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Abstract

Let n, m be integers such that n > 3, m > 0 and C}, a cyclic group of order k. All groups
which can be presented as a semidirect product (Con+m X Can) N Co are described.
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1 Introduction

All non-Abelian groups of order < 32 are described in [1] (Table 1 at the end of the book).
M. Jr. Hall and J. K. Senior [3] have given a fully description of all groups of order 2", n < 6.
There exist exactly 51 non-isomorphic groups of order 32. Some of them can be presented as a
semidirect product (Cy2 x Cy2) N Co and some of them as a semidirect product (Cys x Ca) X Co.
As a generalization of the first case, in [2] all groups of the form (Can X Can) X C2, n > 3, are
described. It turned out that there exist only 17 non-isomorphic groups of this form (for a fixed
n). In this paper we generalize the second case. Namely, we shall describe all finite 2-groups
which can be presented in the form (Con+m X Con) X Co, where n > 3 and m > 1. Clearly, each
such group G is given by three generators a, b, ¢ and by the defining relations

= =2 = 1, ab=ba, c tac=d"b?, ¢ tbc=a"b* (1.1)

for some p, 7 € Zontm and q, s € Zon (Zor — the ring of residue classes modulo 2F).
The aim of this paper is to prove

Theorem 1.1. For fivted m > 0 and n > 3 the number of groups which can be given by relations
(1.1) is

347432 (ifm=1), 4-4"+32 (ifm=2), 5-4"+32 (ifm>3)
All possible values of (p,q,r,s) are given in Propositions 3.1, 3.2, 3.3 if m < n, in 3.1, 3.2 if
m=mn and in 3.4, 3.5 if m > n.
2 Main concepts for the proof of Theorem 1.1

Let G = ({(a) x (b)) X (c) be a group given by (1.1). An element ¢ induces an inner automorphism
¢ of order two (the case ¢ =1 is also included) of group (a) x (b):

ac¢=c tac=aPb?, bé=c"tbe=a"b®

'Presented at the 3™ Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Géteborg,
Sweden, October 11-13, 2007.



158 T. Gramushnjak

Therefore, we have to find all automorphisms of (a) x (b) of order two. The map ap = aPb?,
by = a"b® induces an endomorphism of group (a) x (b) if and only if r = 0 (mod 2™). This endo-
morphism is an automorphism, if and only if p = s =1 (mod 2). This map is an automorphism
of order two if and only if (p, g, , s) satisfy the system

2 _ _
pt+rg=1 pq+sq=0
{ or s =0 (mod 2”+m) , { rtst=1 (mod 2") (2.1)

p=s=1 (mod2), r=0 (mod2™)

Our purpose is to solve system (2.1). Note that the two first subsystems of (2.1) imply the
following system modulo 2":

pPPH+rqg=1, pr+rs=0, pg+sq=0, qr+s°= (2.2)

The solutions (p,q,r,s) of system (2.2) form a set M which was described in [2]. In [2] the set
M was given as the union of disjoined subsets M1, Ma, ..., Myq.

Let (p,q,r,8) = (f,q,9,8) € M be a solution of system (2.2), where q,g € Zon and f,s € Z3n
(Z%n denotes the set of all invertible elements of Zgn). Then p and r can be replaced in (2.1) by

p=f+2"z, r=g+2"y, where =,y € Zom
Now it is easy to see that system (2.1) is equivalent to the system
(f+2"2)* +(g+2"y)g=1 (mod 2™*™)  (g+2"y)(f+2"z+¢)=0 (mod 2"t™) (2.3)
where (f,q,9,s) € M, q,g € Zon, f,s € Z3n and
g=0 (mod2™) ifm<n, y=0 (mod2™ ™) andg=0 ifm>n (2.4)

Remark, that h € Z; means the representative of residue class; moreover, we always can choose
he{0,1,...,k—1}.
Because the length of the paper is limited, for most of statements we give only idea of proof.

3 Solving system (2.1)

3.1 The case m < n

Assume that m < n. Then ¢ =0 (mod 2™) and system (2.3) takes the form
P (g4 2y g =1 (mod 2M), (g4 27) (f+5)=0 (mod 2°7™) (3.1)

Proposition 3.1. Assume that m < n and q is odd. Then the solutions (p,q,r,s) of (2.1) are
of the form (i 4+ 2"x, j, g + 2"y, —i), where

y=((1—4—gj) /2" —2iz) j' (mod 2™), € Zom

and g = (1 —i?)j71, i =io + 2™k, k € Zgn-m, where ig € {1,—1+2™ £1+2"71} if m > 3,
io € {1,—=14+2m} if m = 2,99 = 1 if m = 1. There are exactly 22"+ solutions of this form if
m >3, exactly 22" solutions if m = 2 and exactly 22"~ solutions if m = 1.

Proof. The condition of the proposition, conditions (2.4) and f,s € Z}. by [2] are satis-
fied for solution of (2.2) from the set My = { (4,4, (1 —4%)j 1, —i) | i € Z%., j € Z3,}. While
g=(1-1i%);"1 =0 (mod 2™), we have i> =1 (mod 2™), i.e i = ig+2™k, where k € Zgn-m and
io € {1,-1+2m £14+2™ 1} if m >3, ip € {1,-1+2"} if m = 2, iop = 1 if m = 1. Since
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f+s=2"and g =0 (mod 2™), the second congruence of (3.1) holds for every z,y € Zom. From
the first congruence of (3.1) we get the value for y. Now let us find the number of solutions of the
system (2.1). We have 2"~ choices for number k, 2"~! choices for odd number 5, 2™ choices for
number z. For ig we have z = 4 choices if m > 3, z = 2 choices if m = 2 and z = 1 choice if m = 1.
This implies that for the number ¢ we have z - 2"~ choices and the number of solutions of the
system is equal to the number of triples (i, j, z) and |{(i, j, z)}| = z-27~™.2n"L.om = ».22n—1 ]

Proposition 3.2. Assume that m < n, q is even and i € {e,e +2""'} (e = £1). Then the
solutions of (2.1) are:

1) (i+2”x,25u,2tv+2”y,—i+2”_1z), where y € Zom (if m < n orif m=mn and z = 0),
Y €2%Lym—1 (ifm=nandz=1),1<s<nucZy_,m+z<t<nvelZ . and in
the case m <n ifi=c thenx =21, s+t >n, ifi = +2""! then x = 29, s +t = n; in
the case m =n then i =¢, x = 1, 2'v = 0, where

21 = (—1+¢)2—exo (mod 2m_1) , Top=—¢ (2”_3 + (e +uv) /2 + 25_1yu) (mod 2™ 1)
and zo = 275" Ly (v + 2" ty) (if m < n), xo = 25 tuy (if m = n). There are ezactly

(2n — 2m + 1) 2"+ solutions of this form if m < n and 3 - 2°™ solutions if m = n.
2) (i+2"z,2" 'u, 2"y, i +2"12), i € {1,-1+2"}, u,z € Zy, y=0 (mod 2™ ') and

=0 (mod 2™ Y ifi=1 z=-1 (mod2™!) ifi=—-1+4+2"
There are exactly 32 solutions of this form.

Proof. To prove the proposition, by [2] we must consider the following sets of solutions of (2.2):

MyU My = {(i,2su,2tv, —i 4+ 2"_12) |[1<s,t<n;s+t>n; u€Zjn s, vE Z;n—t}
MsU Mg = {(z + oty onhy 9n Ly i 4 2”712) |u, v € Zg, i = :tl}
Mg UMg = {(i,2"  u,2" o i + 2771 [u, v € Zy}

where z € Zo. Solving system (3.1) for each solution of (2.2) from given sets we get from the
second congruence in (3.1) the condition for y and from the first congruence in (3.1) the values
for 2. The solutions of system (2.2) belonging to set My U M7 give us solution 1) of system
(2.1). The solutions of system (2.2) belonging to sets M5 U Mg, Mg U My give solution 2) of
system (2.1). O

Proposition 3.3. Assume that m < n, ¢ = 2'u and g = 2"v are both nonzero even num-
bers, s ¢ {:tl,:i:l—i—Q"_l} is odd (s = ¢ + 24" 1p p € Lyr—rir,e = £1,1 <t < n,
m+k<r<n-13<t+r<n v=—(+2""%) pu' T on et (] e Zpe))
and k € {0,1}. Then system (2.1) have solutions only if m < n, and these solutions are
(s + 27, 20y, 20 + 2™y, —s + 2"*116), where x,y € Zo (if m = 1) and if m > 1 then y € Zam,
x = st (— (€p+uv+2t+r_2p2) Jonti-t=r —2t_1yu) (mod 2™~ 1). If m = 1 there are
2"F2 (5. 2773 —2n+1) solutions of this form. If m > 1 there are 3 - 2% — 2™ (2n—2m+1)
solutions.

Proof. Let us now consider the set Mjy. The solutions of system (2.2) from this set have
the form (i,2tu,2"v,—z’—i—2n_1k), where 1 <rt<n—-1,3<r+t<n—-1,p€ L i,
ke ZQ,U € Z;nfta (S Zznfra and

uv 4 (£1 4+ 25" 2p)p =0 (mod 2""7F) (3.2)
The condition g = 2"v =0 (mod 2™) holds only if » > m. The second congruence of (3.1), i.e

(2" + 2" k) (27w + 2"y) + 2"22"v =0 (mod 2"*"™)
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holds in the case if k = 0 for every r > m and in the case if k£ = 1 it holds for every r > m + 1.
Since 52 — 1 = £2t+7p 4 224712 the first congruence of (3.1), i.e

242" s+ (270 4+ 2"y)2'u =1 (mod 2"T™)
implies

L=ty 4 oty 4 (:I:p +uv + 2t+r—2p2) =0 (mod 2"+t (3.3)
Since n —t > n + 1 —t — r, this congruence holds if and only if

+p+ovu+2"2p? =0 (mod 27T

The last condition is stronger than (3.2) and implies v = — (£1+2"7""2p) pu~! (mod 2"T1~t7),

1 ,2n -1

where u~! is the inverse of the odd number u by modulo 2"t ie u~ . Since

v € Z3,_,, for v we have 2”_T/2”+1_t_r = 21 values by modulo 2"~" in the form
v=— (:I:l + 2t+r-2p) pu2n7t4_1 +2n =t where | € Zigia

It follows from (3.3), that in the case m = 1 we have z,y € Zy and in the case m > 1 we have
r=s! (— (ip + uv + 2t+r*2p2) grtl=t=r _ 2t71yu) (mod 2™~ 1)

Calculating the number of all obtained solutions, we get the second statement of proposition. [

3.2 The case m >n

The condition g + 2"y = 0 (mod 2™) implies ¢ = 0 and y = 0 (mod 2™~ "), i.e y is even,
Yy =2m""z 2 € Zgn, where z = 0 or z = 28w (k € Z,, and w € Zy,—)- System (2.3) has now
the form

(f+2"2)* +2"2¢=1 (mod 2"*™), 2"z (f+s)=0 (mod 2""™) (3.4)
Lemma 3.1. The solution of the congruence
(f+2"2)*=1 (mod 2"™™), where fe€{£l,£1+2"""}

is: 1)z e {0,2m 1} if f=1,2 xe {-1+2" —142m} if f = —1, and 3) v € @ if
f=+41+2""1,

Proof. The solutions of > =1 (mod 2""™) are b € {1, —1 4 2" 1 4 2ntm=1 1 4 gntm=11
e 2"z € {1—f,—1—f+2mtm1— fqontm=l 1 fpontm=Il 1) Jf f = 1, then
2"z € {0, =2+ 2ntm gndm=l gy gndm=11 “9ng € {0,211} and & € {0,2m71}. 2) If
f=-1=—1+2" then 2"z € {2 —2n 2ntm _ongntm o _ gn y ontm—1"_on 4 gntm—11
g e {—2n 4 2mtm —_on pontm=ltand g € {—1+ 2™, —1+2" 1} 3) If f = £1+2""1, then
2ty € {—2n-lqontm _on-lyomtmel g gnlygmim po_onlyortmll and z € @, O

Lemma 3.2. The solution of the congruence
(f+2"2) =1-2"2¢ (mod 2"™)

where f € {:tl,:l:l + 2"‘1}, q=2%, 2z=2w, (k=1,2,..n—1 and w € Lyo-i) and z2q # 0
(mod 27) is: 1) @ = 2m—mHEFTly (if f =1, e = 41), 8) @ = 2m kbl 1 (i f = 1,
e=—1), and 3) x € @ (if f=+142""1), where p € L, ..\, i € Los and

L — ok (_ (8 i 2m+k+s—2p) pu2 T 2n—k—si>
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Proof. Denote f+2"z = a, s+k = [. Then a®>—1 = —2" yw (mod 2"*™). Using (2.1)-(2.10)
in [2], we get that the solution of the last congruence is

a=¢-+ 2m+l_1p’ q= 2511,7 z = 2k <_ <€ + 2m+l—2p> p,U/Q"*l*l—l + 2n_li>

where s,k =1,2,..,n—1, s+k<n,e=+l, u€Zj ., p€ L5 11,1 E Los.
Now let us find z. Since f + 2"z € {1+2mF=1p —1+2mH=Ipl it follows that
'z € {1— f+2mtlp 1 — f4omT=lpl 1) If f =1, then 272 € {2m - 1p, —2 4 2mHi=ip}

2"z € {2mH-lpl and @ = 2m"H-lp 2) Analogously, if f = —1 = —1 + 2", then
My € {2 _9n _|_2m+lflp7_2n _i_Qerlflp}7 My € {_2n +2m+l71p} and = = 2mfn+l71p 1.
3) If f =+1+2""1 then 2"z € {F2 —2n~1 4 2mF=1p —on=l 4 omHi=lpt and z € @. O

Denote by x1 solutions from Lemma 3.1 and by s, 2o solutions from Lemma 3.2.

Proposition 3.4. Assume that m > n and the number q is odd (¢ =j € Z5.). Then the
solutions of (2.1) are: 1) (z + 2ng, §, 2R, —i), where x = 2m_”+k_1p+%, 1==x1,k € Z,,
.2n—k—1

PE Ly jyr, W= — (Z + 2m+k_2p) Dj 1, 2) (i +2"x,3,0,—i), where x € {0, 2m_1} ifi=1
and x € {—1 +2om-l 14 2’”} if i = —1. There are 22"t solutions of these forms.

Proof. Consider the solutions of system (2.2) belonging to the set M3. The second congruence
of (3.4) holds for every z € Zan. To solve the first congruence of (3.4), consider two cases for z:
1) z =2kw, we Lyy iy k € Zy and 2) 2 =0 (i.e y = 0). In the first case using Lemma 3.2, we
get solution 1) and in the second case, using Lemma 3.1, we get solution 2). O

Proposition 3.5. Assume that m > n, f € {:l:l,:l:l + 2”_1} and both numbers q and g are
even. Then (2.1) have solutions only in case f =i = £1 and these solutions are:

1) (i 4 2"21, 25,0, —i + 2" 1r) (s =1,2,..,n)
2) (i42"21,0,2mz,—i +2""1r) (2 € (1 +71) Zgn—r ~ {0})
3) (2 + 2"y, 2%, 2" R, —i 4277 1r) (r<k<n—1, we Ly, n—k<s<n—1)
4) (i + 2", 2%u, 220, —i + 2" 1) (k=r,r+1,..,n—1,s=1,..,n—k—1)
5) (i + 221,27 h, 22, i+ 277 r) (b € Zy, z € {0,2771})
where w € Z,_,, v € ZLa. There are 3 - 4™ + 32 solutions of these forms.
Proof. Consider solutions of system (2.2) belonging to the sets MyUM7, M5UMg, MgUMy.
Solving system (3.4) and using lemmas 3.1 and 3.2, we get from the set My U M7 solutions 1),

2), 3), 4) and from sets My U Mg, MgU My solution 5). Calculating the number of all obtained
solutions, we get the second statement of the proposition. O
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