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Introduction
We consider (real square) linear interval parametric (LIP) systems 

of size n

A(p)x=a(p), p∈p                  (1a)
whose elements aij(p) and ai(p) are affine linear functions

1 1

( ) , ( )µ µ µ µ
µ µ

α β β
= =

= + = +∑ ∑
m m

ij ij ij i i ia p a p a p p                 (1b)

of the elements of the parameter vector p. Without loss of generality 
we assume that each pµ∈pµ=[-1,1]. The united solution set of (1) is the 
collection of all solutions of (1a), (1b) over p, i.e. the set ∑(A(p), a(p), 
p)={x: A(p) x=a(p), pp}

which will be denoted S1. As is well known, the following “interval 
solutions” to (1) are most often considered (cf., e.g., [1-10]): (i) interval 
hull solution x*: the smallest interval vector containing S1; (ii) outer 
interval solution x: any interval vector enclosing x*, i.e. x*⊆ x.

A new type of solution x(p) to the LIP system (1) (called 
parameterized or p-solution) has been recently introduced in [11]. It is 
defined as a corresponding linear interval form

x(p)=Lp+l, p∈p           (2)

where L is a real n×m matrix while l is an n-dimensional interval 
vector. An iterative method for determining x(p) was suggested in [11]. 

As shown in [11], the p-solution x(p) is an enclosure of S1, i.e. 

S1 ∈Lp+l, p∈p. (3)

That is why, the use of x(p) seems rather promising in solving 
various global optimization problems where the LIP system (1) is 
involved as an equality constraint.

For given functions (1b), the iterative method of [11] is applicable if 
the radius of p is not larger than a threshold ra (the applicability radius of 
the method considered [10]) within which the iterations are convergent. 
A shortcoming of the method of [11] for determining the p-solution 
x(p) is the fact that the number of iterations, needed to compute it, can 
be prohibitively large for relatively wide parameter vectors p whose r(p) 

is close to ra. In an attempt to improve its computational efficiency, a 
direct method for determining the p-solution is suggested in the present 
paper. Its functional characteristics are first compared with those of 
a direct method for computing an outer interval (nonparametric) 
solution of LIP systems (1). The new direct method is also compared 
with the known iterative method of [11]. 

Preliminaries
We will use boldface to denote interval quantities, underscores 

to denote lower bounds and overscores to denote upper bounds. 
Subscripts will be used to denote components of vectors or matrices. 
In general, vectors (scalars) will be denoted by lower case letters, 
while matrices will be denoted by upper case. Let A and B be n×m real 
matrices. Relations A=B, A≤B etc. are meant component-wise. The 
same convention is accepted for interval matrices. An interval n×m 
matrix A can be defined either in its lower-upper-end form [ , ]= A AA  
or in a center-radius form ˆ ˆ ˆ[ , ] [ 1,1]= + − = + − A A A A AA  where A  is 
the center and Â is the radius of A. Clearly ˆ= −



A A A , ˆ= +


A A A . The 
inverse H of an interval matrix A, denoted symbolically H=A-1, is the 
hull of the set G={A-1: A∈A}. The special case of an interval n×m matrix

B=I+[-∆, ∆]    (4)

where I is the identity matrix will be used in the sequel. Let 
[ , ]= H HH  be the interval inverse of , =  B BB . Assume that

σ(∆)<1    (5)

where σ(∆) is the spectral radius of ∆. Let
1−=P B .                 (6a)

The following result is known.

Lemma 1: (Theorem 2 in [12]), Let (5) hold. Then we have
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( ),, , , / 2 1 , , 1,...,= = − ≠ = − =ij ij ii ii iiH P h p i j h p p i j n .        (6b)

The inequality (5) is a necessary and sufficient condition for B to 
be regular [12]. 

The LIP system (1) can be written equivalently in the form

ˆ ˆ( ) ( ), [ , ]= ∈ = −A p x a p p p pp                 (7a)

( ) 0

1

( ) , ( )µ
µ

µ=

= + = +∑




m
A p A A p a p a A p                 (7b)

where Å, A(µ), µ=1,…, m are n×n real matrices, A0 is a n×m real 
matrix, p is a symmetric interval vector ( 0)=

p and ˆ (1,..,1)= Tp  is 
an m-dimensional unit vector. The collection of all real matrices A(p) 
when p varies within p will be denoted A(p) and will be referred to as 
interval parametric (IP) matrix. A similar notation b(p) will be also used 
for the collection of b(p), p∈p. Thus, (7a) can be written symbolically as 

A(p)x=b(p).                    (7c)

The narrowest interval matrix containing A(p) will be called (interval) 
hull of A(p) and will be denoted A(p). Thus ( )( ) µ

µ
µ

= +∑


A AA p p .

Obviously

A(p)⊂A(p).                        (8)

The Direct Method
Basic version

The direct method for determining x(p) is based on Lemma 1 and 
comprises the following steps. 

First, we assume (temporarily) that the IP matrix A(p) is regular 
so 1−=



R A  exists. Using R, (7a) is transformed equivalently as in [6]:
1( ( )) ( ( ( ) ( ) ))−= + − = +

  x x R A p R a p A p x x y .                (9)

From (9)

ˆ ˆ( ) ( ), [ , ]= ∈ −B p y b p p p p                (10) 

( ) ( ) ( )( ) , , [ 1,1]µ µ µ
µ µ

µ

= + = ∈ −∑B p I B p B R A p ,             (10a)

0 0 0 0 ( )
:( ) , ( ), µ
µ= = + =



b p B p B R A C C A x            (10b)

( 0
:µC  is the µth column of C0). It is seen from (7), (10) that the 

original problem of finding the p-solution x(p) has been reduced to 
finding the p-solution y(p) of (10). Indeed, if the united set solution of 
(10) is denoted S2=∑(B(p), b(p), p), then from (7), (9) and (10) 

1 2.= +
S x S                    (11)

Now an interval (nonparametric) matrix B=B(p) of the type (4) is 
introduced using (10a): 

 ( ) ( )[ 1,1],µ µ
µ

µ µ

= + = + ∆ − ∆ =∑ ∑I B I BB p .                    (12)

Next, (10) is enclosed in p by the following “mixed type” system

Bu=b(p), B∈B, p∈p.                   (13)

It is assumed that

σ(∆)<1                   (14)

so B is regular. Let S3 denote the united solution set of (13). Obviously, 

B(p)∈B for any p∈p so

S2 ⊂ S3.                  (15)

Indeed, the parameter dependence between the left-hand and 
right-hand side of (10) is ignored in (13). However, (13) is much easier 
to handle than (10).

Equation (13) is written as

u(p)=B-1B0p, B∈B, p∈p                  (16)

and is replaced with

v(p)=HB0p, H=B-1, p∈p.                    (17)

Due to (14), the matrix H can be computed using (6) 
ˆ 1, 1= + −  



H HH                     (18)

where H


 is a diagonal matrix whose non-zero elements are all positive 
ii( 0)H >


.

In view of (18), equation (17) is rewritten in the form

( )0 0 ˆ( ) 1,1= + −  
 

p HB p H B pv                  (19) 

Hence

v(p)=Lp+s, s=[-s, s],                 (20a)
0 0 ˆ,= =

 

L HB s H B p                  (20b)

and it is seen that L is real n×m matrix while s=[-s, s] is a symmetric 
interval vector.

Finally, it will be shown that the p-solution sought is given by

( ) ,= + + ∈
p x L p px s p                  (21)

where x  is the solution of Åx=ă.

Theorem 1: Let 


A  in (7b) be nonsingular. Assume that condition 
(14) is fulfilled. Then

(i) A(p) is a regular interval parametric matrix;

(ii) the p-solution x(p) of the given LIP system (1) exists and is 
determined by (20), (21).

Proof: The assertion (i) follows from the regularity of B, the 
inclusion B(p)∈B for all p∈p and the relation B(p)=RA(p). The assertion 
(ii) is proved as follows. From (11) and (15) 1 3⊂ +

S x S . Since B(p) ⊂ 
B for all p∈p, v(p)⊂S3 for all p∈p. Let S4 denote the set of v(p) in (20a) 
when p varies within p. Obviously y(p)∈S4. Thus, x(p) given by (20), 
(21) is a p-solution of (1) since 1 4⊂ +

S x S . 

The implementation of the present direct method based of Theorem 
1 will be referred to as algorithm A1. As is easily seen, the bulk of the 
computation is related to computing the m matrices B(µ) so the number 
of arithmetic operations (multiplications) N1 is approximately

N1=n4m.

Improved version

A better version of the direct method is possible which is based on 
the concept of the applicability radius ra of an interval method [10]. 
Following the general case approach [10], we introduce the family of 
parameter vectors of variable width

0 0 0( ) = ,ρ ρ ρ  = − r rp p                          (22)
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where p0 is given (start) vector and ρ is a variable scalar. Obviously, the 
direct method is applicable as long as the IP matrix A(p(ρ)) remains 
strongly regular. Let B(ρ) denote the interval matrix in (12) as a 
function of , i.e. B(ρ)=I+∆(ρ)[-1,1]. Hence, 

ra=sup{ρ: B(ρ) is regular}.                 (23a)

On account of (14)

{ }sup : ( ( )) 1ρ ρ= ∆ <ar .                        (23b)

As is well known, σ(∆(ρ)) is defined as the eigenvalue λm of 
maximum magnitude from the eigenvalue problem

∆(ρ)x=λmx.                     (24)

It is readily seen from (12) that ∆(ρ)=ρ∆. Now for ρ=ρ0=1, 
0λ∆ = mx x ; next for ρ=ρ1, 

1
1ρ λ∆ = mx x  so

1 0
1λ λ ρ=m m .                    (25)

But B(ρ) becomes singular for 1( ( )) 1σ ρ = λ =mB  so ra=ρ1 and 
from (25)

01 / λ=a mr . (26)

Using the concept of applicability radius, we have the following 
result. 

Theorem 2: Let A  in (7b) be nonsingular. Let the applicability 
radius ra of the direct method considered have been computed by (26). 
Then, for any ρ< ra:

(i) A(p) is a regular interval parametric matrix,

(ii) the p-solution of system (1) associated with p∈p(ρ) exists and 
can be determined by (20), (21).

In practice, it is sometimes necessary to apply algorithm A1 
repeatedly for various input vectors p(ρ) according to (22). In such 
cases, a better version of A1 is possible which is based on Theorem 2 
and the relations (ρ)=ρ∆, B0(ρ)=ρB0.

Algorithm A2: It comprises two stages.

Stage 1: As in A1, compute ∆ and B0 for ρ=1.

Stage 2: Find ra using (26). For ρ=ρmin to ρ=ρmax, ρmax<ra, increment 

δρ, compute ( )ρ ρ= − ∆B I , P(ρ)=(I-ρ∆)-1, B0(ρ)=ρB0 and the 

corresponding ( )ρ


H and ˆ ( )ρH . As shown in the Appendix, P(ρ) is 
obtained by a procedure requiring only n3 multiplications. Finally, the 
p-solution x(p(ρ)) for each p(ρ) will be found using 0( ) ( ) ( )ρ ρ ρ=



L H B , 
0ˆˆ ˆ( ) ( ) ( )ρ ρ ρ=s H B p  and ( ( )) ( ) ( )ρ ρ ρ= + +

p x L px s , p∈p(ρ).

Let max min( ) /ν ρ ρ δρ= − . As is easily seen, the number 
of arithmetic operations (multiplications) 

2
tN  needed by A2 is 

approximately
2

3 4 3
1 ν ν= + = +tN N n n m n . Similarly, the total 

number of arithmetic operations 
1
tN  of A1 applied ν  times is

1
4

1ν ν= =tN N n m . It is seen that algorithm A2 is computationally 
more efficient than algorithm A1 since

2 1
<t tN N . 

Comparison with Other Methods 
We compare the present method (referred to as method M3) with 

the iterative method of [11] (method M2) and the direct method of 
[6] (method M1) according to the following three criteria: a) enclosure 
efficiency: tightness of the approximation of the solution set S1 
obtained by the respective p-solutions , b) computational efficiency, 
c) applicability radius. The algorithms of methods were programmed 

in MATLAB environment. The programs were run on a 1.7 GHz PC 
computer.

Comparison with the direct method [6].

We first compare M2 with M1 whic is also a direct method. It 
should, however, be stressed that method M1 yields an outer solution 
of (1) in the standard (nonparametric) form of an interval vector x. We 
now prove the following result which is a corollary of Theorem 1.

Corollary 1: The hull x(p) of the p-solution of x(p) of (1) obtained 
by method M3 is equal to the outer solution x of (1) obtained by 
method M1, i.e.

x(p)=x.                    (27)

Proof: It suffices to prove that v(p)=v. According to [6] (using the 
present paper notation)

v=〈B〉-1|b|[-1,1]                     (28a)

where = BB  is the so-called companion matrix of B. Since p 
and b are symmetric, 1− =B P  and ( )ˆ( ) 1,...,1= = Trad pp , from (28a)

0
1 ˆ( ) ( )= = =r rad P rad P B pv b .                  (28b)

According to the present direct method, formula (20) and the fact 
that 0>



H

( )0 0ˆ ˆ( ) 1,1= + −  
 

H B p H B pv p ,

hence

( ) ( ) 0 0
3 ˆ ˆ( )= = + =

 

r rad H H B p P B pv p .                (29)

It is seen from (28) and (29) that r3=r1 which completes the proof.  

In proving Corollary 1, we have also shown that the assumption, 
adopted in [6], for B to be an H-matrix is superfluous.

The advantage of method M3 over M1 reveals itself when solving 
problems other than finding an outer solution x of (1). (A vast class of 
such more general problems, referred to as the generalized interval hull 
solutions, has recently been defined in [10].) To illustrate the above 
assertion, we consider the following parametric linear programming 
(PLP) problem (the simplest possible representative of this class)

f(p)=cT(p)x(p)                       (30a) 

where the constraint is the LIP system A(p)x=a(p) with [11]

1 2 3 1

2 1 3

3 2

1 2
( ) 1 3 , ( ) 1 ,

2 4 1 1 1

+ −   
   = + − = − ∈   
   − + −  

p p p p
A p p p b p p p

p p
p .       (30b)

The parameter interval vector p is given by its centre and radius

p0=(0.5 0.5 0.5), r0=(0.5 0.5 0.5). (30c)

Using p0 and r0, we transform (30b) into the equivalent form (7b) 
(as shown in [11]) to have pµ∈[-1,1]:

( ) 0

1

( ) , ( )µ
µ

µ=

= + = +∑




m
A p A A p a p a A p ,               (31a)

where

0.5 1.5 -0.5
1.5 -3 0.5 , (1 0.5 1)
1.5 3 1

 
 = = − − 
  

 TA b .                (31b)

The range of (30a) is the interval
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f*(A(p), a(p), c(p), p)={f=cT(p)x: A(p)x=a(p), p∈p}

(denoted for shortness as f*). For simplicity, we have chosen

cT=(1,1,1)                       (31c)

(in the general case, c=c(p) and c(p) can be nonlinear functions). 
What we seek is to find an outer bound f on f*.

In the case of M1, f is given as 

1 =∑ i
i

f x                    (32)

where xi are the components of the interval outer solution of (1). The 
bound f obtained by M3 and denoted f3 is found as the range of

3( ) ( ),= ∈∑ i
i

p p pf x p ,                 (33a)

that is

f3=f3(p).                   (33b)

Unlike (32), f3 is determined by (33a) using the components xi(p) of 
the p-solution x(p) of (1).

To show quantitatively that (33b) is narrower than (32) we employ 
the merit figure

η31%=(1-r(f3)/r(f1)).100%.                            (34)

where r(f1) and r(f3) are the radii of f1 and f3, respectively. On 
account of Corollary 1

i ( )[ 1,1] [ 1,1]= + − + −∑

i ij i
j

x L sx , 

hence, from (32)

0 0
1 0 ( )[ 1,1] [ 1,1]= + − + −∑ ij

ij

f L sf ,               (35a)

0 0
0 , ,= = =∑ ∑ ∑

i j ij i
i i i

f x L L s s                (35b)

Thus,

0
1( ) = +∑ ij

ij

r L sf                        (36)

 To find r(f3), we write xi(p) as

( ) ,= + + −  ∑

i i ij j i i
j

p x L p s sx

so

0
3 0 1,1 ,= + + − =  ∑ ∑j j j ij

j i

f L p s L Lf .

Hence 

0
3) = +∑ j

j

r( L sf .                (37)

From (36) and (37)

r(f3)≤r(f1)                  (38a)

since

≤∑∑ ∑ij ij
j i ij

L L .                 (38b)

It is seen that method M3 has better enclosure efficiency than 
method M1.

Using (22), we now compute η31 for various ρ within the 
applicability radius ra of method M3. The radius ra is determined as 
follows. Solving the partial eigenvalue problem (24) for ρ=1, we have 
found the corresponding 0 1.3425λ =m . By (26)

ra (M3)=0.7449.                    (39)

The corresponding values for η31 are given in the second row of 
Table 1. 

It is seen that η31 decreases as ρ grows. This is explained by the fact 

that the relative weight of the first term ∑ j
j

L  in (37) decreases with 

respect to the second term s0 in function of ρ.

Comparison with the iterative method [11]

According to [11] x(p) is obtained iteratively by computing linear 
interval forms l(k)=c(k)+L(k)p+s(k) at each kth iteration. These forms enclose 
corresponding solution sets ( 1)

2
kS + . It is shown that ( 1)

2
kS +  tends to 

S2 as k grows to infinity (if the iteration process is convergent). So
( ) ( ) ( ) ( )( ) ( )∞ ∞ ∞ ∞= + = + + +

 p x p x c L px l s                  (40)

encloses S1 of (1). This approach takes into account the interdependency 
between all the parameter components pµ of p. The present direct 
method only accounts for the parametric dependencies in the right-
hand side b(p) in (10). Therefore, the method of [11] is expected to be 
better according to criterion a).

On the other hand, the computation volume of the direct method 
is much smaller than that of the iterative method since the amount 
of computation needed in the former method is roughly the same as 
that required on each iteration of the latter method. Thus, the iterative 
method is bound to be more expressive than the direct method and 
this discrepancy will become more pronounced as the radius of p 
approaches the applicability radius ra.

Let x(2)(p) and x(3)(p) denote the p-solutions of (31) obtained by 
methods M2 and M3, respectively. The enclosure efficiency of the two 
p-solutions will be compared solving the PLP problem (30a), (31). 
In this case, we compare the outer solutions f3 (given by (33)) with f2 
determined in a similar way using x(3)(p)

(2)
2( ) ( ),= ∈∑ i

i

p p pf x p ,                  (41a)

f2=f2(p).                  (41b)

To quantitatively assess the superiority of M2 over M3, we use the 
merit figure

η23%=(1-r(f2)/r(f3)).100%.                   (42)

To show the dependence of η23 on the parameter width ρ, we 
need the applicability radius ra(M2) of method M2. The numerical 
experiment has shown that for method M2 (approximately)

ra(M2)=0.71                       (43)

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7448
η31 % 62.51 53.48 44.92 36.89 29.43 22.61 16.50 14.02

Table 1: Comparison of the enclosure efficiency η31 of the present direct method 
M3 and the known method M1 in function of ρ.
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(the iterative process becomes divergent for ρ=0.72). It is seen 
from (39) and (43) that the present direct method M3 has a larger 
applicability radius than the iterative method M2.

We now show the dependence of η23 on ρ from ρ=0.1 up to ρ=0.7. 
The corresponding values of η23 are given in the second row of Table 2. 
As expected, the iterative method M2 provides tighter outer bound f(2)

(p) as compared to f(3).

The two methods are also assessed as regards their computational
efficiency using the index ' '

2 3/τ = t t  and " "
2 3/τ = t t  where t2, 

'
3t  and

"
3t  denote the respective computer time taken by M2 and the first or 

second algorithm of M3. The related data are listed in the third and 
forth rows of the table. It should be kept in mind that 

3

' 0.0050=t s

and (1) (2)"
3 3 3/ 6 0.00036= + =t t t s ( (1)

3t  and (2)
3t  are the times taken

by the first and second stage of algorithm A2 of method M3) remain 
constant for all ρ. The data in Table 2 show that the better enclosure 
efficiency of method M2 is obtained at the cost of much large computer 
times, especially when using algorithm A2, for ρ close to ra(M2). Also 
ra(M2)<ra(M3). Therefore, in some cases, it may be preferable to use 
M3, A2 rather than M2.

Conclusion
A direct method (method M3) for determining the p-solution of 

the LIP system (1) has been suggested in the present paper (Theorem 
1). Using the concept of applicablyity radius ra, a better version of 
the method has been proposed (Theorem 2). It is proved (Corollary 
1) that the hull x(p) of the p-solution x(p) of (1) obtained by method
M3 is equal to the outer solution x of (1) obtained by the method of
[6] (method M1). Method M3 is, however, superior to method M1 in
solving problems other than finding an outer solution x of (1).As an
illustration, the parametric linear programming (PLP) problem (30a),
(30b), (31c) is considered. The numerical results obtained show that
M3 provides tighter PLP solutions than M1 (Table 1). Method M3 is
also compared with the iterative method of [11] (method M2) (Table
2) using the PLP problem. It has been shown that M3 has a larger
applicability radius ra(M3)> ra(M2), is much faster than M2 (especially
when the second algorithm of M3 is employed), providing p-solutions
x(3)(p) that are wider but comparable in width with the solutions x(2)(p)
of M2. For these reasons, it may be preferable, in some cases, to use M3 
rather than M2.

In view of the theoretical considerations and the numerical 
evidence in the paper, it is expected that the use of the p-solution x(3) 
of LIP systems (1) can lead to the development of new more efficient 
methods for solving various global optimization problems [10,11]. 

Appendix: A procedure for computing (I-ρ∆)-1 for an arbitrary ρ<ra 
is suggested here. It is based on the relation between M=I-∆ and the 
corresponding inverse P=M -1, on the one hand, and M′=I-ρ∆ and its 
inverse (I-ρ∆)-1, on the other. We first transform 

M′=ρM″, M″=M+αI, α=1/ρ-1.(A1)

Now M is transformed into M″ in n steps as follows. For each i 

1 0, 1,..., ,α−= + = =T
i i i iM M e e i n M M .(A2)

(ei is the ith column of the identity matrix I). Thus

( ) 1( )
1 , 1,...,α

−
−= + =i T

i i iP M e e i n . (A3)

According to the well-known Sherman-Morrison formula 

(A+uvT)-1=A-1-(A-1uvTA-1)/(1+vTA-1u),
( ) ( 1) ( 1) ( 1) (0)

: , 1,.., ,− − −= − = =

i i i i
:i iP P P P i n P P , (A4a)

( 1) ( 1) ( 1)
: , / (1 )β β α α− − −= = +

i i i
:i i i i iiP P P (A4b)

where ( 1)
:

−i
iP  and ( 1)

:
−i

iP  are the ith column and row of P(i-1), 
respectively. Finally, on account of (A1) to (A4)

Pρ=[ρ(M+αI)]-1=(1/ρ)P(n). (A5)

As can be easily seen, updating P(i-1) to P(i) costs n2 multiplications so 
the total modification of P(0) to P(n) requires N=n3 multiplications. This 
is a better result as compared with inverting M′ by a standard method.
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ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η23% 13.55 21.33 26.21 29.33 31.21 32.14 32.18 

τ′=t2/t
′
3 1.79 1.87 2.82 2.86 3.38 5.39 16.49

τ″=t2/t
″
3 25.06 26.18 39.48 40.04 47.32 75.46 230.86

Table 2: Comparison of the enclosure efficiency η23 and the computational 
efficiencyτ′, τ″ of the direct method M3 and the iterative method M2 in function of ρ.
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