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Introduction
Random mutation is pervasive in nature and has been 

mathematically modeled extensively. It is a primary mechanism 
by which cancer and pathogens resist drugs and other systemic 
treatments. For example, most cancers are still incurable primarily 
because they develop resistance to anti-cancer drugs. This resistance 
arises via a variety of mechanisms [1-4], and mathematical modeling 
over the past four decades has improved our understanding of it [5-
17]. It is now recognized that tumors are heterogeneous, resulting 
from random mutation of cancer-cell DNA, both before and after 
treatment begins, and this is an important, if not the primary, source of 
resistance-generating mutations in cancer [18-25]. Some mathematical 
models of resistance have relied on this assumption using an analytic 
deterministic approach and have led to elegant insights [5,9,10] when 
applied to limited, simple cases. Others have employed more complex 
mathematical stochastic machinery to produce analytical solutions 
to their equations [8,11-16] leading to general treatment suggestions, 
but these have generally addressed somewhat idealized situations 
and required significant computation, limiting their usefulness in the 
clinical setting.

For a variety of applications involving the modeling of time-
dependent mutation processes, computation of mutant birth times 
and growth rates is frequently required. Where possible, it would be 
useful to capture the essential features of a stochastic treatment of 
mutation while maintaining the simpler mathematics of an analytic 
approach. For modeling cancer drug resistance from a bioengineering 
perspective, we seek not only to better understand the biological 
process, but also to develop software that oncologists can use in the 
clinic to track and predict the evolution of drug-resistance for each 
cancer patient, thereby dynamically assisting with protocol decisions 
expected to extend patient survival. Each patient may have a unique 
and complex treatment history: a clinically-useful mutation model 

must be able to fit an arbitrary and ever-changing set of drugs, doses, 
schedules, and patient data. Any mutation computation may be needed 
dozens of times during tumor modeling, which must take only seconds 
to complete, typically by the oncologist on a computer or mobile 
device. We hypothesize that to within the accuracy of patient data, it 
is possible to match the median results of a stochastic mutation model 
with sufficient accuracy and reliability using an analytic method, and 
that this result can be used to computationally survey the evolution of 
the mutant subpopulation. We test this hypothesis here by comparing 
results of the two methods under a variety of input parameters. Using 
this result to model the simultaneous evolution of multiple mutant 
cancer subpopulations and comparison with patient data is in progress 
and will be presented elsewhere.

Materials and Methods
We model the mutation event from a sensitive “wild-type” cancer 

cell population S to a resistant “mutant” cancer cell population R 
under the following assumptions: cell mutation, division, and death 
are random Markov processes; the sensitive population is known from 
patient data; all cells are assumed to be cancer “stem” cells [26-28]
with the same probabilities of mutation, natural death, and division; 
and all cells divide simultaneously at the end of the cell cycle model 
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Abstract
Random “Darwinian” mutation is a primary mechanism by which cancer and pathogens develop resistance to 

drugs, and this process has been mathematically modeled extensively. Analytic models employ simple equations 
and allow for very fast computation, but do not accurately predict mutation times or survival probabilities of resistant 
populations. Stochastic models provide a distribution of probable outcomes but involve more complex mathematics. 
We present here an analytic method that simulates stochastic mutation with much better accuracy than that of the 
standard analytic equations. This method is based on an observation that the median stochastic solution emerges 
at a time close to when the cumulative probability of a first mutant birth approaches unity, which can be calculated 
analytically. We compare our model to the median stochastic resistant population versus time for varying rates of 
cell division, natural death, mutation, and drug kill. Generally we find at least an order-of-magnitude reduction in the 
error of the birth time and the RMS normalized error relative to the standard analytic solution. This method’s speed, 
accuracy, and simple results make it well-suited as a tool in software and mutation models to survey the resistant 
heterogeneity of cancers under various treatment plans or to guide a probabilistic analysis with a stochastic model. 
Such models could advance progress toward a better understanding of the dynamics of resistant subpopulations, 
better personalized treatment plans, and longer patient survival given the complex and ever-changing sets of drugs, 
doses, schedules, and cancer genomics of each patient in the clinical setting.

A Fast Analytic Simulation of Stochastic Mutation and its 
Application to Modeling Cancer Drug Resistance
Colborn JA*
Protocol Intelligence, Inc., 7667 Circulo Sequoia, Carlsbad, CA 92009, USA



Citation: Colborn JA (2016) A Fast Analytic Simulation of Stochastic Mutation and its Application to Modeling Cancer Drug Resistance. J Appl 
Computat Math 5: 293. doi:10.4172/2168-9679.1000293

Page 2 of 8

Volume 5 • Issue 1 • 1000293
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

shown in Figure 1. We model a situation in which a cancer is born and 
grows untreated, and treatment begins at some later time. We generate 
difference equations in discrete time for the sensitive and resistant 
populations and solve them numerically under stochastic assumptions. 
We then identify the average features of the stochastic result that 
we want to predict with an analytic approach. We then go back and 
generate deterministic difference equations by taking the expected 
value of the stochastic difference equations, solve them, and compare 
these solutions to the stochastic results. Finally, we adjust the analytic 
result based on the key observation that the median stochastic solution 
emerges at a time close to when the cumulative probability of a first 
mutant birth approaches unity.

The cycle for the sensitive cancer cell population prior to treatment 
is shown on the left side of Figure 1. The population is assumed to be 
subject to natural death at the end of the G1 phase and to division just 
prior to the end of each cycle, after which its value at the end of the n+1 
cycle is given by

S[n+1] = S[n] – Sdie[n+1] + Sdivide[n+1]                    (1)

where Sdie is the number of sensitive cell deaths, Sdivide is the number of 
sensitive cell divisions, and we have neglected the effect of mutation on 
the un-mutated sensitive population because the mutation probability 
is very small. According to Figure 1, we first treat the natural death 
process, then division. We now analyze Equation 1 stochastically, 
randomly sampling the binomial distribution. We define B(N,p) as 
the cumulative integer obtained by randomly sampling the binomial 
probability distribution N times with probability p. So Equation 1 and 
Figure 1 yield

Ndie[n+1] = S[n]                    (2a)

Ndivide[n+1] = S[n] –B(Ndie[n+1], pdie)                  (2b)

S[n+1] = Ndivide[n+1] + B(Ndivide[n+1], pdivide)               (2c)

where Ndie and Ndivide are the number of cells (trials) input into the 
binomial processes of cell natural death and division for each cycle, 
respectively, and pdie and pdivide are the probabilities of a cell naturally 

dying and dividing per cycle, respectively. The left-hand sides of 
Equations 2a-2c define the stochastic cell populations moving 
clockwise around the left-hand side of Figure 1 and each is input in 
the right-hand side of the next: Ndie[n+1] is the input population for 
the natural death process at the end of the G1 phase, Ndivide[n+1] is the 
input population for the division process at the end of the M phase, and 
S[n+1] is the final population at the end of the entire cycle. Combining 
Equations 2a-2c gives

S[n+1] = S[n] –     (S[n], pdie) + B(S[n]–   (S[n], pdie),  p divide )                (3)

We are not interested in the stochastic solutions for the sensitive 
population S but only want to generate an analytic expression for it 
that matches patient data and can be used as a mutation source for the 
calculation of the resistant population R[n], so we take the expected 
value of equation (3) to obtain

S[n+1] = S[n](1–pdie)(1+pdivide)                    (4)

which by inspection has the solution

S[n] = S0[(1–pdie)(1+pdivide)]n                            (5)

and S0 = S[0] is generally assumed to equal one. We plot S[n] in Figure 
2 for example parameters of pdivide = 0.9 and pdie = 0.43 which have been 
selected to match the least-squares-fit of the synthetic patient data 
points shown in the figure. We now introduce chemotherapy treatment 
starting at time n = n*. Drug kill may be modeled at any single point in 
the cell cycle without affecting the equations. This introduces the drug 
kill probability per cell cycle pkill and the sensitive population during 
treatment becomes

S[n] = S*[(1 – pdie) (1 – pkill) (1 + pdivide)]n–n*                            (6)

where S *= S0[(1-pdie)(1+pdivide)]n* is the sensitive population at the start 
of treatment. Letting a = (1-pdie) (1+pdivide) and b = a(1-pkill) gives S[n] 
= S0a

n prior to treatment and S[n] = S0a
nbn-n* during treatment (n ≥ n*).

Turning to the calculation of the resistant mutated population R[n] 
without treatment,

 

 
Figure 1: The cell-cycle model prior to treatment. Each cycle starts immediately after cell division. Natural cell death occurs at the end 
of the G1 phase, and division occurs at the end of the cycle. All cells are assumed to be cancer “stem” cells with the same probabilities 
per cycle of mutation, natural death, and division of pmutate, pdie and pdivide, respectively. During treatment, drug kill of sensitive cancer cells 
can occur any time during the cycle prior to division.
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R[n+1] = R[n]+Rmutate[n]-Rdie[n+1]+Rdivide[n+1]                (7)

where now we have a mutation source that adds to the population at 
the start of each cycle, as shown on the right-hand-side of Figure 1. 
Introducing the probability of mutation per cycle, pmutate, gives

R[n+1] = R[n] + B(S[n],pmutate)-B(R[n] + B(S[n],pmutate),pdie) + 

B(B(R[n] + B(S[n],pmutate),pdie),pdivide)                 (8)

where we have defined the stochastic cell populations moving 
clockwise around the right-hand side of Figure 1 and combined the 
resulting equations as we did for Equation 3. This equation can be 
solved numerically. Each solution is a “realization” in time of a possible 
outcome, given the probabilities. We now take the expected value 
of equation (8) to obtain a deterministic difference equation before 
treatment

R[n + 1] = (R[n] + pmutateS[n])(1-pdie)(1 + pdivide) = (R[n] + pmutateS0a
n)a (9)

which may be solved using Z-transforms to give the analytic solution

R[n] = R[0]an + pmutateS0nan                (10)

before treatment. Because R[0] = 0, this gives R[n] = pmutateS0nan, the 
un-adjusted analytic solution for the resistant population as shown in 
black in Figure 2. Note a major problem with this solution is the so-
called “nano-cell” problem: the solution starts immediately at time zero 
with a population of 10-8 cells and only exceeds a single cell at time 
nX. As a first approximation, we could truncate this solution prior to 
nX, consider the birth of the resistant population to occur at nX, and 
use the solution R[n] for times thereafter. However, by comparing to 
the stochastic results below and making a simple adjustment based on 
mutation probability, we will show we can improve on this approach 
considerably. 

During treatment, the resistant population is only affected by the 
drug through attenuation of the mutation source term, the sensitive 
population, and we have

R[m + 1] = (R[m] + pmutateS0a
n*bm)a                     (11)

where m = n-n*. The solution using Z-transforms again is

[ ] [ ] ( )
*

10 1 1  [ 1]mmutatem
kill

p S n
R m a R m p u m

a b
−

      = = + − − −  −  
 (12)

Where u[m-1] is the unit step function such that u = 0 for m < 1 and 
u = 1 for m ≥ 1 and S[n*] = S0a

n* from equation (5) for our particular 
situation in which S[n] has been untreated since birth of the cancer. 
Note this solution is exponential if pkill = 0 and the effect of nonzero pkill 
tails off exponentially as m increases. 

Equations (10) and (12) give analytic solutions for R that match 
the form of the median stochastic solution, but they need to be 
adjusted to correctly match the median mutation time of the stochastic 
realizations, and also to account for cases in which treatment is started 
early enough to limit the source of mutants and extinguish most 
stochastic realizations, including the median. This adjustment can 
be accomplished by assuming the sensitive cells do not mutate until 
and unless the cumulative probability P[n] of a first mutant exceeds a 
threshold value close to unity at time nmutate. That is, P[nmutate]≈1, where

[ ] ( ) [ ]

1

1 1
n

S i
mutate

i

P n p
=

= − −∏                  (13)

We illustrate this function in Figure 2 with a threshold value of 
P[nmutate]=0.9 along with the adjusted resistant analytic solution RA[n], 
which prior to or without treatment is given by

RA[k] = (RA[k = 0]ak + S[k = 0]pmutatekak)u(k)                  (14)

where k = n-nmutate and u(k) is the unit step function. After treatment 
starts at time n = n* we have if n *> nmutate,

[ ] [ ] ( )
*

1[ ]0 1 1  [ 1]mm mutate
A A kill

p S nR m a R m p u m
a b

−  = = + − − −  − 
 (15)

where again m = n-n*, RA[m = 0] is obtained from Equation (14), and 
S[n*] = S0a

n* from Equation (5) for our particular situation in which 
S[n] has been untreated since the birth of the cancer. If n*≤nmutate, then

 

 

Synthetic 
Patient data 

 
 
 

 

Figure 2: Solutions to the analytic difference equations without drug treatment. S[n] is the analytic solution for the sensitive, un-mutated 
cancer cell population.R[n] is the un-adjusted analytic solution for the resistant mutant population, which first exceeds one cell at time 
nx. P[n] is the probability that a first mutation has occurred, P(nmutate) = 0.9, and RA[n] is the adjusted analytic solution for the resistant 
mutant population. 
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and generally RA[k = 0] = 1.

Results
Returning to the numerical solution of Equation (8), it is useful 

to generate a large number of realizations of R[n] and examine their 
properties, in particular their median mutation times and early 
growth rates. We show 103 such realizations in Figure 3 along with 
their median at each cell cycle for the same parameters as Figure 2. 
We use the median to eliminate the unpredictable bias of early-born 
exponentially growing outliers. However, the threshold value for P[n] 
can be adjusted to target the stochastic mean or mode if desired. This 
figure shows the key features of a stochastic solution, generally most 
important for cell populations less than about 101 – 102 cells, that are 
absent in a deterministic treatment: 1) There is a range of possible 
outcomes for the resistant population, but in this case these tend to 
converge as the population increases; 2) the median mutation time is 
delayed relative to the deterministic solution, due to the absence of cell 
fractions; 3) the median date at which the stochastic solution emerges 
and exceeds 101 - 102 cells is further delayed due to random extinction 
of some realizations in the very early life of the mutant population. In 
the case of an exponentially growing mutation source (the sensitive 
population), the resistant population growth rate starts out high 
because the mutant source term is significant, but this term loses 
significance as the population grows, and the growth rate stabilizes at 
a lower rate driven largely by cell division. RA[n] in red, the adjusted 
deterministic solution, and RSM[n] in blue, the moving median of 103 
stochastic realizations, lie almost on top of one another in this plot, 
such that RA[n] is a much better prediction of the median stochastic 
behavior RSM[n] than is the original analytic solution R[n]. 

We systematically compare RA and RSM across a variety of input 
parameters, with the figures of merit being the relative error in the birth 
time and the root-mean-squared (RMS) normalized error. The relative 
error in the birth time

A SM
A

X SM

n nn
n n

−
∆ =

−
 				                 (17)

and nA and nSM are the birth times of the adjusted analytic solution and 
the stochastic median solution, respectively. The root-mean-squared 
(RMS) normalized error

[ ] [ ]( ) [ ] [ ]( )2 2
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n
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E R n R n R n R n
N =

+ ≠

= − +∑   (18)

We illustrate in Figure 4 for several treatment start times n* the 
comparison between the adjusted analytic solution RA[n] and the 
median stochastic solution RSM[n] along with the errors of the adjusted 
solution. Note that for treatment start times n*>>nmutate, well after 
P[n]≈1 has been achieved, the solution for RA[n] is essentially identical 
to that with no treatment. If treatment is started prior to nmutate, the 
median stochastic realization and the adjusted analytic solution for 
RA[n] is zero, whereas the simple analytic solution predicts mutation 
and exponential growth. For treatment start times close to nmutate when 
P[n]=0.9 the early growth rate is limited because the treatment starts 
killing off the source of mutants right when the resistant population 
needs them to avoid extinction and grow beyond a population of 101 
- 102 cells. In this limited situation (Figure 4d) the median stochastic 
realization is close to the last-mutating realization. It therefore 
fluctuates very sensitively to input parameters between this solution 
(late mutation) and zero (no mutation), and a successful match between 
RA and RSM becomes less predictable. We have illustrated the analytic 
model predicting late mutation for this case. The result of running 
stochastic realizations with treatment is a bifurcation: a number of 
realizations result in no mutation and zero resistant population for 
all time, and the remainder end up growing exponentially at the rate 
(1-pdie)(1 + pdivide) as soon as their populations get large enough for 
equation (9) to apply. If treatment is delayed long enough or there is no 
treatment, all realizations survive and grow. 

Figure 5 shows the effect of reducing the drug kill rate from the 
circumstances of Figure 4e, in which no mutation was predicted by the 
adjusted analytic solution. This sequence shows evolution toward the 

Synthetic 
Patient data 

 

 

 

103 Stochastic 
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Figure 3: Stochastic and analytic solutions to the difference equations without drug treatment. S[n],R[n], RA[n], andP[n] are the same as 
for Figure 2.RA[n] in red, the adjusted analytic solution, and RSM[n] in blue, the moving median of 103 stochastic realizations, lie almost 
on top of one another in this plot.
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Figure 4: Stochastic and analytic solutions to the difference equations with drug treatment introduced at various times n*, 125 realizations with pmutate =10-8, pdivide 
= 0.9, pdie = 0.43, and pkill = 0.4. The relative error of the birth time is An∆ , EA is the normalized RMS error of the adjusted analytic solution (in red), and ER is that 
of the simple analytic solution (in black).
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Figure 5: Stochastic and analytic solutions with drug treatment 
introduced at various drug kill probabilities pkill. 125 realizations with 
pmutate =10-8, pdivide = 0.9, pdie = 0.43 and n*= 200, other parameters the 
same as Figure 4e.
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Figure 6: Stochastic and deterministic solutions with various division 
and natural death probabilities, pdivide and pdie, while holding constant 
a=(1 -pdie) (1 + pdivide), the net growth rate realizations with pmutate=10-8, 
pdie=0.43 and n*= 250, other parameters the same as Figure 4b.



Citation: Colborn JA (2016) A Fast Analytic Simulation of Stochastic Mutation and its Application to Modeling Cancer Drug Resistance. J Appl 
Computat Math 5: 293. doi:10.4172/2168-9679.1000293

Page 7 of 8

Volume 5 • Issue 1 • 1000293
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

good match between the adjusted analytic solution RA and the median 
stochastic solution RSM as the drug kill rate is reduced, bringing the 
situation closer to that of no treatment such as shown in Figure 4a. 
Figure 5b shows an example in which the median stochastic realization 
is just barely mutating. This is the “worst case” scenario for matching 
the adjusted analytic solution RA and the median stochastic solution 
RSM. It occurs only in a very limited region of parameter space.

Figure 6 shows relative to the circumstances of Figure 4e the general 
insensitivity of the solution to pdivide and pdie, holding the net growth 
rate (1-pdie) (1 + pdivide) constant at 1.083. The principal effect is as the 
probabilities both decrease, the mutant extinction rate decreases for 
very small mutant populations owing to the lower pdie. This advances 
the emergence of the resistant population by a few cell cycles under the 
stochastic model.

Figure 7 shows the effect of varying the net growth rate a = (1-
pdie) (1 + pdivide) relative to Figure 4a by varying pdie while holding 
the division rate pdivide constant at 0.9. As shown, the accuracy of the 
adjusted analytic solution RA remains very good for various a. As pdie 
decreases and the net growth rate therefore increases, the solutions 
compress in time and the relative advantage of the adjusted analytic 
solution RA over R is diminished but remains significant.

Figure 8 shows the effect of varying the mutation rate pmutate relative 
to Figure 4a. Again the accuracy of the adjusted analytic solution RA 
remains very good and is largely insensitive to pmutate.

We performed the calculations and generated the figures for this 
work on a Dell Optiplex workstation running MATLAB R2015b on an 
i5-2400 CPU @ 3.10 GHz running Windows 10 Pro.

Conclusion
We have presented here an analytic method that simulates stochastic 

mutation and applied it to modeling cancer drug resistance. This 
method is based on a key observation that the median stochastic solution 
emerges at a time close to when the cumulative probability approaches 
unity of a first mutant birth, which can be calculated analytically. We 
have compared our result to the median stochastic resistant population 
versus time for varying rates of cell division, natural death, mutation, 
and drug kill. We have found at least an order-of-magnitude accuracy 
improvement over the standard analytical solution under most of these 
conditions. This method’s speed, accuracy, and simple results make it 
well-suited as a tool in software and mutation models to survey the 
resistant heterogeneity of cancers under various treatment plans. 
This may be used to guide a follow-on probabilistic analysis with a 
stochastic model. Such models could advance progress toward a better 
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Figure 7: Stochastic and analytic solutions without treatment, with 
various natural death probabilities pdie, 125 realizations with other 
parameters the same as Figure 4a.
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Figure 8: Stochastic and analytic solutions without treatment, with 
various mutation probabilities pmutate, 125 realizations with other 
parameters the same as Figure 4a.
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understanding of the dynamics of resistant subpopulations, better 
personalized treatment plans, and longer patient survival given the 
complex and ever-changing sets of drugs, doses, schedules, and cancer 
genomics of each patient in the clinical setting. Using these results to 
model the simultaneous evolution of multiple mutant subpopulations 
and comparison with patient data is in progress and will be presented 
elsewhere.
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