alexa A Formal and Simple Synthesis of an Antifungal Quinazolinone of Marine Source | Open Access Journals
ISSN: 2329-6836
Natural Products Chemistry & Research
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

A Formal and Simple Synthesis of an Antifungal Quinazolinone of Marine Source

Sharma GVR*, Alice R Robert and Devi B
Department of Chemistry, GIT, GITAM University, Rushikonda, Visakhapatnam 530045, AP, India
Corresponding Author : Sharma GVR
Department of Chemistry, GIT, GITAM University
Rushikonda, Visakhapatnam 530045, AP, India
Tel: 99642575394
E-mail: sharmagvr@yahoo.co.uk
Received May 21, 2014; Accepted June 26, 2014; Published June 28, 2014
Citation: GVR Sharma, Robert AR, Devi B (2014) A Formal and Simple Synthesis of an Antifungal Quinazolinone of Marine Source. Nat Prod Chem Res 2: 142. doi: 10.4172/2329-6836.1000142
Copyright: © 2014 GVR Sharma, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Visit for more related articles at Natural Products Chemistry & Research

Abstract

A simple synthetic route to a quinazolinone isolated from marine species bacillus cereous is reported. The synthesis involves a few steps starting from readily available anthranilic acid and 2-ethyl hexanoic acid. The product is characterized by 1HNMR, 13CNMR, and Mass.

Keywords
Marine natural product; Bacillus cereous, Anthranilic acid; 2-ethylhexanoic acid; Quinazolinone
Introduction
Natural Products such as terpenoids, alkaloids etc., properties play a significant role in the discovery and development of new drugs. Quinazolines and quinazolinones are proven to be considerably bioactive and shown to possess antitumor, anti-inflammatory, antidiabetic, etc. Quinazolinone moiety is present in many commercialized drugs such as Albaconazole 1, Gifitinib 2 (Figure 1) etc. [1,2]. Besides several quinazoline derived clinical candidates are in various stages of development [2,3].
The quinazolinone based natural product 4 (Figure 2) was isolated by Zihong Zhu, et al. in 2011 from marine species Bacillus cereous [1]. They also have confirmed the structure by the synthesis of the same from 2-aminobenzamide. The present communication is to report a simple formal synthesis of the quinazolinone from readily available anthranilic acid and 2-ethylhexanoic acid.
The quinazolinone 3 upon reduction furnishes the marine natural product 4, the dihydro quinazolinone. These compounds show significant anti-fungal and anti-viral activity. Hence viable alternative synthetic routes are needed.
The marine natural product dihydroquinazolinone 4 was isolated from marine species Bacillus cereous and synthesized from 2-aminobenzamide [1]. Herein we report a short formal synthesis of quinazolinone 3 from readily available anthranilic acid and 2-ethylhexanoic acid as shown in the following scheme (Figure 3).
Since the synthesis of 4 from 3 is already reported, we report here the convenient synthesis of 3 only. The synthesis starts with reaction of anthranilic acid with 2-ethylhexanoyl chloride (obtained by reaction of 2-ethylhexanoic acid with thionyl chloride under reflux) in dimethylformamide (DMF) solvent at room temperature under stirring for 2 hrs followed by usual workup to provide the compound 5 as shown in the following scheme. The compound 5 is then heated in acetic anhydride at 120°C for four hours followed evaporation to provide the compound 6, which without purification treated with ammonium acetate in dimethyl formamide (DMF) at 120°C for two hours followed by usual workup furnished the quinazolinone 3 which is purified by silica gel chromatography using dichloromethane and methanol as eluent. The pure quinazolinone 3 is obtained as a white solid which was characterized by 1HNMR (Table 1), 13CNMR (Table 2), DEPT135 and Mass. The 1HNMR was recorded in CDCl3 as solvent by 400 MHz. The aromatic protons with expected multiplicity appeared between 7 and 9 ppm, NH at 11 ppm, two methyl groups as triplets at 1 ppm, and remaining protons between 1.3 and 2.2 ppm. The 13>CNMR showed 15 peaks while DEPT showed 11 peaks corresponding to CH, CH2 and CH3. The mass spectrum showed M+1 at 245. Also a strong peak at 246. By using this information, it is confirmed beyond any doubt that the product 3 indeed is the desired quinazolinone which can be converted into 4 using the reported procedure [4-10].
Experimental
All the reagents were purchased from Sigma-Aldrich or Merck and used as such without purification. All solvents were obtained from standard sources and used as such without drying. 1HNMR and 13CNMR were recorded on Bruker 400 MHz and Mass on Agilent1100LC/MSD. Chromatographic purification is carried out using silica gel (Figure 4).
In a clean and dry round bottom flask, anthranilic acid (1 g, 0.0073 moles) was taken in DMF (10 ml). To the contents of the flask 1.2 eq of 2-ethylhexanoyl chloride (obtained from 2-ethylhexanoic acid and thionyl s chloride) was added and stirred vigorously for 2 h at room temperature. The reaction mixture was poured into water and extracted with DCM (2×15 ml), separated the DCM layer, dried over anhydrous Sodium sulfate and concentrated. The crude product was used as such in the next reaction (Figure 5).
To the crude product obtained from the above reaction acetic anhydride (4 ml) was added and stirred under reflux for 4 hrs, followed by distilling off the acetic anhydride. To the product obtained after distillation dimethyl formamide (10 ml) was added and 2 eq of ammonium acetate and heated under stirring at 120°C for 2 hrs. The reaction mixture was poured into water, extracted with dichloromethane (3×15 ml). The DCM layers were collected, washed with water, dried over anhydrous Sodium sulfate, concentrated and subjected to purification by column chromatography on silica gel using a mixture of dichloromethane and methanol as eluent to obtain pure quinazolinone 3 (400 mg) in about 30% overall yield. The compound was characterized by 1HNMR, 13CNMR, DEPT135 and M/S [11,12].
We summarize that in the present communication, a simple and formal synthetically viable route to the quinazolinone 3 is reported which in turn can easily be converted to 4 using the reported procedure.
References












Tables and Figures at a glance

image
Table 1

Figures at a glance

image   image   image   image   image
Figure 1   Figure 2   Figure 3   Figure 4   Figure 5
Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

Article Usage

  • Total views: 11666
  • [From(publication date):
    July-2014 - Jul 28, 2017]
  • Breakdown by view type
  • HTML page views : 7858
  • PDF downloads :3808
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords