
Research ArticleResearch Article

El-Sappagh and Elmogy, Diabetes Case Rep 2016,1:1
DOI: 10.4172/2572-5629.1000102Diabetes Case Reports

Di
ab

etes Case Reports

ISSN: 2572-5629

Volume 1 • Issue 1 • 10000102
Diabetes Case Rep, an open access journa
ISSN: 2572-5629

Open Access

*Corresponding author: Mohammed Elmogy, Faculty of Computers and Information
Technology Department, Mansoura University, Egypt, Tel: 00201098889791; E-mail:
melmogy@mans.edu

Received: January 15, 2016; Accepted: February 11, 2016; Published: February 
15, 2016

Citation: El-Sappagh S, Elmogy M (2016) A Decision Support System for Diabetes 
Mellitus Management. Diabetes Case Rep 1:102. doi: 10.4172/2572-5629.1000102 

Copyright: © 2016 El-Sappagh S, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

A Decision Support System for Diabetes Mellitus Management
Shaker El-Sappagh1 and Mohammed Elmogy2*
1Faculty of Computers and Information, Minia University, Egypt
2Faculty of Computers and Information, Mansoura University, Egypt

Keywords: Diabetes diagnosis; Clinical decision support system;
Medical ontology; Case-based reasoning; Fuzzy ontology; Description 
logic

Introduction 
Diabetes is one of the most serious chronic diseases. According 

to American Diabetes Association (ADA), it imposes a significant 
economic burden on the countries. Healthcare expenditures, due to 
diabetes, account for 11% ($465 billion) of the total healthcare expenses 
in the world in 2011 [1]. By 2030, this number is projected to exceed 
$595 billion. Worldwide, there are approximately 366 million people 
with diabetes and it is estimated that 552 million will be affected by 
2030 [2]. WHO (http://www.who.int/en/) projects that diabetes is the 
seventh leading cause of mortality in 2030. How to decrease these 
threats is a critical issue. The early diagnosis is the first and most critical 
step in diabetes management process because it can prevent its long-
term microvascular complications like retinopathy, nephropathy and 
neuropathy, and cardiovascular diseases. About 183 million people, 
or half of those who have diabetes, are unaware they have the disease 
[2]. The patient can be affected by diabetes for 9-12 years before being 
diagnosed [3]. As a result, at diagnosis time, complications often exist. 
According to ADA, if diabetes can be early diagnosed, the lifestyle, 
blood glucose control, and pharmacologic interventions are effective in 
controlling diabetes and reducing its related complications.

There are many clinical practice guidelines (http://guidelines.
diabetes.ca/fullguidelines/) for standardizing the diagnosis process; 
however, these guidelines are long text documents, which are difficult 
to be used by a physician at the point of care. Many AI techniques 
have been utilized to enhance the diabetes diagnosis process such as 
rule-based reasoning and artificial neural network [4]. However, the 
results for early detection of diabetes based on these systems are not 
highly accurate. For example, rule-based systems are not suitable for 
the ill-formed, difficult to formulate, and experience-based problems. 
It can be difficult for an expert to transfer their knowledge into distinct 
rules, and many rules can be required to be valid for a system [5]. The 
management and maintenance of large rule-based are not an easy 
process.  Moreover, Alves et al., [6] have asserted that neural networks 
are not the optimum choice for implementing diagnostic systems for 
medical problems. Using Clinical Decision Support System (CDSS) at 

the point of care integrated with the Electronic Health Record (EHR) 
system can improve the early detection of diabetes. 

CBR is considered the most suitable AI technique for building 
experience-based CDSS systems [7]. It depends on collecting the 
previous experience of a medical expert in the form of cases and uses 
this knowledge for inference. CBR has many advantages for medical 
diagnosis problems. For example, the EHR stored data, such as 
symptoms, medical history, physical examinations, lab tests, diagnoses, 
treatments, and outcomes for each patient, can be used to define 
the case-base knowledge. This formulation solves the knowledge-
acquisition bottleneck problem found in other AI techniques. Many 
researchers utilize CBR for diabetes diagnosis [8,9]. However, the 
diagnosis diabetes accuracy is still not encouraging. The purpose of 
this study is to provide a significantly advanced step in the CBR system 
developments.

Building the case-base knowledge and implementing an accurate 
case retrieval algorithm are the main tasks of diagnostic CBR systems 
because the retrieved case can be used directly without adaptation 
of the CDSS suggested decisions. However, building a complete and 
consistent case-base knowledge, which covers all patient medical cases, 
is a challenge. In addition, implementing a semantic retrieval algorithm, 
which measures the clinical distance between two cases, is another 
challenge. We propose in this paper a set of three preparation steps to 
convert EHR data into CDSS knowledge including data preprocessing, 
data encoding, and data fuzzification. The data preprocessing phase 
solves the following issues: handling of missing data, feature selection, 
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feature weighting, data normalization, data aggregation, data 
discretization, coding of unstructured data, and outlier detection and 
prevention. This step is handled by a set of machine learning algorithms. 

To enable (1) the integration between EHR and CBR systems, (2) 
facilitate the collection of case from different EHR sites, (3) support 
the creation of Knowledge-Intensive CBR (KI-CBR) systems, (4) 
support the creation of distributed CBR systems, and (5) support 
the implementation of semantic retrieval algorithms, the case-base 
knowledge needs the encoding process by using a domain unified 
medical terminologies. If these terminologies are modeled in a 
standard medical ontology such as SNOMED CT (SCT), LOINC, 
UMLS, DO, GO, or ICD, the resulting knowledge base (i.e., case-base) 
and its retrieval function will be improved significantly [10]. However, 
such ontologies are very huge, which affects the performance of the 
CBR retrieval algorithm. Creating a domain-specific reference set is 
required [11]. The semantic interoperability between CBR and EHR 
systems requires the storage of encoded case-base knowledge in a 
standard and portable data model. The most popular data model in 
the medical environment is the HL7 RIM v3( http://www.hl7.org/
implement/standards/product_brief.cfm?product_id=77). As a result, 
a mechanism must exist to convert the case base structure into a 
standard form [12].

The third preparation step of EHR data is the fuzzification step. As 
Zadeh [13] argued much of the knowledge that humans acquire through 
experience be perception-based and thus subject to imprecision and 
inaccuracy. Such knowledge, when not treated in some suitable way 
that can consider and convey its inherent imprecision, usually leads 
to reduced effectiveness of the knowledge-based systems that use it. 
As some of the case-base knowledge need encoding, some case-base 
features, i.e., numerical features, need fuzzification steps. The fuzzified 
case-base knowledge will better represent patients and will enhance the 
similarity measures implementation. 

The most recent advances in CBR systems implementation are 
based on ontology, and it creates KI-CBR systems. They can play many 
roles in CBR such as background domain ontology, case-base ontology, 
semantic similarity measurement, and for sharing and reusing of 
CBR knowledge. With respect to the diabetes diagnosis, researchers 
have made an effort towards diabetes ontology development [8]. 
Nevertheless, the literature of ontology-based CBR for diabetes is 
not rich with studies. Jaya and Uma [14] have examined the roles of 
ontologies in diabetes diagnosis CBR systems. 

Crisp ontologies have proved its applicability in CBR environment; 
however, these ontologies cannot represent and reason about vague 
knowledge. Vagueness can be handled using fuzzy set theory to create 
a fuzzy ontology. The lack of representation of this knowledge in 
ontological form restricts the effectiveness of these systems because 
they did not take advantage of the reasoning capabilities that ontologies 
provide. The fuzzy ontology focuses on assigning a meaning to the 
fuzziness of the ontology’s components. For diabetes, the existing fuzzy 
CBR systems have not used fuzzy ontology or even crisp ontology as 
background domain knowledge or case-base ontologies [8]. On the 
other hand, ontologies and fuzzy logic have been utilized in diabetes 
in other domains such as rule-based expert systems [15-17]. In other 
words, fuzzy ontologies have not been used in any medical CBR systems 
especially diabetes diagnosis, and there are no studies in the literature 
that proposed a medical fuzzy case-base ontology especially for diabetes 
diagnosis. This paper proposes a novel fuzzy KI-CBR framework 
that handles and exploits imprecise and encoded medical knowledge 
through the effective integration of fuzzy logic in the ontology-based 

CBR paradigm. Fuzzy case-base ontology, standard domain ontology, 
and a fuzzy semantic retrieval algorithm are proposed and integrated 
to build an intelligent CBR for diabetes diagnosis. At this end, the 
remainder of the paper is organized as follows: Section 2 discusses 
related work. Section 3 defines CBR. Section 4 is the dataset description. 
Section 5 discusses case structure. Section 6 is the proposed system. 
Evaluation is discussed in Section 7. Finally, Section 8 concludes the 
paper and highlights future work directions.

Related Work
CBR is one of the most suitable AI technique for ill-formed 

problems such as diabetes diagnosis [6,7]. Building effective CBR 
systems for these problems faces many challenges where all of them 
must be handled to build an intelligent CDSS system. For example, 
the CDSS system must be interoperable with the EHR system; it 
must support the collection of cases from the distributed healthcare 
environments in a meaningful form; it must support the sharing 
and reuse of knowledge. To achieve these goals, a standard case-
base structure and contents must be prepared. Moreover, ontologies, 
standard medical terminologies, and fuzzy ontologies play critical roles 
in all phases of CBR system.

EHR contains the patient’s current and history medical data. 
These data can be used as a complete source for building the CBR’s 
case-base knowledge [18,19]. However, these transactional data must 
be carefully prepared because they are always incomplete, noisy, and 
unstructured [20,21]. As a result, data pre-processing steps are the 
first and the foremost to improve the accuracy of CBR systems [19]. 
The preparation steps must include EHR data contents and structure. 
Contents preparation includes data pre-processing, data encoding, and 
data fuzzification steps [21]. Structure preparation includes converting 
EHR database structure into a standard and unified case-base structure 
[10-12]. Abidi and Manickam [18] assumed that the structure of 
case-base is defined in advance, and they mapped the structure 
then contents of EHR to case-base. However, this assumption is not 
realistic. There are many studies to standardize the case base structure 
such as HealthInfoCDA [17]. However, the most famous standard for 
medical data storage and exchange is HL7 RIM v3. No studies have 
utilized this model in case base preparation. Moreover, Diabetes Data 
Strategy (Diabe-DS) project (http://wiki.hl7.org/index.php?title= 
EHR_Diabetes_ Data_Strategy) stated that standardization of EHR 
structure and content is not enough for diabetes. It has proposed a 
standard set of data elements for diabetes diagnosis. This standard set 
of representative elements has not been used yet in the implementation 
of any of the existing CBR systems.

Using ontology to represent the background domain knowledge 
supports the seamless integration between CBR system and EHR 
system, the implementation of semantically intelligent case retrieval 
algorithms, and the creation of encoded and standard case-base [11]. 
There are many studies for encoding the EHR contents in a standard 
and unified language [16]. In a medical environment, there are many 
standard medical ontologies in the literature, and SNOMED CT 
(http://ihtsdo.org/snomed-ct/) is the most comprehensive one. It 
contains more than 388,000 active medical concepts organized in 19 
hierarchies, 1.14 million descriptions, and 1.38 million relationships. 
Silva et al., concluded that SCT is the most suitable ontology for coding 
of problem lists and diagnosis. The encoding process of medical data, 
using the standard ontology, requires an encoding methodology. 
There are some existing methodologies as the oneproposed by Lee et 
al., [20]. However, Lee’s approach concentrated on the data cleaning, 
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normalization, and matching steps, and has not mentioned the 
physical storage structure of the data such as EAV; moreover, it has 
not defined whether the EHR data model is standardized using RIM or 
not. As a result, a new methodology needs to be created. El-Sappagh et 
al., [10] proposed an encoding methodology, which covers the existing 
methodologies limitations. Moreover, because SCT is a very massive 
ontology, a small fragment of a particular domain has to be established 
to enhance the retrieval algorithm performance [11]. There is no 
existing SCT reference set for diagnosis diabetes concepts. As a result, a 
method has to be defined for extracting the diabetes concepts from SCT 
and converting the resulting set into OWL 2 ontology. This ontology 
will be used by the retrieval algorithm to calculate the clinical distance 
between patients. El-Sappagh et al., [11] proposed a methodology for 
extracting diabetes concepts from SCT and converting it into an OWL 
2 ontology.

Regarding the role of ontology in diabetes CBR systems, in the 
diabetes domain, ontology has been used in many CDSSs [8]. For 
example, Chen et al., [22] introduced an ontology for diabetes drugs 
and an ontology for patients’ symptoms. These ontologies utilize 
Semantic Web Rule Language (SWRL) and Java Expert System Shell 
(JESS) to determine potential prescriptions for the patients. Rahimi 
et al., [23] developed a Type 2 Diabetes Mellitus (T2DM) Ontology 
(DMO) to diagnose and manage patients with diabetes. They proposed 
an algorithm to query the ePBRN data repository to diagnose T2DM. 
Sherimon et al., [24] proposed a dynamic adaptive questionnaire 
ontology for gathering the diabetic patient’s medical history. 
Hayuhardhika et al., [25] developed an ontology of diabetes disease 
and used a weighted tree similarity algorithm for diagnosis. However, 
regarding diabetes diagnosis, none of these ontologies is designed 
for CBR, and few studies have used ontology in CBR [9]. In diabetes 
diagnosis systems, ontologies have not been utilized in neither case-
base nor background knowledge or case retrieval.  El-Sappagh et al., 
[26] proposed a diabetes diagnosis case-base OWL 2 ontology. This crisp 
ontology can be used to store and retrieve cases semantically. Nevertheless, 
an issue that the ontology-based CBR paradigm has not yet addressed 
is that of knowledge imprecision [27]. Medical data, such as diagnosis 
diabetes data, are mostly imprecise and experience-based; the success of 
CBR in this domain depends on how this issue is handled [13].

Fuzzy logic has a great role in diabetes CBR systems because medical 
data are imprecise in nature [21]. If it is not treated in some suitable 
way that can consider and convey its inherent imprecision, usually this 
leads to reduced effectiveness of the knowledge-based systems that use 
it. Fuzzy sets have been integrated with CBR to generate Fuzzy-CBR in 
many studies [28], and used for calculating the fuzzy similarity between 
cases [29]. Recently, Sohn et al., [30] integrated fuzzy-CBR reasoning 
with crisp ontology reasoning for personalized service in a smart home 
environment. However, this hybrid system has not benefited from 
fuzzy ontology reasoning capabilities in CBR system. There are no real 
studies in the literature for fuzzy-CBR systems for diabetes diagnosis. 
On the other hand, fuzzy logic has been utilized to build diabetes 
diagnosis CDSS using other AI techniques such as rule-based [15]. 

After the success of crisp ontologies in CBR environment, fuzzy 
ontologies can extend its benefits by integrating ontology reasoning 
with fuzzy reasoning capabilities [31]. For example, the physician can 
more easily define experience cases using natural-like language, cases 
can be indexed more efficiently, and finally fuzzy-semantic retrieval 
algorithms can be implemented. There are 17 formal definitions for 
fuzzy ontology [31]. One definition is an ontology that uses fuzzy logic 
to provide a natural representation of imprecise and vague knowledge 
and eases reasoning over it. Building a case-base fuzzy ontology is a 

challenge. Fuzzy Ontologies have been used in many non-medical CBR 
systems. For example, Alexopoulos et al., [27] proposed a fuzzy case-
base ontology by utilizing fuzzy algebra. With respect to diabetes, it 
has utilized fuzzy ontologies in many domains such as [15]. Lee and 
Wang [15] proposed a five-layer fuzzy ontology and utilized it in a 
fuzzy expert system for diabetes management. As stated before, CBR 
is the most suitable mechanism for managing ill-formed problems as 
diabetes diagnosis. However, to the very well of our knowledge, there 
are no efforts in this direction. There is no fuzzy ontology-based CBR 
for diabetes, there are no studies for formal case-base fuzzy ontology 
construction, and there are no similarity measures, which utilize fuzzy 
description logic. Crisp ontologies are not suitable to address imprecise 
and vague knowledge, which is inherent in the real world domains [13]. 
The integration of fuzzy logic, CBR, and ontology generates Fuzzy-KI-
CBR, which is a yet unstudied topic in the medical domains. 

This study tries to build a diabetes diagnosis CDSS system based 
on CBR technique. The proposed framework will handle all the 
challenges previously identified. This framework is implemented using 
JCOLIBRI APIs (http://gaia.fdi.ucm.es/research/colibri/jcolibri) and 
other semantic APIs related to semantic programming (e.g., OWL API 
(http://owlapi.sourceforge.net/, http://protege.stanford.edu/)). Our 
ontologies are built using protégé 4.3. Finally, our proposal is evaluated 
and compared with other studies.

Case based reasoning
Generally, CBR is an AI technique for solving a problem by 

remembering similar past experiences [32]. For example, physicians 
look for groups of known symptoms and engineers take many of their 
ideas from previously successful solutions. The main concept of CBR 
is “similar problems have similar solutions” [32]. CBR knowledge is 
formed in a case-base of previous experiences (either success or failure). 
It does not depend on the explicit model of the problem as in rule base 
reasoning for the inference process, but it simply utilizes the experience 
captured in the same way the expert usually inputs and processes it. The 
newly solved problems can be added as a new experience in the CBR 
system’s experience-base (case-base), which supports the auto-learning 
process. The CBR can be defined as a cyclic process named “the four 
Rs” [32], (figure 1): (i) Retrieve the most similar cases, (ii) Reuse the 
cases that might solve the problem, (iii) Revise the proposed solution if 
necessary, and (iv) Retain the new solution as part of a new case. The 
most important aspects of CBR system are the case-base knowledge 
representation and the case retrieval algorithm, and these are our 
contributions in the current paper.

A case-base CB is a finite set of cases 1 2{ , , , }… mC C C , where m is 
the number of cases in the CB. A case is a case is a contextualized piece 
of knowledge representing an experience. The ith experience case 

 

Figure 1: The CBR Cycle.
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iC CB∈  is formally defined As ,i i iC P S=  , where 
iP and 

iS  respectively represent the case problem description and the case 
solution features. A case retrieval algorithm is an algorithm that takes 
as input (query case or the new patient description qC , case base or 
the domain expert knowledge CB, and features weighting vector );W

→

it 
calculates the level of similarity between qC and every case in CB; and 
finally it returns the solution of the most similar cases. The k-nearest 
neighbour (k-NN) algorithm is the most applicable retrieval technique. 
Case base creation and semantic retrieval algorithm design are the 
most critical steps for CBR systems success.

Diabetes Dataset Description 
The contents of a case-base must be defined in the first beginning 

of a CBR system. These contents determine all of the subsequent steps 
such as case-base ontology, case base fuzzy ontology, and case retrieval. 
After checking with the domain experts, CPGs, and handbooks of case 
histories in diagnosis diabetes domain, our case will contain the features 
described in Table 1. The paper uses a dataset from the diagnostic 
biochemical lab, AutoLab of Mansoura institution, Mansoura 
University, Mansoura, Egypt. This data was collected in the period 
from January 2010 through August 2013. The control subjects were 
healthy and recruited from the diagnostic biochemical lab and were 
matched by age, sex and ethnicity to the case subjects.  The eligibility 
criteria for controls were the same as those for patients,  except for 
having a cancer diagnosis. A short structured questionnaire was used 
to screen for potential controls based on the eligibility criteria. Analysis 

Feature type Feature name Data type Normal range UoM Min-mean-max #

Demographics 

Residence P, C {Urban, Rural} - - 1
Occupation P, C {Farmer, Police…} - - 2

Gender P, C {Male, Female} - - 3
Age P, N, F - year 29-48.117-74 4
BMI P, N, F 18.5 - 25 kg/m2 20-33.117-45 5

Diabetes lab tests
HbA1C P, N, F <=5 mmol/L 5-6.373-7.4 6
2h PG P, N, F < 139 mg/dl 165-202.733-235 7
FPG P, N, F < 99 mg/dl 96-129.633-156 8

Haematological 
profile

Prothrombin INR P, N, F 0 - 1 % 1-1.16-1.4 9
Red cell count P, N, F 4.2 - 5.4 10^6/cmm 3.8-5.194-5.88 10

 Hbg P, N, F 12 - 16 g/dL 9.8-12.332-13.4 11
Haematocrit (PCV) P, N, F 37 -  47 vol% 31.1-35.215-36.8 12

MCV P, N, F 80 -  90 fl 26.8-71.908-76.4 13
MCH   P, N, F 27 - 32 pg 3.3-25.47-29.4 14

MCHC P, N, F 30 - 37 % 1.8-35.465-41.7 15
Platelet count P, N, F 150 - 400 10^3/cmm 135-316.183-2000 16

White cell count P, N, F 4 - 11 10^3/cmm 6-8.055-9.2 17
Basophils P, N, F 0 - 1 % 0-1.013-5 18

Lymphocytes P, N, F 20 - 45 % 21.2-25.768-29 19
Monocytes P, N, F 2 - 10 % 1.7-2.942-4 20
Eosinophils P, N, F 1 - 4 % 1-1.897-3.4 21

Symptoms 

Urination frequency O - - - 22
Vision O - - - 23
Thirst O - - - 24

Hunger O - - - 25
Fatigue O - - - 26

Kidney Function Lab 
tests

Serum potassium P, N, F 3.5 - 5.3 mEq/L 2.4-3.767-4.3 27
Serum urea P, N, F 5 - 50 mg/dL 17-31.56-67 28

Serum Uric acid P, N, F 3.0 - 7.0 mg/dL 3-4.237-7.9 29
Serum creatinine P, N, F 0.7 - 1.4 mg/dL 0.9-1.35-3.6 30

Serum sodium P, N, F 135 - 150 mEq/L 134-137.833-158 31

Lipid profile

LDL cholesterol P, N, F 0 - 130 mg/dL 50-94.917-170 32
Total cholesterol P, N, F 0 - 200 mg/dL 158-209.367-275 33

Triglycerides P, N, F 60 - 160 mg/dL 78-144.767-189 34
HDL cholesterol P, N, F 45 - 65 mg/dL 30-55.533-65 35

Tumor markers
FERRITIN P, C 28 - 397 ng/mL - 36
AFP Serum P, C 0.5 - 5.5 IU/ml - 37

CA-125 P, C 1.9 - 16.3 U/mL - 38

Urine analysis

Chemical 
examination

Protein O - - - 39
Blood O - - - 40

Bilirubin O - - - 41
Glucose O - - - 42
Ketones O - - - 43

Urobilinogen O - - - 44

Microscopic 
examination

Pus O - - - 45
RBcs O - - - 46

Crystals O - - - 47
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of the answers received on the short questionnaire indicated that 80% 
of those questioned agreed to participate in clinical research.  A total 
of 67 eligible subjects were ascertained in the current study. However, 
seven control subjects were excluded due to limited blood samples for 
testing AFP. Blood samples (5 mL) were taken,  centrifuged, and the 
serum separated and stored at 220 uC until analyzed. Serum samples 
were assayed for AFP by enzyme-linked immunosorbent assay with 
commercial kits (Abbott, North Chicago, IL),  transferase (ALT) and 
aspartate aminotransferase (AST), with an auto-analyzer (Hitachi 
Model 736, Japan) and commercial kits.  Our data set contains 70 
features for describing diabetic patients and for linking diabetes with 
other disorders such as cancer, kidney diseases, and liver diseases. 
The data set is distributed as 33.3% pre-diabetic patients, 53% diabetic 
patients, and 13.7% normal patients.

The Structure of a Diagnosis Diabetes Case
Figure 2 shows an Extended Entity-Relationship (EER) model 

for all entities and attributes used in our data set. This data model is 
compatible with HL7 RIM. This compatibility facilitates the integration 
with EHR and supports the auto collection of cases. Moreover, this data 
model has been fuzzified with our proposed fuzzification methodology 

into a fuzzy EER model, and then converted to a fuzzy case-base 
database, which was the source of instances for our proposed fuzzy 
case-base ontology. These entities and attributes were enriched by 
entities and attributes in diabetes diagnosis CPGs as in the National 
Guidelines Clearing House (http://www.guideline.gov/).  Entities and 
features related to diabetes treatment, medications, and drugs are out 
of scope.

Diabetes diagnosis cases are defined according to our data model.  A case 
,C P S=   is defined as follows:P = {LFT, LP, GS, A, B, R, G, O, 

KFT, LT, US, HP, DI}

where LFT= liver function tests, LP= lipid profile, GS= global 
symptoms, A=age, B=BMI, R= residence, G=gender, O=occupation, 
KFT= kidney function tests, LT= lab tests, US= urination symptoms, 
HP= haematological profile, and DI= { L + N + C + H } where L= 
probable liver problem, N= probable nephropathy problem, C= 
probable cancer type, and H= probable hypercholesterolemia problem. 
S (P) is the solution part describes the diagnosis of diabetes including 
diabetic, prediabetic, gestational-diabetic, and prediabetic-gestational. 

S = {DD}

Liver function tests

S. albumin P, N, F 3.5 – 5.0 g/dL 1.9-4.082-5.4 48
Total bilirubin P, N, F 0.0 – 1.0 mg/dL 0.8-1.317-3 49
Direct bilirubin P, N, F 0.0 – 0.3 mg/dL 0.3-0.533-1.6 50
SGOT (AST)  P, N, F 0 – 40 U/L 35-54.567-165 51
SGPT (ALT) P, N, F 0 – 45 U/L 35-57.317-183 52

Alk. phosphatase P, N, F 64 - 306 U/L 170-214.2-360 53
γ GT P, N, F 7 – 32 U/L 18-35.833-98 54

Total protein P, N, F 6.0 – 8.7 g/dL 3.1-4.858-8.7 55

Females history
Amenorrhea I - - - 56

Birth I - - - 57
Dysmenorrhea I - - - 58

Diagnosis Diabetes type P, C - - - 59
Nephropathy Nephropathy check I - - - 60
Lipid disease Hypercholesteremia's check I - - - 61
Cancer type Tumor markers I - - - 62
Liver disease Liver problem I - - - 63
Radiological 
examination Radiological examination I - - - 64

Data type= {P=primitive, I= instance of SCT concept, N=numerical, C=categorical, F=fuzzy, O=ordinal}
Table 1: The patient attributes used to describe cases.

1 
Patient case 

Kidney function test 

Serum urea 
Serum uric acid 

Serum creatinine 
Serum sodium 

Serum potassium 

CaseID 

Liver disease 

Nephropathy  

Disease 

Diabetes 

CaseID 
Cancer type 

Kidney disease 

Hypercholestremia 

Diagnosis 

CaseID 

Total bilirubin Direct bilirubin 

SGOT_AST 

CaseID 

SGPT_ALT 

Alk_phosphatase 

γ GT  

Total protein 

Albumin Liver function test 

Triglycerides 

HDL cholesterol 

CaseID Lipid profile  

LDL cholesterol 
Total cholesterol 

Global symptoms 

CA125 
Thirst  

Vision CaseID Hunger 

Urination frequency 

Fatigue  

Birth 

AFP Serum 

FERRITIN Amenorrhea 

Dysmenorrhea  

Urination symptom 

CaseID 

Protein 

Blood 

Bilirubin Glucose  Ketones Urolibingen 

Pus RBcs Crystals 

Hematological profile 

Lymphocytes 

CaseID 

Red cell count 

Hbg Haematocrit 

MCV 

MCH 

MCHC 

Platelet count 

White cell count 

Monocytes 

Eosinophils 

Basophils 

Prothrombin_INR 

CaseID 
Diabetes lab test 

HbA1C FPG 

2hPG 

Gender  

BMI 

CaseID 

Age 

Residence  

Occupation  

1 

1 1 
1 

1 1 1 
1 

1 

1 

1 

1 

1 

1 

1 

1 

Figure 2: Diabetes diagnosis and other related complaints case base data model.
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where DD= diabetes diagnosis. Our diagnostic features can be 
numerical features (e.g., age, lab tests, BMI, etc.), ordinal features 
(e.g., features in Global_symptoms table in Figure 2), and text features 
(e.g., sex, occupation, etc.). All these features have not been encoded 
in SCT concepts because their coding will not enhance the semantic 
retrieval algorithm of CBR. On the other hand, patient disorders are 
instance R semantic retrieval aspect. For example, if feature HbA1c=6.4 
is encoded in SCT as |43396009: Hemoglobin A1c measurement|= 6.4, 
this code enhances semantic interoperability but does not efeatures, 
and we have mapped it to standard SCT concepts in another work [11]. 
We concentrated on the CBnhance semantic retrieval process in CBR. 
On the other hand, if the patient has a disorder such as a nephropathy, 
this concept has a long sub-tree of disorders (e.g., caliectasis, amyloid 
nephropathy, calyceal fistula, etc.), which can be described by different 
physicians. The semantic similarity of these concepts is critical in KI-
CBR retrieval engine. Moreover, the case solution features are not 
encoded because these features do not participate in measuring the 
similarity between cases. 

The Proposed Fuzzy KI-CBR Framework for Diabetes 
Diagnosis 

This section provides a description of our proposed fuzzy-
ontology based CBR system for diabetes diagnosis. The architecture of 
this system is shown in Figure 3. It has seven modules: Case source 
preparation, case base ontology engineering, terminology server, fuzzy 
case-base ontology population, case retrieval engine, case query parser, 
and user interface modules. The next sections describe the architecture 
of the proposed framework for details.

Case source preparation module

This module prepared the EHR raw data to a case-base structure 
and content. It collected the patient’s features related to a diabetes 
diagnosis from distributed EHR systems and stored it in an Operational 
Data Store (ODS).

We have collected 60 cases, which describe diabetic patients, as 
shown in Table 1. These cases are descriptive of all types of cases. Next, 
these data were anonymized, cleaned, and normalized. Features’ weights 
were calculated using machine learning algorithms including genetic 
algorithm, decision tree, and others. El-Sappagh et al. [21] proposed 
a case-base preparation process and applied it to the used case-base 
data. Moreover, the data were converted to a case base structure using 
our proposed standard data model [12]. In addition, the prepared case-
base was coded according to SCT reference set that was created, which 
is specialized for diabetes diagnosis [11]. Finally, the encoded case-
base was fuzzified in a fuzzy relational database as shown in Figure 4 
according to the fuzzy features. Figure 5 shows a small sample of the 
fuzzified features. The resulting database is the source of instances (i.e., 
ABOX) for our proposed fuzzy case-base ontology.

Terminology server module

This module creates the domain background knowledge-ontology. 
This knowledge is critical in two places: (1) in semantic similarity 
measurement and (2) in semantic query formulation. The domain 
knowledge ontology can be built locally, or it can depend on a standard 
medical ontology such as SCT. Unfortunately, ontologies are typically 
created in an ad-hoc manner, which may influence the accuracy of the 
similarity calculations [14]. The second choice is better because existing 
clinical ontologies are mature, and they include all required medical 
concepts and relationships in a standard and globally agreed form. 
This standardization enhances the interoperability, reuse, sharing, and 
integration with the EHR environment. SCT was the terminology used 
in this study. Using the whole SCT in CBR affects the retrieval algorithm 
because it is a very large ontology. We have proposed a framework for 
collecting all diabetes diagnosis related concepts from SCT, and built 
its OWL 2 ontology (TBOX). Figure 6 shows a snapshot of the created 
ontology from protégé 4.3 [11]. This ontology only contains 550 
concepts. Calculating semantic similarity using JCOLIBRI API depends 
on concept instances; however, SCT contains only concepts. We have 
solved this problem by creating an instance for each concept with 
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Figure 3: The proposed CBR framfvggework.
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Figure 4: The extended Case base fuzzy EER model.

Figure 5: The numerical attributes fuzzification.

Figure 6: The proposed SCT reference set for diabetes diagnosis concepts.
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the same name (ABOX). Moreover, we have represented the selected 
concepts using its ConceptIDs. Fully specified names, symptoms, and 
preferred names can be added as annotations with their corresponding 
names. As shown in Figure 3, this ontology is not user readable. We 
will resolve this issue in our future work. Each concept name begins 
with the pattern “C_” to be readable by JCOLIBRI API (http://gaia.fdi.
ucm.es/research/colibri/jcolibri) as a concept and differentiate it from 
instances. The resulting ontology is a Directed Acyclic Graph (DAG), 
which supports single inheritance only. An ontology has a structured 
format with relationships between concepts. The “IS_A” relationship 
between a parent and a child is the core relationship, whereas other 
semantic relationships provide additional associations between 
terms (such as ‘‘part-of’’ or ‘‘active-ingredient-of’’). Our ontology 
concentrates on the “IS_A” relationship only to form a taxonomy of 
concepts. Enriching the ontology with other relationships and axioms 
will be considered in future work.

Case-base ontology engineering module

This module has two basic steps: (1) the construction of case base 
crisp ontology. We propose a diabetes diagnosis ontology engineering 
methodology [26], (2) the extension of this ontology to a fuzzy ontology. 
According to our previously created case bases fuzzy database contents 
and the CBROnto standard case-base ontology of JCOLIBRI 2, we extend 
the case-base crisp ontology to a fuzzy ontology shown in Figure 7.

The crisp ontology elements that can be fuzzified include datatypes, 
object properties, and data properties. In other words, the fuzziness of 
ontology includes modeling of [10]: (1) Fuzzy concepts: concepts whose 
instances may belong to it in certain degrees, such as YoungPatient. 
Because Young is a vague predicate, the concept is also vague and, 
therefore, can be represented as a fuzzy one; it allows the fuzzy concept 
assertions such as Patient X be an instance of YoungPatient to a degree 
of 0.7. 

(2) Fuzzy relations: there are two main types, (2.1) (Modified) 
Fuzzy object relations, which link concept instances at a certain degree, 

and it allows fuzzy role assertions as Patient X (very) has-Disease Y 
at a degree of 0.8. (2.2) (Modified) Fuzzy data type relations, which 
either assign literal value to concept instances at certain degrees (e.g., 
Patient X has-Residence “Rural” at a degree of 0.4), which includes the 
Residence fuzzy predicate, or a fuzzy datatype is assigned to a concept 
instance (e.g., Patient X has-Age (very) young), which includes the Age 
fuzzy predicate.

We apply the procedural steps of IKARUS-Onto [33] methodology, 
and the resulting ontology is represented by Bobillo and Straccia syntax 
as OWL 2 ontology using Fuzzy OWL2 2.1.1 plug-in in Protégé 4.1 
[31]. The resulting ontology contains 104 classes, 59 (fuzzy) object 
properties, 141 fuzzy datatype properties, 105 fuzzy datatypes, 1350 
axioms, 736 logical axioms, and 2640 concept instances for the 60 real 
world diabetes-diagnosis patient cases. 

Case-base ontology population

We have created a fuzzy database for the proposed fuzzy EER 
model and filled it with 60 cases of diabetic patients. These data have 
been collected from the EHR of 60 patients in Mansoura University 
Hospitals, Mansoura, Egypt [10]. This database is the source for 
populating our proposed fuzzy case-base ontology. The population 
process of database tuples to ontology instances is shown in Figure 8.

Case query parser module

For a new patient diagnosis problem, the physician enters the new 
patient description in the query form; this forms the new case without a 
solution. Next, the query is fuzzified and coded with the same methods 
used for the case-base ontology to facilitate similarity and mapping. 
The new problem structure is transformed into the fuzzy case-base 
ontology vocabulary by some strategy; then, the semantic query is sent 
to the Case Retrieval Engine to compute the similarity between the 
query concepts and the concepts of the new semantic-query problem.

For example, by using a small fragment of patient features, let the 
new patient is described by Q= <Age=38, Residence= “Rural”, Fatigue= 

+

Figure 7: A snapshot of case-Base Fuzzy OWL 2 ontology.

 
Figure 8: The mapping between elements of fuzzy data and fuzzy ontology.
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“++”, Gender= “Male”, disease= “Malignant tumor involving left ovary 
by direct extension from endometrium” …>.  After fuzzification, Q= 
< (young= 0.2, middleAged=0.8, old= 0, fuzzyLabel= middleAged, 
Age=38), Residence= “Rural”, Fatigue= “++”, Gender= “Male”, 
disease= “Malignant tumor involving left ovary by direct extension from 
endometrium” …>. After encoding, Q= < (young= 0.2, middleAged=0.8, 
old= 0, fuzzyLabel= middleAged, Age=38), Residence= “Rural”, 
Fatigue= “++”, Gender= “Male”, disease= “369524001” …>. The other 
ordinal and categorical features remain the same. The vector Q needs 
to be transformed into a semantic query.

Case retrieval engine module

In case-base fuzzy ontology, the cases are displayed as concept 
instances and their features as relations and properties. The fuzzy 
semantic case retrieval algorithm utilizes the structure and content 
of the ontology to calculate the semantic similarity between the 
features and consequently for the cases. This section proposes a 
case retrieval algorithm. It involves the combination of reasoning 
capabilities of classical ontologies (e.g., semantic similarity of 
concept features storing SCT concepts) with fuzzy ontologies (e.g., 
fuzzy semantic similarity for other features) in order to create 
a powerful hybrid reasoning mechanism. Cases are commonly 
expressed as “case = (problem, solution).” Consider a query case 

 , ? q qC P= ,stored cases ,  i i iC P S= for i 1, , n= …

and n is the number of cases in the case-base, and feature weights 
wi. Case retrieval module calculates the similarity between qC  and 

iC for i 1, , n= …  and return cases with highest similarity. Similarity 
calculation involves calculating local similarity between features and 
aggregates these similarities using a global similarity function. Local 
similarity depend on feature types. We propose custom functions for 
the following feature types:

For nominal features (e.g., Gender), the exact match is used as in 
Equation 1. 

1       
( , )

0       NOM

if a b
sim a b

if a b
=

=  ≠
                                                                 (1)

For ordinal features (e.g., Urination frequency), our domain expert 
proposes a similarity matrix for each ordinal feature; Sim0 (a,b) is 
calculated based on this matrix. Due to space restrictions, we do not 
show any matrices.

For fuzzy features (e.g., HbA1c), we have two options: 

(1) The feature value is numerical. Our proposed fuzzy similarity 
measure utilizes all of the fuzzy sets of compared features in calculating 
similarity. As the case-base fuzzy ontology store case with fuzzified 
features, the input query numerical features is fuzzified using the same 
fuzzy sets, and a comparison are conducted between stored and fuzzy 
query values. The normalized Euclidean distances between fuzzy sets of 
a feature are used to calculate the similarity as in Equation 2.

2
1
(  )

Dist ( , ) k k

n
cj zjk

F j jC Z
n

µ µ
=

−
=
∑                                                     (2)

Where Cj = crisp value of a feature in query, Zj= crisp value 
of a feature in a stored case, n= number of fuzzy sets for feature , 

   
k kcj zjandµ µ  are k’s fuzzy values for query and stored cases’ feature, 

respectively. The similarity is calculated using Equation3.

sim ( , )F j jC Z = 1- Dist ( , )j jC Z                                                                                                (3)

•	 For crisp numerical features, the similarity is calculated 

using Equation 4: 

| |
( , ) 1

  
j j

N j j

D Z
sim C Z

Max Min
−

= −
−

                                                                (4)

•	 For semantic features (i.e., features SCT store concepts), the 
similarity is calculated using Equation 5.

Semantic similarity between our proposed SCT ontology instances 
measures the similarity in meaning between these instances.

( )1 2( , )  ( , )  ,Semantic Path featureSIM u v w sim u v w sim u v= +                            (5)

Where w1,w2ϵ(0,1] are weights for 1 2 1w w+ = , and Simpath (u,v) 
(Equation 6) is an adapted version of Wu and Palmer [34] (Equation 
7) because Simwu and palmer (u,u) < 1 which violates the Identity Of the 
Indiscernibles property (IOI) [27].

( )
   

1                             
,

    Path
Wu and palmer

if u v
sim u v

sim otherwise
=

= 


                                          (6)

( )( ) ( )  
2* ( ( , ))( , )

_ , , _ , ( , )  2* ( ( , ))Wu and palmer
depth lca u vsim u v

shortest path u lca u v shortest path v lca u v depth lca u v
=

+ +
   (7)

In addition, ( ),Featuresim u v  is based on Batet et al., [34], Equation 8 
and Equation 9:

( ), 1 ( , )Feature Batetsim u v Dist u v= −                                                           (8)

( ) ( ) ( ) ( ) ( ) ( ) ( )2
| ( ) \ ( ) | | ( ) \ ( ) |, 1

\ \ | |Batet
A u A v A v A uDist u v log

A u A v A v A u A u A v

 +
= +  + + ∩

            (9)

Where ( )A u  is the set of ancestors of u, i.e., ( ) { | }A u v u v= ≤  
( ) \ ( )A u A v is specificity of u, and ( ) ( )A u A v∩  is the commonality 

between u and v. Our proposed measure calculates the clinical 
similarity between two concepts rather than the semantic distance. 
Global similarity is calculated using the Euclidean distance function. 

Evaluation of the P0roposed CBR System 
Each module of the proposed system is separately evaluated upon 

completion, and the completely integrated system is evaluated. The 
proposed framework is the first to integrate the capabilities of standard 
medical ontologies (i.e., SCT), fuzzy logic, ontology, and CBR in a 
hybrid system. Our proposed ontologies (i.e., SCT refset ontology, 
case base crisp ontology, and case base fuzzy ontology) have been 
tested to check their consistency using several reasoners including 
Pellet, FaCT++, HermiT, and fuzzyDL. Moreover, for testing the 
ontology correctness, we have used the online tool OOPS! (http://oops.
linkeddata.es/) Pitfall Scanner to detect potential modeling errors; 
results indicated no critical errors. Content coverage has been checked 
for each ontology with the domain experts.

The system has been tested using Leave-One-In technique. It 
measures the accuracy of the system to retrieve an existing patient case. 
Our system has an accuracy of 100% in this regard. Next, the system’s 
decisions are compared with expert domain decisions. We have applied 
this study using a case-base containing 60 cases from EHR of Mansoura 
University Hospitals. Our method shows promising results. We used 
the leave-one-out technique to measure the performance for non-
existing cases.

Namely, cases are taken out from the case-base one by one, and we 
have computed the similarity of this case with all the remaining cases 
in the case-base. It is a particular case of cross-validation. The domain 
experts evaluate the performance of the implemented framework by 
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organizing a set of 43 experiments. The test cases are selected in a 
manner that allowed them to span the majority of topics and content 
represented in the case base. Each test query is fed into the system, 
and the corresponding response was recorded. The proposed system’s 
decisions are compared with the expert domain ones.

The semantic performance of the system is 97.67%, compared to 
66% using Node Distance (ND) metrics only, 79% using IC similarity 
metric only, and 82% using a combination of both IC and ND . Table 
2 is a 2 × 2 confusion matrix to calculate the evaluation metrics of our 
system. For Diabetic decisions only, the values of TP, FP, FN, TN can 
be interpreted as shown in Table 2.

The above parameters can be evaluated for Pre-diabetic and 
Normal as well. For space restrictions, we calculate Precision (P), 
Recall (R), Accuracy (A), Sensitivity (S), Effectiveness (E), and Negative 
Prediction Value (NPV) for Diabetic decisions only as follows. The 
metrics E and NPV are calculated using Equations. 10, 11:

( ) ( ) ( )
1  

1/ 2 (1/ 2 )
Effectiveness E F Measure Score

P R
= − =

+
(10)

( )   TNNegative PredictionValue NPV
TN FN

=
+

(11)

From the performed experiments, we have calculated the values in 
Table 3 for the proposed system.

The P, R, A, S, E regarding diabetic diagnosis are:

27 100%
27 0

P = =
+

, 27 96.43%
27 1

R = =
+

, (27 15) / (27 15 0 1) 97.67%A = + + + + =

, 15 100%
15 0

S = =
+

, 1 98.18%
(1/ 2*(1)) (1/ 2*(0.9643))

= =
+

E , and 15 93.75%
15 1

= =
+

NPV .

Although, the pre-diabetic and normal patients from less than half 
of the case-base, the proposed system accuracy for predicting them is 
100%. The performance of our proposed system is enhanced because its 
similarity measures take into account the nature of all features.

Another type of comparison has been done with a set of machine 
learning classifiers. Techniques such as artificial neural networks 
(ANN), support vector machines (SVMs), neuro-fuzzy systems and 
expert systems that developed by different authors have been discussed. 
Firstly, all these studies have lower performance than ours. However, 
these systems mostly depend on Pima Indians Dataset (https://archive.
ics.uci.edu/ml/datasets/Pima+Indians+Diabetes). To compare our 
system with these techniques, it is better to run these algorithms on 

our dataset. This dataset has been prepared before, and all noise and 
missing data have been handled [21]. For the comparing purpose, 
we apply some machine learning classifiers including C4.5, k-NN, 
SVM, Bayesian classifier, and ANN on our dataset and measure their 
performance. We use the 2-fold, 3-fold, 4-fold…10-fold. The cross-
validation technique is our evaluation process. Cross-validation is a 
statistical technique useful in determining the robustness of a model. 
The n-fold cross validation divides the whole data set into n folds. The 
n-1 folds are used for training, and one fold is used for testing. This
process is continued until each fold from n is used for testing. The
overall performance of these algorithms is presented in Table 4. For
the k-NN algorithm, we select k=3 as done in our system; however,
its performance is low. C4.5 achieves the best performance (about
89.19%) among machine-learning techniques; however, our system
outperforms it. After testing the machine learning algorithms using
from 2-fold to 10-fold cross-validation techniques, we calculate the
average performance of each fold, and we make a comparison of
different folds’ results. Figure 9 shows that the best performance is
achieved with 5-fold cross validation.

We calculate the average precision, recall, accuracy, f-measure, and 
specificity for all folds. These averages are compared with the proposed 
system, the 5-fold cross validation, and the traditional (i.e. not fuzzy 
and not semantic) system, as shown in Figure 10. Our findings show 
that the fuzzy KI-CBR can classify data more accurately than the other 
machine learning techniques and conventional CBR. 

It can be seen in Figure 10 that the machine learning classifiers have 
better performances than conventional CBR systems. This means that 
our study makes a high improvement in the CBR performance. The 
average accuracies of C4.5, conventional CBR, and proposed system 
are 88.88%, 57.14%, and 98.18% respectively. The proposed approach 
demonstrates a major improvement than machine learning techniques 
and conventional CBR system.

The results of this study clearly indicate that the hybridization of 
CBR with fuzzy ontology and medical ontologies is the most suitable 
technique for solving medical diagnosis problems. The enhanced 
performance of our system is a result of a couple of reasons. Firstly, the 
proposed CBR framework is integrated and complete. All components 
have been fully implemented and tested. The knowledge representation 
formalism using fuzzy ontology integrates the reasoning capabilities of 
fuzzy logic, description logic, and CBR. There are many studies, which 
use each of these reasoning mechanisms individually, but they have not 
achieved high accuracy. The second reason is the preparation of case-
base data. These data have been pre-processed, fuzzified, and encoded 
before populated into the case-base knowledge. As a result, accurate 
data will produce accurate decisions. The third reason is the usage of 
a suitable weight vector for the used case features; the global similarity 
function has produced suitable similarities. The fourth reason is the 
proposed semantic retrieval algorithm. We have handled most of the 
possible datatypes, which appear in the medical domain. The fuzzy 
types support the reasoning using linguistic terms and enhance the 
similarity calculation. Ordinal features’ similarity is based on the expert 
domain knowledge in the form of similarity matrixes. Semantic features 
support the calculation of clinical similarities between SCT concepts.   

In addition to its enhanced performance, the proposed system is 
tested for problems that are complex and cannot be solved by traditional 
systems. For example, If the case base contains a case C1= (age=20, 
disease= “Acute proliferative”, urination frequency= “++” …) and the 
query case is (age=young, disease= “Idiopathic crescentic”, urination 
frequency= “Nil”…); in the traditional CBR systems, these cases are 
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Domain expert decision
Positive Negative

Positive TP FP
Negative FN TN

TP = the CBR system decides the diabetic case, and domain expert decides a 
diabetic case.
FP = the CBR system decides a diabetic case, but the domain expert do not.
FN= the CBR system decides not a diabetic case, but the domain expert decides 
it be diabetic.
TN= the CBR system decides not a diabetic case and the expert decides not a 
diabetic case.

Table 2: The 2 × 2 confusion matrix.

S
ys

te
m

 
de

ci
si

on

Domain expert decision
Positive Negative

Positive 27 0
Negative 1 15

Table 3: Diabetic decision confusion matrix.
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not similar, and C1 will not be returned. For fuzzy systems, the age is 
matched right as age=20 is the same as age=young(i.e., ( ) )20 1Youngµ = . 
However, the comparison of semantic and ordinal features fails to get 
the similarity. In semantic CBR systems, they fail to get the similarity of 
fuzzy and ordinal features. Due to these conditions, the results of these 
systems might prove to be not accurate. In our proposed system, we 
have proposed algorithms to handle all of these types.

Conclusion 
In this paper, we propose a fuzzy ontology-based semantic-CBR 

Machine learning 
algorithms 

Fold Algorithm Precision (%)      Recall (%)      Accuracy (%)      F-Measure (%)       Specificity (%)

2-Fold

C4.5 93.1 93.1 93.33 93.1 93.54
k-NN (k=3) 63.3 63.3 63.33 63.3 64.5
SVM 6.3 58.6 63.33 60.7 67.74
Naive Bayes 81.8 62.1 75 70.6 87.09
ANN 65.5 65.5 66.66 65.5 67.74

3-Fold

C4.5 90 93.1 91.66 91.5 90.32
k-NN (k=3) 60 60 60 59.9 64.51
SVM 71 75.9 73.33 73.3 70.96
Naive Bayes 65.4 58.6 65 61.8 70.96
ANN 72.4 72.4 73.33 72.4 74.19

4-Fold

C4.5 89.7 89.7 90 89.7 90.32
k-NN (k=3) 68.7 68.3 68.33 68 77.41
SVM 69 69 70 69 70.96
Naive Bayes 77.3 58.6 71.66 66.7 83.87
ANN 75.9 75.9 76.66 75.9 77.41

5-Fold

C4.5 92.9 89.7 91.66 91.2 93.54
k-NN (k=3) 68.3 68.3 68.33 68.3 70.96
SVM 78.6 75.9 78.33 77.2 80.64
Naive Bayes 77.3 58.6 71.66 66.7 83.87
ANN 78.6 75.9 78.33 77.2 80.64

6-Fold

C4.5 89.3 86.2 88.33 87.7 90.32
k-NN (k=3) 61.7 61.7 61.66 61.5 67.74
SVM 67.7 72.4 70 70 67.74
Naive Bayes 61.5 55.2 61.66 58.2 67.74
ANN 73.3 75.9 75 74.6 74.19

7-Fold

C4.5 89.7 89.7 90 89.7 90.32
k-NN (k=3) 73.6 73.3 73.33 73.2 80.64
SVM 69.7 79.3 73.33 74.2 67.74
Naive Bayes 70.4 65.5 70 67.9 74.19
ANN 71.9 79.3 75 75.4 70.96

8-Fold

C4.5 89.7 89.7 90 89.7 93
k-NN (k=3) 68.7 68.3 68.33 68 77.41
SVM 74.2 79.3 76.66 76.7 74.19
Naive Bayes 82.6 65.5 76.66 73.1 87.09
ANN 70 72.4 71.66 71.2 70.96

9-Fold

C4.5 89.3 86.2 88.33 87.7 90.32
k-NN (k=3) 66.8 66.7 66.66 66.4 74.19
SVM 75 82.8 78.33 78.7 74.19
Naive Bayes 79.2 65.5 75 71.7 83.87
ANN 77.4     82.8     80 80 77.41

10-Fold

C4.5 74.2 79.3 76.66 76.7 90.32
k-NN (k=3) 73.1 65.5 71.66 69.1 70.96
SVM 77.4 82.8 80 80 77.41
Naive Bayes 79.2 65.5 75 71.7 83.87
ANN 74.2 79.3 76.66 76.7 74.19

Average (%) 73.88 73.39 75.1 74.04 78.04
Conventional CBR system 85.7 42.85 57.14 57.13 85.7
Proposed fuzzy KI-CBR system 100 96.43 97.67 98.18 100

Table 4: Performance of machine learning algorithms on our dataset.

system. This framework has been implemented for diabetes diagnosis 
as a case study. The proposed approach has many contributions and 
novelties. Our implemented fuzzy ontology has followed a formal 
methodology, and it has represented using fuzzy OWL2 language. 
The proposed fuzzy-semantic retrieval algorithm outweighs all of the 
JCOLIBRI algorithms, and it covers their limitations. Our system has 
achieved a performance of 97.67%. These results show that the proposed 
system has a high accuracy, and physicians can consult it when 
diagnosing patients. However, the proposed study has some limitations 
including the ability to handle termoral data, diabetes treatment, and 
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the ability to adapt the proposed solutions. Many studies have solved 
parts of these problems including case adaptation, but the applicability 
of these approaches with fuzzy ontology has not been studied yet. In 
the future, we will implement the rest of the CBR steps especially the 
case adaptation process. We will utilize fuzzy ontology in the other 
steps of CBR as case adaptation, retention, and case-base maintenance. 
Moreover, we will try to integrate multiple medical ontologies in our 
system because SCT has a limitation in many aspects as lab tests and 
genes representation. Fortunately, there are many standard medical 
ontologies for theses domains such as LOINC for lab tests and GO for 
genes representation. The integration of CBR with EHR environment 
will enhance the automation of the decision support process and 
building of distributed CDSS systems. 
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