A characterization of a class of 2-groups by their defining relations 1

Tatjana GRAMUSHNJAK

Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia E-mail: tatjana@tlu.ee

Abstract

Let n, m be integers such that $n \ge 3$, m > 0 and C_k a cyclic group of order k. All groups which can be presented as a semidirect product $(C_{2^{n+m}} \times C_{2^n}) \ge C_2$ are described. **2000 MSC:** 20E22, 20D40

1 Introduction

All non-Abelian groups of order < 32 are described in [1] (Table 1 at the end of the book). M. Jr. Hall and J. K. Senior [3] have given a fully description of all groups of order $2^n, n \leq 6$. There exist exactly 51 non-isomorphic groups of order 32. Some of them can be presented as a semidirect product $(C_{2^2} \times C_{2^2}) \\ > C_2$ and some of them as a semidirect product $(C_{2^3} \times C_2) \\ > C_2$. As a generalization of the first case, in [2] all groups of the form $(C_{2^n} \times C_{2^n}) \\ > C_2, n \geq 3$, are described. It turned out that there exist only 17 non-isomorphic groups of this form (for a fixed n). In this paper we generalize the second case. Namely, we shall describe all finite 2-groups which can be presented in the form $(C_{2^{n+m}} \times C_{2^n}) \\ > C_2$, where $n \geq 3$ and $m \geq 1$. Clearly, each such group G is given by three generators a, b, c and by the defining relations

$$a^{2^{n+m}} = b^{2^n} = c^2 = 1, \quad ab = ba, \quad c^{-1}ac = a^p b^q, \quad c^{-1}bc = a^r b^s$$
 (1.1)

for some $p, r \in \mathbb{Z}_{2^{n+m}}$ and $q, s \in \mathbb{Z}_{2^n}$ (\mathbb{Z}_{2^k} – the ring of residue classes modulo 2^k).

The aim of this paper is to prove

Theorem 1.1. For fixed m > 0 and $n \ge 3$ the number of groups which can be given by relations (1.1) is

 $3 \cdot 4^n + 32$ (if m = 1), $4 \cdot 4^n + 32$ (if m = 2), $5 \cdot 4^n + 32$ (if $m \ge 3$)

All possible values of (p,q,r,s) are given in Propositions 3.1, 3.2, 3.3 if m < n, in 3.1, 3.2 if m = n and in 3.4, 3.5 if m > n.

2 Main concepts for the proof of Theorem 1.1

Let $G = (\langle a \rangle \times \langle b \rangle) \land \langle c \rangle$ be a group given by (1.1). An element *c* induces an inner automorphism \hat{c} of order two (the case $\hat{c} = 1$ is also included) of group $\langle a \rangle \times \langle b \rangle$:

$$a\widehat{c} = c^{-1}ac = a^p b^q, \quad b\widehat{c} = c^{-1}bc = a^r b^s$$

¹Presented at the 3rd Baltic-Nordic Workshop "Algebra, Geometry, and Mathematical Physics", Göteborg, Sweden, October 11–13, 2007.

Therefore, we have to find all automorphisms of $\langle a \rangle \times \langle b \rangle$ of order two. The map $a\varphi = a^p b^q$, $b\varphi = a^r b^s$ induces an endomorphism of group $\langle a \rangle \times \langle b \rangle$ if and only if $r \equiv 0 \pmod{2^m}$. This endomorphism is an automorphism, if and only if $p \equiv s \equiv 1 \pmod{2}$. This map is an automorphism of order two if and only if (p, q, r, s) satisfy the system

$$\begin{cases} p^2 + rq \equiv 1\\ pr + rs \equiv 0 \end{cases} \pmod{2^{n+m}}, \quad \begin{cases} pq + sq \equiv 0\\ qr + s^2 \equiv 1 \end{cases} \pmod{2^n} \\ p \equiv s \equiv 1 \pmod{2}, \quad r \equiv 0 \pmod{2^m} \end{cases}$$
(2.1)

Our purpose is to solve system (2.1). Note that the two first subsystems of (2.1) imply the following system modulo 2^n :

$$p^{2} + rq \equiv 1, \quad pr + rs \equiv 0, \quad pq + sq \equiv 0, \quad qr + s^{2} \equiv 1$$
 (2.2)

The solutions (p, q, r, s) of system (2.2) form a set \mathcal{M} which was described in [2]. In [2] the set \mathcal{M} was given as the union of disjoined subsets $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_{10}$.

Let $(p, q, r, s) = (f, q, g, s) \in \mathcal{M}$ be a solution of system (2.2), where $q, g \in \mathbb{Z}_{2^n}$ and $f, s \in \mathbb{Z}_{2^n}^*$ $(\mathbb{Z}_{2^n}^*$ denotes the set of all invertible elements of \mathbb{Z}_{2^n}). Then p and r can be replaced in (2.1) by

$$p = f + 2^n x, \quad r = g + 2^n y, \quad \text{where} \quad x, y \in \mathbb{Z}_{2^m}$$

Now it is easy to see that system (2.1) is equivalent to the system

$$(f+2^n x)^2 + (g+2^n y) q \equiv 1 \pmod{2^{n+m}}, \quad (g+2^n y) (f+2^n x+g) \equiv 0 \pmod{2^{n+m}}$$
 (2.3)

where $(f, q, g, s) \in \mathcal{M}, q, g \in \mathbb{Z}_{2^n}, f, s \in \mathbb{Z}_{2^n}^*$ and

$$g \equiv 0 \pmod{2^m}$$
 if $m \leq n$, $y \equiv 0 \pmod{2^{m-n}}$ and $g = 0$ if $m > n$ (2.4)

Remark, that $h \in \mathbb{Z}_k$ means the representative of residue class; moreover, we always can choose $h \in \{0, 1, \ldots, k-1\}$.

Because the length of the paper is limited, for most of statements we give only idea of proof.

3 Solving system (2.1)

3.1 The case $m \leq n$

Assume that $m \leq n$. Then $g \equiv 0 \pmod{2^m}$ and system (2.3) takes the form

$$f^{2} + 2^{n+1}fx + (g + 2^{n}y)q \equiv 1 \pmod{2^{n+m}}, \quad (g + 2^{n}y)(f+s) \equiv 0 \pmod{2^{n+m}} \quad (3.1)$$

Proposition 3.1. Assume that $m \leq n$ and q is odd. Then the solutions (p, q, r, s) of (2.1) are of the form $(i + 2^n x, j, g + 2^n y, -i)$, where

$$y \equiv \left(\left(1 - i^2 - gj \right) / 2^n - 2ix \right) j^{-1} \pmod{2^m}, \quad x \in \mathbb{Z}_{2^m}$$

and $g = (1 - i^2)j^{-1}$, $i = i_0 + 2^m k$, $k \in \mathbb{Z}_{2^{n-m}}$, where $i_0 \in \{1, -1 + 2^m, \pm 1 + 2^{m-1}\}$ if $m \ge 3$, $i_0 \in \{1, -1 + 2^m\}$ if m = 2, $i_0 = 1$ if m = 1. There are exactly 2^{2n+1} solutions of this form if $m \ge 3$, exactly 2^{2n} solutions if m = 2 and exactly 2^{2n-1} solutions if m = 1.

Proof. The condition of the proposition, conditions (2.4) and $f, s \in \mathbb{Z}_{2^n}^*$ by [2] are satisfied for solution of (2.2) from the set $\mathcal{M}_2 = \{(i, j, (1-i^2)j^{-1}, -i) \mid i \in \mathbb{Z}_{2^n}^*, j \in \mathbb{Z}_{2^n}^*\}$. While $g = (1-i^2)j^{-1} \equiv 0 \pmod{2^m}$, we have $i^2 \equiv 1 \pmod{2^m}$, i.e. $i = i_0 + 2^m k$, where $k \in \mathbb{Z}_{2^{n-m}}$ and $i_0 \in \{1, -1+2^m, \pm 1+2^{m-1}\}$ if $m \ge 3$, $i_0 \in \{1, -1+2^m\}$ if m = 2, $i_0 = 1$ if m = 1. Since

j

 $f+s=2^n$ and $g\equiv 0 \pmod{2^m}$, the second congruence of (3.1) holds for every $x, y \in \mathbb{Z}_{2^m}$. From the first congruence of (3.1) we get the value for y. Now let us find the number of solutions of the system (2.1). We have 2^{n-m} choices for number $k, 2^{n-1}$ choices for odd number $j, 2^m$ choices for number x. For i_0 we have z = 4 choices if $m \ge 3, z = 2$ choices if m = 2 and z = 1 choice if m = 1. This implies that for the number i we have $z \cdot 2^{n-m}$ choices and the number of solutions of the system is equal to the number of triples (i, j, x) and $|\{(i, j, x)\}| = z \cdot 2^{n-m} \cdot 2^{n-1} \cdot 2^m = z \cdot 2^{2n-1}$. \Box

Proposition 3.2. Assume that $m \leq n$, q is even and $i \in \{\varepsilon, \varepsilon + 2^{n-1}\}$ ($\varepsilon = \pm 1$). Then the solutions of (2.1) are:

1) $(i + 2^n x, 2^s u, 2^t v + 2^n y, -i + 2^{n-1} z)$, where $y \in \mathbb{Z}_{2^m}$ (if m < n or if m = n and z = 0), $y \in 2\mathbb{Z}_{2^{m-1}}$ (if m = n and z = 1), $1 \le s \le n, u \in \mathbb{Z}_{2^{n-s}}^*, m + z \le t \le n, v \in \mathbb{Z}_{2^{n-t}}^*$ and in the case m < n if $i = \varepsilon$ then $x = x_1, s + t > n$, if $i = \varepsilon + 2^{n-1}$ then $x = x_2, s + t = n$; in the case m = n then $i = \varepsilon, x = x_1, 2^t v = 0$, where

$$x_1 \equiv (-1+\varepsilon) \, 2-\varepsilon x_0 \left(\mod 2^{m-1} \right), \quad x_2 \equiv -\varepsilon \left(2^{n-3} + \left(\varepsilon + uv \right)/2 + 2^{s-1}yu \right) \left(\mod 2^{m-1} \right)$$

and $x_0 = 2^{t+s-n-1}u(v+2^{n-t}y)$ (if m < n), $x_0 = 2^{s-1}uy$ (if m = n). There are exactly $(2n-2m+1)2^{n+m+1}$ solutions of this form if m < n and $3 \cdot 2^{2n}$ solutions if m = n.

2) $(i+2^nx, 2^{n-1}u, 2^ny, i+2^{n-1}z), i \in \{1, -1+2^n\}, u, z \in \mathbb{Z}_2, y \equiv 0 \pmod{2^{m-1}}$ and

 $x \equiv 0 \pmod{2^{m-1}}$ if $i = 1, x \equiv -1 \pmod{2^{m-1}}$ if $i = -1 + 2^n$

There are exactly 32 solutions of this form.

Proof. To prove the proposition, by [2] we must consider the following sets of solutions of (2.2):

$$\mathcal{M}_{4} \cup \mathcal{M}_{7} = \left\{ \left(i, 2^{s}u, 2^{t}v, -i + 2^{n-1}z\right) | 1 \le s, t \le n; s + t \ge n; u \in \mathbb{Z}_{2^{n-s}}^{*}, v \in \mathbb{Z}_{2^{n-t}}^{*} \right\} \\ \mathcal{M}_{5} \cup \mathcal{M}_{6} = \left\{ \left(i + 2^{n-1}z, 2^{n-1}u, 2^{n-1}v, i + 2^{n-1}z\right) | u, v \in \mathbb{Z}_{2}, i = \pm 1 \right\} \\ \mathcal{M}_{8} \cup \mathcal{M}_{9} = \left\{ \left(i, 2^{n-1}u, 2^{n-1}v, i + 2^{n-1}\right) | u, v \in \mathbb{Z}_{2} \right\}$$

where $z \in \mathbb{Z}_2$. Solving system (3.1) for each solution of (2.2) from given sets we get from the second congruence in (3.1) the condition for y and from the first congruence in (3.1) the values for x. The solutions of system (2.2) belonging to set $\mathcal{M}_4 \cup \mathcal{M}_7$ give us solution 1) of system (2.1). The solutions of system (2.2) belonging to sets $\mathcal{M}_5 \cup \mathcal{M}_6$, $\mathcal{M}_8 \cup \mathcal{M}_9$ give solution 2) of system (2.1).

Proposition 3.3. Assume that $m \leq n$, $q = 2^t u$ and $g = 2^r v$ are both nonzero even numbers, $s \notin \{\pm 1, \pm 1 + 2^{n-1}\}$ is odd ($s = \varepsilon + 2^{t+r-1}p$, $p \in \mathbb{Z}_{2^{n-t-r+1}}^*, \varepsilon = \pm 1, 1 \leq t < n$, $m + k \leq r \leq n-1, 3 \leq t+r < n$, $v = -(\varepsilon + 2^{t+r-2}p) p u^{2^{n-t-r-1}} + 2^{n-t-r+1}l$ $(l \in \mathbb{Z}_{2^{t-1}}))$ and $k \in \{0,1\}$. Then system (2.1) have solutions only if m < n, and these solutions are $(s + 2^n x, 2^t u, 2^r v + 2^n y, -s + 2^{n-1}k)$, where $x, y \in \mathbb{Z}_2$ (if m = 1) and if m > 1 then $y \in \mathbb{Z}_{2^m}$, $x \equiv s^{-1}(-(\varepsilon p + uv + 2^{t+r-2}p^2)/2^{n+1-t-r} - 2^{t-1}yu) \pmod{2^{m-1}}$. If m = 1 there are $2^{n+2}(5 \cdot 2^{n-3} - 2n + 1)$ solutions of this form. If m > 1 there are $3 \cdot 2^{2n} - 2^{n+m+1}(2n-2m+1)$ solutions.

Proof. Let us now consider the set \mathcal{M}_{10} . The solutions of system (2.2) from this set have the form $(i, 2^t u, 2^r v, -i + 2^{n-1}k)$, where $1 \leq r, t \leq n-1, 3 \leq r+t \leq n-1, p \in \mathbb{Z}^*_{2^{n-t-r+1}}$, $k \in \mathbb{Z}_2, u \in \mathbb{Z}^*_{2^{n-t}}, v \in \mathbb{Z}^*_{2^{n-r}}$, and

$$uv + (\pm 1 + 2^{t+r-2}p)p \equiv 0 \pmod{2^{n-r-t}}$$
(3.2)

The condition $g = 2^r v \equiv 0 \pmod{2^m}$ holds only if $r \ge m$. The second congruence of (3.1), i.e.

$$(2^{n} + 2^{n-1}k)(2^{r}v + 2^{n}y) + 2^{n}x2^{r}v \equiv 0 \pmod{2^{n+m}}$$

holds in the case if k = 0 for every $r \ge m$ and in the case if k = 1 it holds for every $r \ge m + 1$. Since $s^2 - 1 = \pm 2^{t+r}p + 2^{2(t+r-1)}p^2$, the first congruence of (3.1), i.e

$$s^{2} + 2^{n+1}sx + (2^{r}v + 2^{n}y)2^{t}u \equiv 1 \pmod{2^{n+m}}$$

implies

$$2^{n+1-t-r}sx + 2^{n-t}yu + \left(\pm p + uv + 2^{t+r-2}p^2\right) \equiv 0 \pmod{2^{n+m-t-r}}$$
(3.3)

Since $n - t \ge n + 1 - t - r$, this congruence holds if and only if

$$\pm p + vu + 2^{t+r-2}p^2 \equiv 0 \pmod{2^{n+1-t-r}}$$

The last condition is stronger than (3.2) and implies $v \equiv -(\pm 1 + 2^{t+r-2}p) pu^{-1} \pmod{2^{n+1-t-r}}$, where u^{-1} is the inverse of the odd number u by modulo $2^{n+1-t-r}$, i.e $u^{-1} = u^{2^{n-t-r}-1}$. Since $v \in \mathbb{Z}_{2^{n-r}}^*$, for v we have $2^{n-r}/2^{n+1-t-r} = 2^{t-1}$ values by modulo 2^{n-r} in the form

$$v = -(\pm 1 + 2^{t+r-2}p) p u^{2^{n-t-r}-1} + 2^{n-t-r+1}l, \text{ where } l \in \mathbb{Z}_{2^{t-1}}$$

It follows from (3.3), that in the case m = 1 we have $x, y \in \mathbb{Z}_2$ and in the case m > 1 we have

$$x \equiv s^{-1} \left(-\left(\pm p + uv + 2^{t+r-2}p^2 \right) 2^{n+1-t-r} - 2^{t-1}yu \right) \pmod{2^{m-1}}$$

Calculating the number of all obtained solutions, we get the second statement of proposition. \Box

3.2 The case m > n

The condition $g + 2^n y \equiv 0 \pmod{2^m}$ implies g = 0 and $y \equiv 0 \pmod{2^{m-n}}$, i.e. y is even, $y = 2^{m-n}z, z \in \mathbb{Z}_{2^n}$, where z = 0 or $z = 2^k w$ ($k \in \mathbb{Z}_n$ and $w \in \mathbb{Z}_{2^{n-k}}^*$). System (2.3) has now the form

$$(f+2^n x)^2 + 2^m zq \equiv 1 \pmod{2^{n+m}}, \quad 2^m z(f+s) \equiv 0 \pmod{2^{n+m}}$$
 (3.4)

Lemma 3.1. The solution of the congruence

$$(f+2^n x)^2 \equiv 1 \pmod{2^{n+m}}, \quad where \quad f \in \{\pm 1, \pm 1+2^{n-1}\}$$

is: 1) $x \in \{0, 2^{m-1}\}$ if f = 1, 2 $x \in \{-1 + 2^{m-1}, -1 + 2^m\}$ if f = -1, and 3) $x \in \emptyset$ if $f = \pm 1 + 2^{n-1}$.

 $\begin{array}{l} \textbf{Proof. The solutions of } b^2 \equiv 1 \pmod{2^{n+m}} \text{ are } b \in \left\{1, -1 + 2^{n+m}, 1 + 2^{n+m-1}, -1 + 2^{n+m-1}\right\}, \\ \text{i.e } 2^n x \ \in \ \left\{1 - f, -1 - f + 2^{n+m}, 1 - f + 2^{n+m-1}, -1 - f + 2^{n+m-1}\right\}. \quad 1) \ \text{If } f \ = \ 1, \ \text{then } 2^n x \in \left\{0, -2 + 2^{n+m}, 2^{n+m-1}, -2 + 2^{n+m-1}\right\}, \ 2^n x \ \in \ \left\{0, 2^{n+m-1}\right\} \ \text{and } x \ \in \ \left\{0, 2^{m-1}\right\}. \ 2) \ \text{If } f \ = \ -1 = -1 + 2^n, \ \text{then } 2^n x \in \left\{2 - 2^n + 2^{n+m}, -2^n + 2^{n+m}, 2 - 2^n + 2^{n+m-1}, -2^n + 2^{n+m-1}\right\}, \\ 2^n x \in \left\{-2^n + 2^{n+m}, -2^n + 2^{n+m-1}\right\} \ \text{and } x \in \left\{-1 + 2^m, -1 + 2^{m-1}\right\}. \ 3) \ \text{If } f \ = \ \pm 1 + 2^{n-1}, \ \text{then } 2^n x \in \left\{-2^{n-1} + 2^{n+m}, -2^{n-1} + 2^{n+m-1}, \ \mp 2 - 2^{n-1} + 2^{n+m-1}\right\} \ \text{and } x \in \mathcal{O}. \end{array}$

Lemma 3.2. The solution of the congruence

 $(f+2^n x)^2 \equiv 1-2^m zq \pmod{2^{n+m}}$

where $f \in \{\pm 1, \pm 1 + 2^{n-1}\}$, $q = 2^{s}u$, $z = 2^{k}w$, $(k = 1, 2, ..., n-1 \text{ and } w \in \mathbb{Z}_{2^{n-k}}^{*})$ and $zq \neq 0$ (mod 2^{n}) is: 1) $x = 2^{m-n+k+s-1}p$ (if f = 1, $\varepsilon = +1$), 2) $x = 2^{m-n+k+s-1}p - 1$ (if f = -1, $\varepsilon = -1$), and 3) $x \in \emptyset$ (if $f = \pm 1 + 2^{n-1}$), where $p \in \mathbb{Z}_{2^{n-k-s+1}}^{*}$, $i \in \mathbb{Z}_{2^{s}}$ and

$$z = 2^k \left(-\left(\varepsilon + 2^{m+k+s-2}p\right) p u^{2^{n-k-s-1}-1} + 2^{n-k-s}i \right)$$

Proof. Denote $f + 2^n x = a$, s + k = l. Then $a^2 - 1 \equiv -2^{m+l} uw \pmod{2^{n+m}}$. Using (2.1)–(2.10) in [2], we get that the solution of the last congruence is

$$a = \varepsilon + 2^{m+l-1}p, \quad q = 2^{s}u, \quad z = 2^{k} \left(-\left(\varepsilon + 2^{m+l-2}p\right)pu^{2^{n-l-1}-1} + 2^{n-l}i \right)$$

where s, k = 1, 2, ..., n - 1, s + k < n, $\varepsilon = \pm 1$, $u \in \mathbb{Z}_{2^{n-s}}^*$, $p \in \mathbb{Z}_{2^{n-l+1}}^*$, $i \in \mathbb{Z}_{2^s}$. Now let us find x. Since $f + 2^n x \in \{1 + 2^{m+l-1}p, -1 + 2^{m+l-1}p\}$, it follows that $2^n x \in \{1 - f + 2^{m+l-1}p, -1 - f + 2^{m+l-1}p\}$. 1) If f = 1, then $2^n x \in \{2^{m+l-1}p, -2 + 2^{m+l-1}p\}$, $2^n x \in \{2^{m+l-1}p\}$ and $x = 2^{m-n+l-1}p$. 2) Analogously, if $f = -1 = -1 + 2^n$, then $2^n x \in \{2 - 2^n + 2^{m+l-1}p, -2^n + 2^{m+l-1}p\}$, $2^n x \in \{-2^n + 2^{m+l-1}p\}$ and $x = 2^{m-n+l-1}p - 1$. 3) If $f = \pm 1 + 2^{n-1}$, then $2^n x \in \{\mp 2 - 2^{n-1} + 2^{m+l-1}p, -2^{n-1} + 2^{m+l-1}p\}$ and $x \in \emptyset$.

Denote by x_1 solutions from Lemma 3.1 and by x_2, z_2 solutions from Lemma 3.2.

Proposition 3.4. Assume that m > n and the number q is odd $(q = j \in \mathbb{Z}_{2^n}^*)$. Then the solutions of (2.1) are: 1) $(i+2^n x, j, 2^{m+k} w, -i)$, where $x = 2^{m-n+k-1} p + \frac{-1+i}{2}$, $i = \pm 1, k \in \mathbb{Z}_n$, $p \in \mathbb{Z}_{2^{n-k+1}}^*, w = -\left(i + 2^{m+k-2}p\right) pj^{2^{n-k-1}-1}; 2) (i + 2^n x, j, 0, -i), where x \in \{0, 2^{m-1}\} \text{ if } i = 1 \text{ and } x \in \{-1 + 2^{m-1}, -1 + 2^m\} \text{ if } i = -1. \text{ There are } 2^{2n+1} \text{ solutions of these forms.}$

Proof. Consider the solutions of system (2.2) belonging to the set \mathcal{M}_3 . The second congruence of (3.4) holds for every $z \in \mathbb{Z}_{2^n}$. To solve the first congruence of (3.4), consider two cases for z: 1) $z = 2^k w$, $w \in \mathbb{Z}_{2^{n-k}}^*$, $k \in \mathbb{Z}_n$ and 2) z = 0 (i.e y = 0). In the first case using Lemma 3.2, we get solution 1) and in the second case, using Lemma 3.1, we get solution 2).

Proposition 3.5. Assume that m > n, $f \in \{\pm 1, \pm 1 + 2^{n-1}\}$ and both numbers q and g are even. Then (2.1) have solutions only in case $f = i = \pm 1$ and these solutions are:

$$\begin{array}{l} 1) \left(i+2^n x_1, 2^s u, 0, -i+2^{n-1} r\right) & (s=1,2,...,n) \\ 2) \left(i+2^n x_1, 0, 2^m z, -i+2^{n-1} r\right) & (z\in(1+r)\mathbb{Z}_{2^{n-r}}\smallsetminus\{0\}) \\ 3) \left(i+2^n x_1, 2^s u, 2^{m+k} w, -i+2^{n-1} r\right) & (r\leqslant k\leqslant n-1, \ w\in\mathbb{Z}_{2^{n-k}}^*, \quad n-k\leqslant s\leqslant n-1) \\ 4) \left(i+2^n x_2, 2^s u, 2^m z_2, -i+2^{n-1} r\right) & (k=r,r+1,...,n-1, \ s=1,...,n-k-1) \\ 5) \left(i+2^n x_1, 2^{n-1} h, 2^m z, i+2^{n-1} r\right) & (h\in\mathbb{Z}_2, \ z\in\{0,2^{n-1}\}) \end{array}$$

where $u \in \mathbb{Z}_{2^{n-s}}^*$, $r \in \mathbb{Z}_2$. There are $3 \cdot 4^n + 32$ solutions of these forms.

Proof. Consider solutions of system (2.2) belonging to the sets $\mathcal{M}_4 \cup \mathcal{M}_7$, $\mathcal{M}_5 \cup \mathcal{M}_6$, $\mathcal{M}_8 \cup \mathcal{M}_9$. Solving system (3.4) and using lemmas 3.1 and 3.2, we get from the set $\mathcal{M}_4 \cup \mathcal{M}_7$ solutions 1), 2), 3), 4) and from sets $\mathcal{M}_5 \cup \mathcal{M}_6$, $\mathcal{M}_8 \cup \mathcal{M}_9$ solution 5). Calculating the number of all obtained solutions, we get the second statement of the proposition.

Acknowledgement

Research was supported by the Estonian Science Foundation Research Grant 5900, 2004-2007.

References

- [1] H. Coxeter and W. Moser. Generators and relations for discrete groups. Springer-Verlag, 1972.
- [2] T. Gramushnjak and P. Puusemp. Description of a Class of 2-Groups. J. Nonlinear Math. Phys. 13 (2006), Supplement, 55-65.
- [3] M. Hall and J. Senior. The groups of order $2^n, n \leq 6$. Macmillan, New York; Collier-Macmillan, London, 1964.

Received January 20, 2008 Revised April 13, 2008