{Z}_{2^{n}}^{*}\right\}$. While $g=\left(1-i^{2}\right) j^{-1} \equiv 0\left(\bmod 2^{m}\right)$, we have $i^{2} \equiv 1\left(\bmod 2^{m}\right)$, i.e $i=i_{0}+2^{m} k$, where $k \in \mathbb{Z}_{2^{n-m}}$ and $i_{0} \in\left\{1,-1+2^{m}, \pm 1+2^{m-1}\right\}$ if $m \geqslant 3, i_{0} \in\left\{1,-1+2^{m}\right\}$ if $m=2, i_{0}=1$ if $m=1$. Since
$f+s=2^{n}$ and $g \equiv 0\left(\bmod 2^{m}\right)$, the second congruence of (3.1) holds for every $x, y \in \mathbb{Z}_{2^{m}}$. From the first congruence of (3.1) we get the value for y. Now let us find the number of solutions of the system (2.1). We have 2^{n-m} choices for number $k, 2^{n-1}$ choices for odd number $j, 2^{m}$ choices for number x. For i_{0} we have $z=4$ choices if $m \geqslant 3, z=2$ choices if $m=2$ and $z=1$ choice if $m=1$. This implies that for the number i we have $z \cdot 2^{n-m}$ choices and the number of solutions of the system is equal to the number of triples (i, j, x) and $|\{(i, j, x)\}|=z \cdot 2^{n-m} \cdot 2^{n-1} \cdot 2^{m}=z \cdot 2^{2 n-1}$.
Proposition 3.2. Assume that $m \leqslant n, q$ is even and $i \in\left\{\varepsilon, \varepsilon+2^{n-1}\right\}(\varepsilon= \pm 1)$. Then the solutions of (2.1) are:

1) $\left(i+2^{n} x, 2^{s} u, 2^{t} v+2^{n} y,-i+2^{n-1} z\right.$), where $y \in \mathbb{Z}_{2^{m}}$ (if $m<n$ or if $m=n$ and $z=0$), $y \in 2 \mathbb{Z}_{2^{m-1}}$ (if $m=n$ and $z=1$), $1 \leq s \leq n, u \in \mathbb{Z}_{2^{n-s}}^{*}, m+z \leqslant t \leqslant n, v \in \mathbb{Z}_{2^{n-t}}^{*}$ and in the case $m<n$ if $i=\varepsilon$ then $x=x_{1}, s+t>n$, if $i=\varepsilon+2^{n-1}$ then $x=x_{2}, s+t=n$; in the case $m=n$ then $i=\varepsilon, x=x_{1}, 2^{t} v=0$, where

$$
x_{1} \equiv(-1+\varepsilon) 2-\varepsilon x_{0}\left(\bmod 2^{m-1}\right), \quad x_{2} \equiv-\varepsilon\left(2^{n-3}+(\varepsilon+u v) / 2+2^{s-1} y u\right)\left(\bmod 2^{m-1}\right)
$$

and $x_{0}=2^{t+s-n-1} u\left(v+2^{n-t} y\right.$) (if $m<n$), $x_{0}=2^{s-1} u y$ (if $m=n$). There are exactly $(2 n-2 m+1) 2^{n+m+1}$ solutions of this form if $m<n$ and $3 \cdot 2^{2 n}$ solutions if $m=n$.
2) $\left(i+2^{n} x, 2^{n-1} u, 2^{n} y, i+2^{n-1} z\right), i \in\left\{1,-1+2^{n}\right\}, u, z \in \mathbb{Z}_{2}, y \equiv 0\left(\bmod 2^{m-1}\right)$ and

$$
x \equiv 0 \quad\left(\bmod 2^{m-1}\right) \quad \text { if } i=1, x \equiv-1 \quad\left(\bmod 2^{m-1}\right) \quad \text { if } i=-1+2^{n}
$$

There are exactly 32 solutions of this form.
Proof. To prove the proposition, by [2] we must consider the following sets of solutions of (2.2):

$$
\begin{aligned}
& \mathcal{M}_{4} \cup \mathcal{M}_{7}=\left\{\left(i, 2^{s} u, 2^{t} v,-i+2^{n-1} z\right) \mid 1 \leq s, t \leq n ; s+t \geq n ; u \in \mathbb{Z}_{2^{n-s}}^{*}, v \in \mathbb{Z}_{2^{n-t}}^{*}\right\} \\
& \mathcal{M}_{5} \cup \mathcal{M}_{6}=\left\{\left(i+2^{n-1} z, 2^{n-1} u, 2^{n-1} v, i+2^{n-1} z\right) \mid u, v \in \mathbb{Z}_{2}, i= \pm 1\right\} \\
& \mathcal{M}_{8} \cup \mathcal{M}_{9}=\left\{\left(i, 2^{n-1} u, 2^{n-1} v, i+2^{n-1}\right) \mid u, v \in \mathbb{Z}_{2}\right\}
\end{aligned}
$$

where $z \in \mathbb{Z}_{2}$. Solving system (3.1) for each solution of (2.2) from given sets we get from the second congruence in (3.1) the condition for y and from the first congruence in (3.1) the values for x. The solutions of system (2.2) belonging to set $\mathcal{M}_{4} \cup \mathcal{M}_{7}$ give us solution 1) of system (2.1). The solutions of system (2.2) belonging to sets $\mathcal{M}_{5} \cup \mathcal{M}_{6}, \mathcal{M}_{8} \cup \mathcal{M}_{9}$ give solution 2) of system (2.1).

Proposition 3.3. Assume that $m \leqslant n, q=2^{t} u$ and $g=2^{r} v$ are both nonzero even numbers, $s \notin\left\{ \pm 1, \pm 1+2^{n-1}\right\}$ is odd $\left(s=\varepsilon+2^{t+r-1} p, p \in \mathbb{Z}_{2^{n-t-r+1}}^{*}, \varepsilon= \pm 1,1 \leq t<n\right.$, $\left.m+k \leq r \leq n-1,3 \leqslant t+r<n, v=-\left(\varepsilon+2^{t+r-2} p\right) p u^{2^{n-t-r}-1}+2^{n-t-r+1} l\left(l \in \mathbb{Z}_{2^{t-1}}\right)\right)$ and $k \in\{0,1\}$. Then system (2.1) have solutions only if $m<n$, and these solutions are $\left(s+2^{n} x, 2^{t} u, 2^{r} v+2^{n} y,-s+2^{n-1} k\right)$, where $x, y \in \mathbb{Z}_{2}($ if $m=1)$ and if $m>1$ then $y \in \mathbb{Z}_{2^{m}}$, $x \equiv s^{-1}\left(-\left(\varepsilon p+u v+2^{t+r-2} p^{2}\right) / 2^{n+1-t-r}-2^{t-1} y u\right)\left(\bmod 2^{m-1}\right)$. If $m=1$ there are $2^{n+2}\left(5 \cdot 2^{n-3}-2 n+1\right)$ solutions of this form. If $m>1$ there are $3 \cdot 2^{2 n}-2^{n+m+1}(2 n-2 m+1)$ solutions.
Proof. Let us now consider the set \mathcal{M}_{10}. The solutions of system (2.2) from this set have the form $\left(i, 2^{t} u, 2^{r} v,-i+2^{n-1} k\right)$, where $1 \leq r, t \leq n-1,3 \leq r+t \leq n-1, p \in \mathbb{Z}_{2^{n-t-r+1}}^{*}$, $k \in \mathbb{Z}_{2}, u \in \mathbb{Z}_{2^{n-t}}^{*}, v \in \mathbb{Z}_{2^{n-r}}^{*}$, and

$$
\begin{equation*}
u v+\left(\pm 1+2^{t+r-2} p\right) p \equiv 0 \quad\left(\bmod 2^{n-r-t}\right) \tag{3.2}
\end{equation*}
$$

The condition $g=2^{r} v \equiv 0\left(\bmod 2^{m}\right)$ holds only if $r \geqslant m$. The second congruence of (3.1), i.e

$$
\left(2^{n}+2^{n-1} k\right)\left(2^{r} v+2^{n} y\right)+2^{n} x 2^{r} v \equiv 0 \quad\left(\bmod 2^{n+m}\right)
$$

holds in the case if $k=0$ for every $r \geqslant m$ and in the case if $k=1$ it holds for every $r \geqslant m+1$. Since $s^{2}-1= \pm 2^{t+r} p+2^{2(t+r-1)} p^{2}$, the first congruence of (3.1), i.e

$$
s^{2}+2^{n+1} s x+\left(2^{r} v+2^{n} y\right) 2^{t} u \equiv 1 \quad\left(\bmod 2^{n+m}\right)
$$

implies

$$
\begin{equation*}
2^{n+1-t-r} s x+2^{n-t} y u+\left(\pm p+u v+2^{t+r-2} p^{2}\right) \equiv 0 \quad\left(\bmod 2^{n+m-t-r}\right) \tag{3.3}
\end{equation*}
$$

Since $n-t \geqslant n+1-t-r$, this congruence holds if and only if

$$
\pm p+v u+2^{t+r-2} p^{2} \equiv 0 \quad\left(\bmod 2^{n+1-t-r}\right)
$$

The last condition is stronger than (3.2) and implies $v \equiv-\left(\pm 1+2^{t+r-2} p\right) p u^{-1}\left(\bmod 2^{n+1-t-r}\right)$, where u^{-1} is the inverse of the odd number u by modulo $2^{n+1-t-r}$, i.e $u^{-1}=u^{2^{n-t-r}-1}$. Since $v \in \mathbb{Z}_{2^{n-r}}^{*}$, for v we have $2^{n-r} / 2^{n+1-t-r}=2^{t-1}$ values by modulo 2^{n-r} in the form

$$
v=-\left(\pm 1+2^{t+r-2} p\right) p u^{2^{n-t-r}-1}+2^{n-t-r+1} l, \quad \text { where } l \in \mathbb{Z}_{2^{t-1}}
$$

It follows from (3.3), that in the case $m=1$ we have $x, y \in \mathbb{Z}_{2}$ and in the case $m>1$ we have

$$
x \equiv s^{-1}\left(-\left(\pm p+u v+2^{t+r-2} p^{2}\right) 2^{n+1-t-r}-2^{t-1} y u\right) \quad\left(\bmod 2^{m-1}\right)
$$

Calculating the number of all obtained solutions, we get the second statement of proposition.

3.2 The case $m>n$

The condition $g+2^{n} y \equiv 0\left(\bmod 2^{m}\right)$ implies $g=0$ and $y \equiv 0\left(\bmod 2^{m-n}\right)$, i.e y is even, $y=2^{m-n} z, z \in \mathbb{Z}_{2^{n}}$, where $z=0$ or $z=2^{k} w\left(k \in \mathbb{Z}_{n}\right.$ and $\left.w \in \mathbb{Z}_{2^{n-k}}^{*}\right)$. System (2.3) has now the form

$$
\begin{equation*}
\left(f+2^{n} x\right)^{2}+2^{m} z q \equiv 1 \quad\left(\bmod 2^{n+m}\right), \quad 2^{m} z(f+s) \equiv 0 \quad\left(\bmod 2^{n+m}\right) \tag{3.4}
\end{equation*}
$$

Lemma 3.1. The solution of the congruence

$$
\left(f+2^{n} x\right)^{2} \equiv 1 \quad\left(\bmod 2^{n+m}\right), \quad \text { where } \quad f \in\left\{ \pm 1, \pm 1+2^{n-1}\right\}
$$

is: 1) $x \in\left\{0,2^{m-1}\right\}$ if $f=1$, 2) $x \in\left\{-1+2^{m-1},-1+2^{m}\right\}$ if $f=-1$, and 3) $x \in \varnothing$ if $f= \pm 1+2^{n-1}$.
Proof. The solutions of $b^{2} \equiv 1\left(\bmod 2^{n+m}\right)$ are $b \in\left\{1,-1+2^{n+m}, 1+2^{n+m-1},-1+2^{n+m-1}\right\}$, i.e $2^{n} x \in\left\{1-f,-1-f+2^{n+m}, 1-f+2^{n+m-1},-1-f+2^{n+m-1}\right\}$. 1) If $f=1$, then $2^{n} x \in\left\{0,-2+2^{n+m}, 2^{n+m-1},-2+2^{n+m-1}\right\}, 2^{n} x \in\left\{0,2^{n+m-1}\right\}$ and $x \in\left\{0,2^{m-1}\right\}$. 2) If $f=-1=-1+2^{n}$, then $2^{n} x \in\left\{2-2^{n}+2^{n+m},-2^{n}+2^{n+m}, 2-2^{n}+2^{n+m-1},-2^{n}+2^{n+m-1}\right\}$, $2^{n} x \in\left\{-2^{n}+2^{n+m},-2^{n}+2^{n+m-1}\right\}$ and $x \in\left\{-1+2^{m},-1+2^{m-1}\right\}$. 3) If $f= \pm 1+2^{n-1}$, then $2^{n} x \in\left\{-2^{n-1}+2^{n+m},-2^{n-1}+2^{n+m-1}, \mp 2-2^{n-1}+2^{n+m}, \mp 2-2^{n-1}+2^{n+m-1}\right\}$ and $x \in \varnothing$.

Lemma 3.2. The solution of the congruence

$$
\left(f+2^{n} x\right)^{2} \equiv 1-2^{m} z q \quad\left(\bmod 2^{n+m}\right)
$$

where $f \in\left\{ \pm 1, \pm 1+2^{n-1}\right\}, q=2^{s} u, z=2^{k} w,\left(k=1,2, \ldots, n-1\right.$ and $\left.w \in \mathbb{Z}_{2^{n-k}}^{*}\right)$ and $z q \neq 0$ $\left(\bmod 2^{n}\right)$ is: 1) $x=2^{m-n+k+s-1} p$ (if $f=1, \varepsilon=+1$), 2) $x=2^{m-n+k+s-1} p-1$ (if $f=-1$, $\varepsilon=-1$), and 3) $x \in \varnothing$ (if $f= \pm 1+2^{n-1}$), where $p \in \mathbb{Z}_{2^{n-k-s+1}}^{*}, i \in \mathbb{Z}_{2^{s}}$ and

$$
z=2^{k}\left(-\left(\varepsilon+2^{m+k+s-2} p\right) p u^{2^{n-k-s-1}-1}+2^{n-k-s} i\right)
$$

Proof. Denote $f+2^{n} x=a, s+k=l$. Then $a^{2}-1 \equiv-2^{m+l} u w\left(\bmod 2^{n+m}\right)$. Using (2.1)-(2.10) in [2], we get that the solution of the last congruence is

$$
a=\varepsilon+2^{m+l-1} p, \quad q=2^{s} u, \quad z=2^{k}\left(-\left(\varepsilon+2^{m+l-2} p\right) p u^{2^{n-l-1}-1}+2^{n-l} i\right)
$$

where $s, k=1,2, \ldots, n-1, s+k<n, \varepsilon= \pm 1, u \in \mathbb{Z}_{2^{n-s}}^{*}, p \in \mathbb{Z}_{2^{n-l+1}}^{*}, i \in \mathbb{Z}_{2^{s}}$.
Now let us find x. Since $f+2^{n} x \in\left\{1+2^{m+l-1} p,-1+2^{m+l-1} p\right\}$, it follows that $2^{n} x \in\left\{1-f+2^{m+l-1} p,-1-f+2^{m+l-1} p\right\}$. 1) If $f=1$, then $2^{n} x \in\left\{2^{m+l-1} p,-2+2^{m+l-1} p\right\}$, $2^{n} x \in\left\{2^{m+l-1} p\right\}$ and $x=2^{m-n+l-1} p$. 2) Analogously, if $f=-1=-1+2^{n}$, then $2^{n} x \in\left\{2-2^{n}+2^{m+l-1} p,-2^{n}+2^{m+l-1} p\right\}, 2^{n} x \in\left\{-2^{n}+2^{m+l-1} p\right\}$ and $x=2^{m-n+l-1} p-1$. 3) If $f= \pm 1+2^{n-1}$, then $2^{n} x \in\left\{\mp 2-2^{n-1}+2^{m+l-1} p,-2^{n-1}+2^{m+l-1} p\right\}$ and $x \in \varnothing$.

Denote by x_{1} solutions from Lemma 3.1 and by x_{2}, z_{2} solutions from Lemma 3.2.
Proposition 3.4. Assume that $m>n$ and the number q is odd $\left(q=j \in \mathbb{Z}_{2^{n}}^{*}\right)$. Then the solutions of (2.1) are: 1) $\left(i+2^{n} x, j, 2^{m+k} w,-i\right)$, where $x=2^{m-n+k-1} p+\frac{-1+i}{2}, i= \pm 1, k \in \mathbb{Z}_{n}$, $p \in \mathbb{Z}_{2^{n-k+1}}^{*}, w=-\left(i+2^{m+k-2} p\right) p j^{2^{n-k-1}-1} ;$ 2) $\left(i+2^{n} x, j, 0,-i\right)$, where $x \in\left\{0,2^{m-1}\right\}$ if $i=1$ and $x \in\left\{-1+2^{m-1},-1+2^{m}\right\}$ if $i=-1$. There are $2^{2 n+1}$ solutions of these forms.

Proof. Consider the solutions of system (2.2) belonging to the set \mathcal{M}_{3}. The second congruence of (3.4) holds for every $z \in \mathbb{Z}_{2^{n}}$. To solve the first congruence of (3.4), consider two cases for z : 1) $z=2^{k} w, \quad w \in \mathbb{Z}_{2^{n-k}}^{*}, k \in \mathbb{Z}_{n}$ and 2) $z=0$ (i.e $y=0$). In the first case using Lemma 3.2, we get solution 1) and in the second case, using Lemma 3.1, we get solution 2).

Proposition 3.5. Assume that $m>n, f \in\left\{ \pm 1, \pm 1+2^{n-1}\right\}$ and both numbers q and g are even. Then (2.1) have solutions only in case $f=i= \pm 1$ and these solutions are:

1) $\left(i+2^{n} x_{1}, 2^{s} u, 0,-i+2^{n-1} r\right) \quad(s=1,2, \ldots, n)$
2) $\left(i+2^{n} x_{1}, 0,2^{m} z,-i+2^{n-1} r\right) \quad\left(z \in(1+r) \mathbb{Z}_{2^{n-r}} \backslash\{0\}\right)$
3) $\left(i+2^{n} x_{1}, 2^{s} u, 2^{m+k} w,-i+2^{n-1} r\right) \quad\left(r \leqslant k \leqslant n-1, w \in \mathbb{Z}_{2^{n-k}}^{*}, \quad n-k \leqslant s \leqslant n-1\right)$
4) $\left(i+2^{n} x_{2}, 2^{s} u, 2^{m} z_{2},-i+2^{n-1} r\right) \quad(k=r, r+1, \ldots, n-1, s=1, \ldots, n-k-1)$
5) $\left(i+2^{n} x_{1}, 2^{n-1} h, 2^{m} z, i+2^{n-1} r\right) \quad\left(h \in \mathbb{Z}_{2}, z \in\left\{0,2^{n-1}\right\}\right)$
where $u \in \mathbb{Z}_{2^{n-s}}^{*}, r \in \mathbb{Z}_{2}$. There are $3 \cdot 4^{n}+32$ solutions of these forms.
Proof. Consider solutions of system (2.2) belonging to the sets $\mathcal{M}_{4} \cup \mathcal{M}_{7}, \mathcal{M}_{5} \cup \mathcal{M}_{6}, \mathcal{M}_{8} \cup \mathcal{M}_{9}$. Solving system (3.4) and using lemmas 3.1 and 3.2 , we get from the set $\mathcal{M}_{4} \cup \mathcal{M}_{7}$ solutions 1), 2), 3), 4) and from sets $\mathcal{M}_{5} \cup \mathcal{M}_{6}, \mathcal{M}_{8} \cup \mathcal{M}_{9}$ solution 5). Calculating the number of all obtained solutions, we get the second statement of the proposition.

Acknowledgement

Research was supported by the Estonian Science Foundation Research Grant 5900, 2004-2007.

References

[1] H. Coxeter and W. Moser. Generators and relations for discrete groups. Springer-Verlag, 1972.
[2] T. Gramushnjak and P. Puusemp. Description of a Class of 2-Groups. J. Nonlinear Math. Phys. 13 (2006), Supplement, 55-65.
[3] M. Hall and J. Senior. The groups of order $2^{n}, n \leq 6$. Macmillan, New York; Collier-Macmillan, London, 1964.

[^0]: ${ }^{1}$ Presented at the $3{ }^{\text {rd }}$ Baltic-Nordic Workshop "Algebra, Geometry, and Mathematical Physics", Göteborg, Sweden, October 11-13, 2007.

