A Computational Method for the Solution of Nonlinear Burgers’ Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media

Olayiwola MO

Department of Mathematical and Physical Sciences, Computational Mathematics Research Group, Osun State University, Osogbo, Nigeria

Abstract

This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration $C(x,t)$ of the contaminated water decreases as distance x increases for the given time t.

Keywords: Modified variational iteration method; Burger’s equation; Porous media; Partial differential equation

Introduction

Burgers’ equation is the approximation for the one-dimensional propagation of weak shock waves in a fluid. It can also be used in the description of the variation in vehicle density in highway traffic.

The equation is one of the fundamental model equations in fluid mechanics which demonstrates the coupling between the dissipation effect of C_n and convection process of CC. Burgers introduced the equation to describe the behavior of shock waves, traffic flow and acoustic transmission.

In this paper, a modified variational iteration method is presented to discuss the solution of the problem.

Modified Variational Iteration Method (MVIM)

The idea of variational iteration can be traced to Inokuti [7]. The variational iteration method was proposed by He [8,9]. In this paper, a Modified Variational Iteration Method proposed by Olayiwola [5,10-13] is presented for the solution of the Burgers’ equation.

To illustrate the basic concept of the MVIM, we consider the following general nonlinear partial differential equation:

$$Lu(t, x) + Ru(t, x) + Nu(x, t) = g(x, t)$$ \hspace{1cm} (1)

where L is a linear time derivative operator, R is a linear operator which has partial derivative with respect to x, N is a nonlinear operator and g is an inhomogeneous term. According to MVIM, we can construct a correction functional as follows:

$$u_n(x, t) = u(x, 0) + g_1(x, t)$$ \hspace{1cm} (2)

$$u_n(x, t) = u_n(x, t) + \lambda \int L u_n(x, t) + R u_n(x, t) + N u_n(x, t) - g(x, t)$$ \hspace{1cm} (3)

Where $g_1(x, t)$ can be evaluated by substituting $u_n(x, t)$ in (1) and evaluate at $t=0$.

λ is a Lagrange multiplier which can be identified optimally via Variational Iteration Method. The subscript n denote the nth approximation, \tilde{u}_n is considered as a restricted variation i.e, $\tilde{u}_n = 0$ [14,15].

Problem Formulation

According to Darcy’s law [14-17], the equation of continuity of fluid is given as:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$ \hspace{1cm} (4)

The equation of diffusion for a fluid flow through a homogeneous porous medium without decreasing or increasing the dispersing material is:

$*Corresponding author: Olayiwola MO, Department of Mathematical and Physical Sciences, Computational Mathematics Research Group, Osun State University, Osogbo, Nigeria, Tel: +2348028063936; E-mail: olayiwola.oyedunsie@uniosun.edu.ng

Received January 07, 2016; Accepted February 04, 2016; Published February 10, 2016

Copyright: © 2016 Olayiwola MO. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\[
\frac{\partial C}{\partial t} + v \left(\rho \nabla \left(\frac{C}{\rho} \right) \right) \tag{5}
\]

In a laminar flow through homogeneous porous medium at a constant temperature, \(v = 0 \).

Therefore, equation (5) becomes:

\[
\frac{\partial C}{\partial t} + \nabla C = \nabla \left(\nabla C \right) \tag{6}
\]

When the seepage velocity is along x-axis, then \(D_L = \gamma, D_u = 0 \).

Hence, equation (7) becomes:

\[
x \geq 0, D_L > 0 \tag{8}
\]

As \(x \geq 0, D_L > 0 \)

\[
u = \frac{C(x,t)}{C_0} \tag{9}
\]

Equation (8) then becomes:

\[
\frac{\partial C}{\partial t} + \frac{\partial C}{\partial x} + \frac{\partial^2 C}{\partial x^2} \tag{10}
\]

This is the nonlinear Burgers equation for longitudinal dispersion of miscible fluid flows through porous media where:

- \(C_0 \) = initial concentration of contaminant in liquid
- \(C \) = concentration of contaminant in liquid phase
- \(\rho \) = density of the mixture
- \(\sigma \) = pore seepage velocity vector
- \(\mathcal{D} \) = tensor coefficients of dispersion with component \(D_u \)
- \(u \) = velocity component along x-axis
- \(\gamma \) = coefficient of longitudinal dispersion

Solution of the Problem Using MVIM

In this section, the reliability of the MVIM is tested by applying it to find and discuss the behavior of solution of nonlinear Burgers equation for longitudinal dispersion phenomena in fluid flow through a porous media [16,17].

The initial and boundary condition for problem (10) is:

\[
C(x,0) = e^{-x}, \quad 0 \leq x \leq 1, \quad 0.001 \leq t \leq 0.01 \tag{11}
\]

\[
C(0,t) = 1 \tag{12}
\]

From equ. (3), the correction functional becomes:

\[
C_{n+1}(x,t) = C_n(x,t) + \int_0^1 \left[\frac{\partial C_n (x,t)}{\partial t} + C \frac{\partial C_n (x,t)}{\partial x} - \gamma \frac{\partial^2 C_n (x,t)}{\partial x^2} \right] d\tau \tag{13}
\]

Where, from equations (1,2)

\[
C_0 (x,t) = e^{-x} + \left(ye^{-x} + e^{-2x} \right) \tag{14}
\]

When \(n = 4 \) Equations (13,14) gives:

\[
C_4 (x,t) = e^{-x} + \left(ye^{-x} + e^{-2x} \right) t + \left(\frac{1}{3} \gamma^2 e^{-x} + 3 \gamma e^{-2x} + \frac{3}{2} \gamma e^{-3x} \right) t^2 + \left(\frac{1}{6} \gamma^2 e^{-x} + \frac{8}{3} \gamma e^{-2x} + \frac{14}{3} \gamma^2 e^{-3x} + \frac{17}{2} \gamma e^{-4x} \right) t^3 + \left(\frac{1}{24} \gamma^2 e^{-x} + \frac{125}{24} \gamma e^{-2x} + \frac{101}{4} \gamma^2 e^{-3x} + \frac{71}{3} \gamma e^{-4x} \right) t^4 + \mathcal{O}(t^5) \tag{15}
\]

Equation (15) represents the concentration of the longitudinal dispersion at any given distance x and time t. This solution is identical to solution obtained in Kunjan and Twinkle [6] when \(\gamma = 1 \) (Figures 1 and 2).

![Graph of C(x,t) against x for various values of t.](image1)

Graph of C(x,t) against t for various values of x

![Graph of C(x,t) against t for various values of x.](image2)
Conclusion

The graphs show that the numerical solution of concentration of a given dissolved substance in unsteady unidirectional seepage flows through semi-infinite, homogeneous, isotopic porous media subject to the source concentrations vary negatively exponentially with distance and slightly increase with time. This helps to predict the possible contamination of groundwater and it is in agreement with the physical phenomenon of longitudinal dispersion in miscible fluid thorough isotopic porous media subject to a defined initial and boundary conditions.

References

OMICS International: Publication Benefits & Features

Unique features:
- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:
- 700 Open Access Journals
- 50,000 editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: www.omicsonline.org/submission