A Commentary on the Use of Epstein-Barr Virus Specific Antibodies as Biological Markers in Multiple Sclerosis

Massimiliano Castellazzi\(^1\), Maura Pugliatti\(^1\), Enrico Granieri\(^1\) and Enrico Fainardi\(^2\)

\(^1\)Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Via Aldo Moro 8, I-44124 Cona Ferrara, Italy
\(^2\)Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, I-50134 Florence, Italy

\(^*\)Corresponding author: Massimiliano Castellazzi, Laboratory of Neurochemistry and Neuroimmunology, University of Ferrara, Via Aldo Moro, 8 I-44124 Cona, Ferrara, Italy, Tel: +39-0532-236388; Fax: +39-0532-239649; E-mail: massimiliano.castellazzi@unife.it

Received date: March 23, 2017; Accepted date: May 31, 2017; Published date: June 07, 2017

Copyright: © 2017 Castellazzi M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Multiple sclerosis (MS), a chronic demyelinating and neurodegenerative disease of the central nervous system (CNS), whose pathogenesis likely involves an interaction of environmental factors with a genetic predisposition. The hypothesis that Epstein-Barr virus (EBV), a ubiquitous human γ-herpesvirus may be a causal agent pivots on the evidence of EBV-specific antibodies high titers in MS patients as compared to controls, and on the observed direct association between such antibodies titers and disease activity. However, the literature on the possible etiological role of EBV is conflicting. This commentary aims to provide an overview on the use of EBV-specific antibodies as biomarkers in MS course.

Keywords: Multiple sclerosis; Epstein-Barr virus; Antibodies; Biomarkers

Commentary

Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative immune-mediated disease of the central nervous system (CNS) and the commonest cause of non-traumatic neurological disability in young adults [1]. Among the main diagnostic features of MS are: a) clinical spatial and temporal dissemination of neurological sign and symptoms; b) multi-focal lesions in the periventricular white matter on Magnetic Resonance Imaging (MRI) scans [2]; c) the presence of oligoclonal IgG bands (OCB) in cerebrospinal fluid (CSF) and not in serum, reflecting an intrathecal synthesis of immunoglobulins [3].

Despite MS etiopathogenesis remains largely unknown, it is considered a multifaceted demyelinating and neurodegenerative disorder likely generated by an age-specific interplay between genetic predisposition and environmental factors [1]. The potential role for an infectious agent in MS pathogenesis has been supported by epidemiological evidences [4,5].

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus capable to infect, activate, and latently persist in B lymphocytes for the lifetime of the infected host [6]. Primary infection with EBV is transmitted through saliva and it is asymptomatic, if occurring in childhood, or can cause infectious mononucleosis (IM) in puberty or adulthood [7].

An increasing number of articles have been published in the last decades on the association between MS and EBV (Figure 1) and special interest was raised by Serafini and colleagues who demonstrated EBV-infected infiltrating B lymphocytes in post-mortem brain tissue of MS patients [8]. However, other groups failed to consistently find EBV-positive B cells in MS affected brains [9].

The strongest association between MS and EBV still derives from seroepidemiological investigations (Table 1) suggesting the use of EBV-specific antibodies as markers of the natural course of the disease through the longitudinal correlation with known clinical variables (type 0 biomarkers) [10]. Most such evidences build from the use of the Epstein-Barr nuclear antigen (EBNA) complex, especially EBNA-1 and the structural protein viral capsid antigen (VCA), as targets of the humoral response. EBNA-1 is the only EBV-encoded protein expressed in proliferating EBV-infected memory B cells and it maintains EBV infection by distributing viral DNA into progeny cells during cell division [11]. VCA is expressed during acute infection or following occasional reactivations of the lytic cycle [12]. Elevated EBV-specific antibodies titers have been reported more commonly in MS patients than in controls, preceding and predicting the development of the
disease and of its progression, and were intrathecally produced in MS patients [8,13-25].

Table 1: Epstein-Barr virus (EBV) specific antibodies as biological markers to sustain a causal role for EBV in multiple sclerosis (MS) pathogenesis (AI: Antibody Index; CIS: Clinically Isolated Syndrome; CSF: Cerebrospinal Fluid; EBNA: Epstein-Barr Nuclear Antigen; EBV: Epstein-Barr Virus; MS: Multiple Sclerosis; OCB: Oligoclonal IgG Bands; VCA: Viral Capsid Antigen).

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Correlation (Target antigens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV-specific antibodies in serum</td>
<td>More elevated in MS patients than in controls (EBNA-1) [13]</td>
</tr>
<tr>
<td></td>
<td>Elevated in serum of pediatric MS patients (EBNA and VCA) [14,15]</td>
</tr>
<tr>
<td></td>
<td>More elevated before the onset of the disease (EBNA-2) [16]</td>
</tr>
<tr>
<td></td>
<td>Robust marker of MS risk (EBNA) [17]</td>
</tr>
<tr>
<td></td>
<td>Increased in CIS patients; predicted conversion to MS; correlated to disease progression (EBNA-1) [18, 19]</td>
</tr>
<tr>
<td></td>
<td>Associated to grey matter atrophy (VCA) [20] and to cortical atrophy and lesion burden (EBNA-1 and VCA) [21]</td>
</tr>
<tr>
<td>EBV-specific antibodies in CSF</td>
<td>Intrethecally synthesized (AI positive) more in MS than in controls (EBNA-1 and VCA) [22]</td>
</tr>
<tr>
<td></td>
<td>CSF EBV-specific OCB in 30% of MS patients (EBNA-1) [23]</td>
</tr>
<tr>
<td></td>
<td>CSF EBV-specific OCB in 94% [8], 24% [24] and 14% [25] of MS patients (all viral antigens)</td>
</tr>
</tbody>
</table>

Table 2: Epstein-Barr virus (EBV) specific antibodies as biological markers to argue against a causal role for EBV in multiple sclerosis (MS) pathogenesis (AI: Antibody Index; CARR: Clinical Active Relapsing Remitting Multiple Sclerosis; CIS: Clinically Isolated Syndrome; CSF: Cerebrospinal Fluid; CSRR: Clinical Stable Relapsing Remitting Multiple Sclerosis; EBNA: Epstein-Barr Nuclear Antigen; EBV: Epstein-Barr Virus; EDSS: Expanded Disability Status Scale; MRI: Magnetic Resonance Imaging; MS: Multiple Sclerosis; MSSS: Multiple Sclerosis Severity Score; OCB: Oligoclonal IgG Bands; RR: Relapsing Remitting Multiple Sclerosis; PP: Primary Progressive Multiple Sclerosis; VCA: Viral Capsid Antigen).

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Correlation (Target antigens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV-specific antibodies in serum</td>
<td>No differences between MS subgroups (RR, PP, CARR, CSRR), no correlation with age at onset, disease duration, EDSS or MSSS (EBNA-1) [26]</td>
</tr>
<tr>
<td></td>
<td>No correlation with number of MRI lesions, Barkhof criteria, EDSS, and not association with conversion to clinically definite MS in CIS/early RR MS (EBNA-1 and VCA) [27]</td>
</tr>
<tr>
<td></td>
<td>No correlation with disease activity (clinical and MRI) and disease duration (EBNA-1 and VCA) [24]</td>
</tr>
<tr>
<td>EBV-specific antibodies in CSF</td>
<td>No correlation with disease activity (clinical and MRI) and disease duration (EBNA-1 and VCA) [24]</td>
</tr>
<tr>
<td></td>
<td>More elevated in OIND than in MS and NIND (VCA) [30]</td>
</tr>
<tr>
<td></td>
<td>Intrathecal synthesis (AI) almost absent in MS, OIND and NIND (EBNA-1 and VCA) [24,31]</td>
</tr>
<tr>
<td></td>
<td>EBV-specific OCB in MS, OIND and NIND as a ‘mirror pattern’ (all viral antigens) [32]</td>
</tr>
<tr>
<td></td>
<td>EBV-specific OCB composed by low affinity antibodies (all viral antigens) [24]</td>
</tr>
</tbody>
</table>

EBV is widespread in the human population, often nearly or completely asymptomatic. It persists life-long in B cells and intermittently causes lytic infections. For these reasons the association between MS and EBV do not fulfil the Koch’s Postulates for causality, yielding discordant results which per se fail to clarify the nature of this virus-specific humoral immune response.

New hypotheses which could explain the association between EBV and MS have been proposed [36] and EBV has been indicated as the possible trigger of an intrathecal reaction that occurs during MS [37]. However, the conceptual frame for EBV-related pathogenic mechanism in MS builds on the role of EBV-transformed B lymphocytes infiltrating the brain, maintaining the intrathecal production of antibodies [38] and/or acting as resident antigen presenting cells (APC) sustaining the immune-mediated reaction within the CNS [39] (Figure 2). This condition may be worsened by the proliferation of latently infected cells due to the defective CD8+ T-cell control of EBV reactivation in MS patients [40], resulting in the maintenance of the autoreactive/pathogenic EBV-infected B cells reservoir for a lifetime. One indirect evidence of such hypothesis is that the antibody production in MS CSF is stable overtime [41] and that

Biomarkers for Neurodegenerative disease

ISSN:2155-9562
their specificity seems to be unrelated to the disease activity [42] as consequence of a random EBV-driven B cells transformation [43].

**Figure 2:** Epstein-Barr virus (EBV) has the ability to infect, activate and latently persist in B lymphocytes through the expression of different transcription programs. In healthy individuals (left panel), during primary infection, the virus enters the tonsil from the saliva and infects naïve B cells. EBV, expressing the "growth program" or latent program III, drives out to the resting state naïve B cells to become activated B blasts which then enter the germinal centers reaction. In this condition EBV express the "default program" or latent program II that stimulate B blasts to proliferate and differentiate into infected memory B cells that can then recirculate in blood and in which the virus does not express viral protein (latency) or expresses only the nuclear antigen 1 during cell division. Circulating memory B cells can finally differentiate into plasma cells which initiates the lytic phase of infection producing free virions. In normal condition, EBV infection is controlled by EBV-specific cytotoxic (CD8+) T lymphocytes. During multiple sclerosis (right panel) all these processes could involve pathogenetic/autoreactive naïve B cells. A repertoire of EBV-infected memory B cells could survive in the MS infected host due to an altered CD8+ T cells response to EBV [40]. Finally, CNS-infiltrating pathogenic plasma cells could contribute to the development and to the maintenance of the neuroinflammation through the production of oligoclonal IgG bands [9] or acting as antigen presenting cells that stimulate autoreactive CD4+ cells [10]. Red lines and red dashed lines with perpendicular bars indicate normal and defective CD8+ T-cell control respectively. This picture is mainly based on works published by Thorley-Lawson et al. [6], for the biology of the EBV infection and by Serafini et al. for the dysregulated EBV infection [8].

In conclusion, EBV remains one of the most important environmental risk factor for MS with a potential triggering mechanism in the intrathecal IgG synthesis - MS laboratory hallmark - and this is still matter of interest. Further research will elucidate the role of a persistent dysregulated EBV infection and/or of an altered immune response to EBV in triggering or modulating the risk for MS.

**Conflict of Interest Statement**

The authors declare that there is no conflict of interest.

**Acknowledgement**

This work has been supported by FISM - Fondazione Italiana Sclerosi Multipla - Cod. 2008/R/12 and by Research Program Regione Emilia Romagna - University 2007 to 2009, (Innovative Research), entitled 'Regional Network for Implementing a Biological Bank to Identify Biological Markers of Disease Activity Related to Clinical Variables in Multiple Sclerosis'.

The authors thank Mrs. Eva Sjolin for helpful corrections to the manuscript.

**References**

focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 134: 2772-2786.


