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Introduction
The ‘action selection’ research topic is central in Neurobiology 

to perceive how the brain works, as well as in Computer science to 
produce autonomous adaptive robots. For an agent operating in a stable 
environment, searching for the optimal next action to perform can be 
viewed as solving a problem, without strict time pressure [1]. However, 
for an agent immersed in a dynamic - and potentially dangerous - natural 
environment, most decisions should be made in a timely fashion, even 
though a lot of past experience is involved. Implicit memory initiated 
by emotional cues [2] could be determinant, as illustrated by the novel 
entitled 'In Search of Lost Time' by Marcel Proust [3]. In the famous 
‘episode of the madeleine’, priming a specific emotion with a sensory 
cue (i.e.: the taste of a madeleine cookie in herbal tea) is shown to 
promote the retrieval of ancient memories. Today, the somatic markers 
scientific hypothesis associates either positive or negative values to 
past outcomes. This could serve to facilitate retrieval of previously 
rewarded behaviors and to avoid behaviors with expected unpleasant 
consequences [4]. In addition, several lines of evidence indicate that 
exposing subjects to reminders (i.e.: emotional cues) can improve the 
retention performance [5].

The questions that now arise are: What neural architecture would 
allow a given cue to instantly bring several memories into play for 
selecting the most relevant action possible?, and: What learning 
processes could contribute to the development of this architecture?

With respect to learning and memory, the prevailing biological 
picture is that neural representations emerge gradually from pre-
existing populations of neurons; new synaptic connections would 
be involved, followed by their long-term potentiation or long-term 
depression [6]. Low-level models of learning are indeed still rooted 

in the outdated dogma that the number of neurons is fixed at birth 
[7]. On the computational side, the distributed representations of 
Artificial Neural Networks (ANNs) result from the gradual updating 
of connection weights among prewired formal neurons. It thus comes 
as no surprise that neurophysiological models and ANNs met at the 
reinforcement learning (RL) crossroads: with regard to action selection 
and decision making, this convergence led to the ‘reward prediction 
error’ theory of the dopamine (DA) neuromodulator [8]. A framework 
was thus provided for interpreting temporal profiles of DA activity 
found in the brain's basal ganglia [9] in terms of ‘prediction error’ 
signals aimed at teaching reinforcement [10]. Along two decades 
of theoretical developments and experiments derived from the RL 
crossroads, two main difficulties have been experienced, namely: the 
non-identification of the neural substrate through which memory 
could be updated by using error signals, as well as the limited scale 
of considered situations. The scaling problem is now addressed with 
increased computational power for implementing the so-called ‘deep 
learning’ methods in which many layers code for levels of abstraction 
[11]. Such a forced hierarchical organization contributes to limiting 
the well-known ‘catastrophic interference‘ in overlapping distributed 
representations of static networks, namely the fact that memories 
can be erased by newer ones [12]. Besides these formal problems, the 
necessary ANNs repetitive training is challenged by the biological 
fact that salient events can quickly create unforgettable associations 

*Corresponding author: Dominique G Beroule, Laboratory and Computer
Science for Mechanics and Engineering Sciences, Orsay, France, Tel: 33 (1) 69-
85-81-11; E-mail: dominique.beroule@limsi.fr

Received April 07, 2016; Accepted April 10, 2016; Published April 15, 2016

Citation: Beroule DG, Gisquet-Verrier P (2016) A Functional Model of Action-
Selection Selection Guided by Emotional Stimuli. Int J Swarm Intel Evol Comput 5: 
132. doi: 10.4172/2090-4908.1000132

Copyright: © 2016 Beroule DG, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
Key brain networks underlying cognition and emotion are modulated by major neurotransmitter systems through 

reward/punishment circuits. Notably, the basal ganglia are thought to funnel emotional information towards motor 
outcomes. However, the mechanisms that would allow emotional stimuli to guide action selection have yet to be 
identified. Computational models may contribute to this goal. Here, by using a computer simulation of the guided-
propagation deterministic model, we show that emotional channels can quickly and selectively modulate action-
oriented channels, by instantly retrieving all the emotional stimuli paired in the past with a current cue. In agreement 
with animal based data, the transient modulation signals that implement emotional anticipation appear to be more 
useful when targeting either newly formed or remote memory traces. The timing and evolution of these signals both 
suggest a new interpretation of the dopaminergic neuron activity in the basal ganglia during conditioning, usually 
regarded as coding for a ‘reward prediction error’ in the frame of reinforcement learning. After additional computer 
trainings involving ‘emotions’ of extreme values, the diversity of actions selected under the influence of a conditioned 
cue is shown to decrease through either compulsive or avoidance behaviors. Indeed, in the proposed functional 
model, similar modulation mechanisms account for the development of either drug addiction or posttraumatic stress 
disorder. Furthermore, spontaneous relapse into these dysfunctions is attributed here to local modulating deficits. 
The latter can partly be overcome by selectively shifting one of the few control parameters of the model, akin to 
neuromodulators.
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[13]. Furthermore, cue-induced memory reactivation may favor the 
rapid updating of information by setting memory in a malleable state, 
independent of reconsolidation [14,15]. 

Another meeting place for Neurobiology and Computer science 
can be expected to arise from the following research outcomes. Firstly, 
the revival of the former grandmother-cell hypothesis [16] through 
concept cells [17,18] and action-cells [19] allows components of a 
memory model to be named by specific labels, as for neurons that fire 
selectively (e.g: the ‘Jennifer Aniston’ cell in [20].

Secondly, the discovery of neurogenesis in mammals, birds, 
amphibians, reptiles, and fish [21-23] may also reprioritize research 
topics, from the consolidation of neural structures to their continuous 
development with renewable resources. Although the migration of 
newborn neurons is only thought to allow the replacement of dead cells 
through a global turnover [24], the possible growth of neural structures 
throughout a lifespan is worth considering for learning purpose. This 
option lessens the role of connection weights among learning actors; 
emphasis is set instead on the mechanisms that promote and guide 
the dynamic setting of neural structures. Mainly inspired by the brain 
spontaneous activity, the Guided Propagation (GP) model implements 
the continuous growth of memory paths ending in concept cells [25]. 

Thirdly, at the neuroanatomical level, significant data associate 
reward circuits with action-selection. Literature on rodents, monkeys 
and humans is consistent with the idea that cortico-basal ganglia circuits 
constitute the heart of reward processing, mediated by neuromodulators 
such as DA [26]. According to the ‘ascending spiral’ model [27,28], fibers 
from different prefrontal areas converge on sub-regions of the striatum, 
and develop a one-directional pathway across the substantianigra, 
from emotional to motor outcomes. First investigated in non-human 
primates, this model is supported by brain imaging studies in humans, 
which enhances the notion that cortical regions are functionally 
linked through a cascade of interactions [29]. A similar functional 
organization has recently been drafted in the form of GP computational 
architecture [30]. An updated version of this deterministic system 
generates here a main neurobiological hypothesis to account for 
fast action-selection: when a given cue occurs, neuromodulator is 
assumed to selectively boost the spontaneous activity propagating 
down memory paths of the cortico-striatal areas, so as to enable the 
anticipation of relevant emotional events. This process would notably 
underlie conditioning, which can be assessed by considering the known 
characteristic activity of DA neurons in the basal ganglia [9]. Another 
main hypothesis addressed here is the common ground of disruptive 
effects on action selection of drug addiction and posttraumatic stress 
disorder (PTSD). Although both caused by highly emotional stimuli, 
drug addiction involves dependence, an intense craving for the drug, 
whereas PTSD can be developed by someone exposed to traumatic 
events, and is characterized by several impairing symptoms, including 
avoidance [31]. Assumed similarities between mechanisms underlying 
these two pathologies can be tested in computer experiments, including 
simulated treatment, relapse and over-treatment.

In the foregoing presentation, GP components are named by their 
primary function (e.g.: ‘elementary processing unit’, ‘conditioner’) 
rather than by their assumed neurobiological correlates (e.g.: ‘set 
of neurons’, ‘orbitofrontal cortex’). This bias is aimed at avoiding 
confusions between reality and one of its potential representations 
(i.e.: models). The mapping between GP and brain structures/
mechanisms will however be specified in the final discussion, 
eventually focused on the implications of a self-growing architecture 
for the selection of actions.

Method
Pavlovian and operant conditioning show that a stimulus can 

become significant if repeatedly perceived shortly before an already 
significant stimulus, referred to as ‘unconditioned’. This form of 
learning appears to implement a transfer of the emotional information 
carried by an unconditioned stimulus back to a neutral stimulus, which 
thus becomes ‘conditioned’. Such an emotional transfer is particularly 
effective with strong emotions involved for instance in addiction to drug 
[32] and PTSD [33]. The occurrence of a given conditioned stimulus - 
called ‘emotional cue’ (or ‘cue’) in the following - makes a conditioned 
organism predict its previously associated unconditioned stimuli 
(subsequently called ‘reinforcers’, i.e.: stimuli that strengthen or weaken 
the behavior that produced them). One key problem concerns the 
biological substrate of such emotional anticipation (Appendix 1). This 
question has been addressed through the development of computational 
models referring to brain circuits and their neuromodulators [26,34], as 
well as neurobiological studies consistent with computational models 
[35-38].

Among computational principles inspired by neurobiology, Guided 
Propagation implements ‘spontaneous activity’ within a topological 
memory [39] Inner-flows are guided across time along memory paths, 
towards locations respectively representing world-events. A given 
event is either retrieved or generated when its characteristic Detector-
Effector (DE) is reached by one of these inner-flows. Each inner-flow is 
guided inside its memory module by several influences: relevant series 
of stimuli from lower levels, as well as modulating signals from higher 
levels and parallel channels. A detected lack of coincidence between 
memory signals integrated by a given module can trigger a “learning 
by differentiation” episode. An unused chain of elementary processing 
units (epus) becomes a ‘memory path’ leading the inner-flow to a new 
DE. Coincidence detection between inner and incoming flows makes 
GP response-time independent of the growing memory size, and 
therefore appears well adapted to real-time decision making. 

In the following, it is sufficient to consider the system global 
architecture. GP modules are distributed across channels (drawn 
vertically in figures) and (horizontal) levels for processing input/output 
events, namely for integrating/generating activity patterns. Modules 
can be stacked at the top of each other, forming a channel which 
processes embedded patterns. Within a high-level ‘behavioral module’, 
a memory path can code for the representation of alternating stimuli 
and actions, as initially proposed for problem solving tasks [40]. More 
detailed descriptions of the GP formalism can be found in the annexed 
S2 document, as well as in several reports in which applications of this 
approach are introduced [41]. 

Crucial in the present study, modulation of the epus parameters 
define distinct operating modes. In its basic “wait-and-see” (WAS) 
mode, the running pace of an activated GP path is imposed by its stimuli 
(including proprioceptive ones, as feedbacks from the ongoing actions). 
In this case, inner-flows are locked to the present time. Interestingly 
for anticipation purpose, a given path can also run “ahead of the time 
being” by activating the representations of possible future events. 
When set in the relevant ‘highly-proactive’ (HP) mode, a path can be 
overflowed by its module inner-flow as soon as the initial stimulus 
of the path occurs. A cue can thus anticipate the reinforcers already 
experienced in previous similar situations (the related formalism is 
presented in S3 Appendix). However, in order to avoid confusion 
resulting from the simultaneous activity of current and anticipated 
representations, anticipations work ‘backstage’ while current events 
are highlighted: Distinct channels respectively accommodate these 
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two levels of “consciousness”. In the architecture introduced now, the 
inner-flows of the so-called ‘emotional’ channels (i.e.: C1, C2) allow 
emotional cues to anticipate their -previously associated- rewards or 
punishments, and thus guide the selection of actions to be performed 
via motor-oriented channel (C3, C4).

Channels linked through a modulation device

The logic behind the proposed model can be expressed in terms of 
influential links between processing channels, from the most emotional 
(C1) to the executive one (C4). Rather than through direct connections, 
this one-way influence is mediated by modulation pathways which 
extend across parallel channels outputs. Memory paths, as well as 
their modulating cross-connections, are set and possibly strengthened 
during training sessions. In the first outline below, at least one such 
conditioning episode has already occurred. 

Downstream the influential link stand the so-called ‘Sensory-
premotor’ (C3) and ‘Motor’ (C4) channels. At any given time, C3 should 
quickly select the most rewarding next action among available ones, 
those previously learnt in situations similar to the current one. To this 
end, sensory-premotor processing can be guided by another channel 
(C2, named ‘Conditioner’), as shown in Figure 1. In the same way, the 
Conditioner C2 can be impacted by another channel (C1: Emotion 
Detector’) (Figure 1).

The modulation stream can also be described from its emotional 
source (C1), and include the building of memory paths. In C1, specific 

DEs respond to as many “system states”, giving the global context in 
which every stimulus is perceived (comparable in animal to deficits 
such as thirst, hunger, or their respective satisfactions). Representing 
the earliest context, these DEs feed the beginning of the C1 paths. 
In parallel, the occurrence of an unexpected stimulus initiates a new 
path in C2, and another one in C3. These ‘partner’ paths (respectively 
belonging to C1, C2, and C3) grow in parallel, and end respectively in 
three ‘reinforcer’-epus. Once finalized, the DE outputs of these parallel 
paths will eventually be connected via one-way modulation links: C1-
>C2->C3, from the quickest (C1) to the slowest channel C3. After this 
training session, and provided that C1 is set in its proactive mode, the 
same initial global state will fully activate its future possible reinforcers 
in C1, thus applying an emotional ‘focus of attention’ [42]. Due to 
modulation links between C1 and C2, a facilitation signal will be sent 
to C2. When transiently proactive, the facilitated C2 paths implement 
a kind of “projection into the emotional future” thanks to which they 
can selectively modulate their partners in C3 just after having been 
stimulated by an emotional cue (Figure 2). Among actions currently 
available, C3 will thus be able to select the most facilitated and less 
suppressed one. In the case of a different internal context, another C1 
emotional path would have been primed, hence a different focus of 
attention, conveying a different emotional load towards the executive 
channels. Once a given channel output has modulated its neighbor 
partner, it should receive a kind of ‘acknowledgement of receipt’ for 
getting ready to trigger other modulations. For this purpose, the output 
can undergo an inhibitory feedback, as proposed in anatomical terms 
by the aforementioned ‘ascending spiral’ model (Figure 2). The latter 
gives a leading role to the substantia nigra. As also mentioned in the 
introduction, the fluctuating activity of dopaminergic neurons in this 
midbrain structure has been investigated during conditioning [9].

From the GP modulation system perspective, a ‘cue-reinforcer’ 
repeated pairing appears to move forward the response of the epu 
initially only stimulated by the reinforcer. After a few repetitions 
inducing consolidation of the same pairing, this epu becomes activated 
shortly after the cue, instead. This happens because the inner-flow 
quickly reaches the end of the ‘cue-reinforcer’ C2 path, which activates 
the modulation system in advance for anticipation purpose (epu n°12 
in Figure 3). Consistently with the epus transfer-function maximum 
output (Amax in Appendix 2), when the reinforcer follows, the same epu 
complements its previous output. If the expected reinforcer does not 
occur, the relevant ‘cue-silence’ path tends to inhibit its concurrent ‘cue-
reinforcer’ path in the modulation system, hence the depressed activity 
observed in GP histograms, comparable with neuronal ones (Figure 3). 
In this view, the second response of the epu that may just follow the 
reinforcer is therefore not considered here as a ‘scalar prediction error 
signal’ aimed at influencing action-selection (in the RL theory [10]): 
Anticipation is directly modelled by chained cells which associate cues 
and their reinforcers, with modulation signals for selectively boosting 
their activity (Figure 3).

Superimposition of modulating signals

As previously stated, GP memory paths have distinct propagation 
modes: wait-and-see (WAS), proactive, highly-proactive (HP). At a given 
processing time, the mode of a given path results from a combination of 
two factors: its enduring strength and its possible transient modulation. 
The regular situation involves the Emotion detector (channel C1) in 
which every path is set in the HP mode; the Conditioner (C2) contains 
either WAS or HP paths (those currently facilitated by C1); in the same 
way, sensory-premotor C3 paths ‘wait and see’, except those transiently 
modulated (by C2). Their potential actions in the current context can 

Figure 1: Exposure to a conditioned stimulus (‘B’) induces modulation of 
‘sensory-premotor’ paths (in C3) by its ‘emotional’ partners (in C2).
The displayed labels follow conventions specified in the main text. C2 paths 
can either facilitate (+) or suppress (-) their respective target-paths in C3 
(through modulation arrows plotted at the bottom). The brighter a plotted cell, 
the more activated the epu it stands for. In the situation shown here, exposure 
to a stimulus has just elicited the responses of both its precise ‘B’ and 
imprecise ‘b’ DEs (at the top). Under the influence of ‘b’, the inner-flow of C2 
can be strong enough to reach three output DEs (‘bd’, ‘by’, ‘bg’), which may 
pave the way for the C3 inner-flow. After the occurrence of ‘B’, the ‘O’ action 
can be followed by one out of two possible reinforcers of opposite emotional 
values: Y (+) and G (-). Under modulation issuing from C2, the behavior 
‘BOY’ is facilitated, whereas ‘BOG’ is suppressed. Both modulation signals 
go upstream the two concerned paths in parallel, changing the propagation 
parameters of epus they meet. Both signals join in the epu labelled ‘i’ linked 
with action ‘O’ DE (labelled ‘j’), and combine according to rules given in the 
main text (Figure 2).
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Figure 2: Similar architectures of neurobiological and computational models.
A: The ascending spiral of connectivity of the striatum to midbrain (downwards) and prefrontal cortex (upwards) [27]. Magnified oval region to the left shows 
hypothetical cortico-striatal connections. The upper projection activates directly a dopaminergic cell (a) in the dorsal tier, resulting in inhibition. The lower projection 
terminates indirectly on a dopaminergic cell (b) of the ventral tier via an interneuron, resulting in facilitation. (VTA:Ventral tegmental area, OMPFC: orbitomedial 
prefrontal cortex, DLPFC: dorsolateral prefrontal cortex). B: Ascending spiral of modulating connections between GP modules. The modules displayed here belong 
to the same level in different channels; they are connected through a Modulation system (at the bottom). Color conventions compare to those in the neurobiological 
architecture above (A), from the ‘emotional’ warm colors to the ‘sensorimotor’ cool ones. Downward straight arrows stand for activation issued from the modules 
outputs towards structures similar to the Dorsal and Ventral tiers. Epus belonging to the D sector are in charge of inhibitory feedbacks (upward curved arrows), 
whereas V epus send modulating signals towards the next neighbor module to the right-hand side (left-to-right thick arrows with a light-blue content). Modulation tends 
to be either ‘facilitating’ (+) or ‘suppressing’ (-), depending on the emotional value of the involved reinforcers. In the sensory-premotor channel, the modulating signals 
propagate upstream their respective target paths (striped areas), and selectively guide the inner-flow in order to facilitate the most promising actions.
In the conditioning sessions shown here in GPS histograms (from A to E), the activity of two chained epus (12, 78) is displayed during the training of their target 
behavior (‘BAY’ in C3). ΔT is the short time necessary for the reinforcer (‘b’) to usually elicit its outcome (‘y’). But after a few repetitions of the cue-reinforcer pairing, 
modulation is elicited ΔT after the cue, instead. This anticipated response is generated as soon as the C2 inner flow is boosted enough to reach the end of the “by” 
path under the only cue, without waiting for the subsequent contribution of the reinforcer. In histograms that are labelled ‘12’, blue circles surround the early stimulation 
caused by the ‘by’-path, getting stronger from A to D, whereas orange circles show the effect of the reinforcer occurrence, decreasing from A to D. In histogram 78, 
red circles indicate this transfer of the behavior facilitation from the reinforcer (histograms A and B) to the cue (C and D), through which anticipation is implemented. 
The ‘E’ bottom diagrams show the epu 12 reset elicited by ‘NoStim’ via the lateral inhibition link shown in the top-right drawing. This epu activity appears to correlate 
with that of midbrain dopamine neurons recorded in alert monkeys while they perform behavioral acts and receive rewards (A’, D’, E’ neural histograms on the right-
hand side, from [9]). 
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thus be either facilitated or suppressed. In the GP theory, modulating 
signals propagate instantly backward their target path and shift epus’ 
propagation parameters En and Rn (Appendix 2). At the level of C3 
paths, several positive or negative values changes can instantly be 
superimposed, so as to reflect the combined anticipations of as many 
‘emotions’. The latter are possibly distributed over wide time-spans 
thanks to the hierarchical structure of GP (Figure 4), which allows the 
real-world situations below to be implemented.

Through a mixing of education and experience, one acquires 
the skill to project oneself into a distant future. For example, despite 
unpleasant efforts, learning at school is encouraged by the promise of 
a suitable position, many years later. Conversely, if someone addicted 
to drug could bring to mind negative emotions linked with future 
degradations, immediate rewards could be masked, and drug seeking 
avoided. Both cases illustrate that action selection can undergo several 
emotional influences from likely events distributed in the future. Thanks 
to the GP parallelism, immediate predictions originate from several 
sources: modules coding for next events, and higher-level modules 
(e.g.: combinations of events) which anticipate ‘emotions’ that are likely 
to arise in a more distant future. A distinct modulation circuit can thus 

be associated with each level output: the deeper the level which may 
convey emotional signals, the longer their travel (Figure 5). Because 
modulation brought by a third level would have been too delayed for 
joining in the quick selection of action, only two modulating levels have 
been implemented in current computer experiments.

The superimposition of several modulating signals remains to be 
quantified. Let us consider a C31 ‘action’ epu n°i (Figure 1), reached 
by a modulating signal m(t). The Excitability only induced by m(t) 
is calculated as follows. Eti is expressed as a function of the acquired 
emotional value Vi of the path output DEi targeted by m(t). Eti = m x 
Vi, where m is the onset value of m(t), expressed as a ratio of Amax, the 
maximum response of every epu.

 If Vi < 0 then Eti belongs to the ‘inhibited’ area of the (Ei, Ri) diagram 
(Appendix 2). The greater the emotional absolute value, the closer to 
the null boundary, and the greater the induced suppressive effect. On 
the contrary, a soft negative emotional value gives a target Excitability 
close to unity, which defines the border with the WAS area where the 
epu is not inhibited anymore (Figure 4).

The theoretical display at the top (A) parallels a screen shot of the 

Figure 3: Changes in the activity spreading across the GPS modulation-system while a given behavior is rehearsed.
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running computer simulation (B). The neuromodulation connectivity 
(plotted in Figures 2B and 3) is reduced here to straight (blue) arrows at 
the modules bottom. A: The label of each module features its location 
(e.g.: C31 intersects the 3rd channel and the 1st level). The outflow of C22 is 
currently facilitating a memory path of C32 by decreasing the thresholds 
of its epus. As the C32 inner-flow goes downstream this path, facilitation 
signals are sent (upward curved arrows) towards a C31 path. The latter 
is simultaneously inhibited by C21, but not enough for avoiding the 
action selected by the facilitating flow of C32. Thus, two parallel circuits 
guide propagation in C31, with opposite modulation values. B: Screen 
shot taken during the initial training session of a computer experiment: 
At this very processing step, the GPS has grown from the scanning of 
15 combinations (represented in C32) of 26 associations of stimuli and 
actions (DEs at the bottom of C31).

Eti must be combined with the current epui Excitability. When both 
of them play the same part, either activating (>1) or inhibiting (<1), 
the two values are summed. Summing instead their corresponding 
thresholds could have made the resulting Excitability cross impassable 
boundaries, namely towards negative values or towards the forbidden 
‘Off-context/Free’ areas. Furthermore, the non-additivity of retrieval 
cues observed in animal experiments [43] is consistent with this 
calculation. Since a threshold is expressed by a “1/E” function, its 
variations follow a “-1/E2” curve, less and less significant as E is 
increased under the influence of successive retrieval cues of the same 
emotional sign.

( ) ( )1i i iE t Ewas Et E t+ = × ×
 
When Eti is opposed to the current 

Excitability En of epu n°i these two values are multiplied instead, 
and modulated by a fixed ‘balance factor’ EWAS. In this way, if the 
two Excitabilities hold the same absolute value (of opposite signs) 
multiplying them gives . Thus, the combination of equally 
suppressing and facilitating effects conveniently results in setting epui 
in the WAS mode. 

If ( )i iE t V=  and ( / )i iEt m V= − ∆ −  

Then : ( )1 /i i iE t Ewas V m V Ewas m+ = × ×∆ = ×∆

To compensate for the usually non-maximum intensity of the 
modulating pulse Δm, Ewas must be chosen high enough in the WAS 
area (e.g.: (E was =1.3)

Computer simulation and conventions

A major GP feature states that proper memory encoding is 
not compatible with the proactive modes (Appendix 2). Although 
several options can be considered in order to overcome this learning 
constraint (see Discussion), the most straightforward solution lets 
the experimenter switch GP modules from one mode to another. For 
training purpose, the GP software (GPS) has been fully set in the WAS 
mode to simultaneously acquire 4-channels representations of 70 
‘behaviors’, namely actions alternating with stimuli. This rather large-
scale conditioning was followed by test trials, each being characterized 
by exposure to one of the emotional cues. The action pre-activated the 
most (or the earlier) in response to a single cue was regarded as the GPS 
response. Extra conditioning sessions then involved extreme reinforcers 
mimicking either a drug of abuse or a traumatic stimulus. To deal with 
the decision-making bias thus induced, counter-conditioning sessions 
have then been conducted. Sudden relapses have also been simulated 
through a modulation deficit, followed by a specific attempt to reduce 
its impact.

The global GPS architecture, the modules of which can be filled 

through training, is defined beforehand in a data file. The latter describes 
the GPS modules CKj, including their location (K, j) in a matrix of 
channels and levels. Pre-wired inputs/outputs are also specified, such 
as the initial set of reinforcers with their respective emotional values. 
In a more complete architecture, each series of characters forming 
the current GPS input/output would stand at the interface with more 
peripheral levels in charge of identifying or generating the patterns 
represented by these characters. This low-level capacity of GP has been 
explored in previous studies [41] and stays beyond the scope of the 
present work focused on associative levels. Patterns of the labelled DE's 
below are considered as non-ambiguous and are therefore coded in a 
binary format (either 0 or Amax).

•	 A few initial reinforces with fixed emotional values, stand at the 
input C10 (of C11) and C20 (of C21) : ‘d’ of value {-2}, ‘r’ {+2}, ‘y’ 
{+3}, ‘x’ {+5}, ‘z’ {-5}, with their precise representation at the 
input C30 (of C31) : ‘D’, ‘R’, ‘Y’, ‘X’, ‘Z’.

•	 Internal inputs give the system global state, identified by 
numeric labels. Balanced: ‘0’. Deficit n°1: ‘1’. Satisfaction n°1: ‘2’. 
Deficit n°2: ‘3’. Satisfaction n°2: ‘4’.

•	 16 –initially neutral– stimuli (represented by consonants) in 
their imprecise format (i.e.: lower-case), feeding both C11 and 
C21.

•	 16 –initially neutral– stimuli in their precise format (i.e.: upper-
case consonants), plus the ‘noStim’ cue, forming the input of 
C31.

•	 5 action effectors (i.e.: upper-case vowels, A, E, I, O, U) in C4 are 
ready to receive facilitation from C31

Various combinations of the above symbols form the ‘behaviors’ of 
the training data. For instance, ‘1LAD 3DER’ corresponds in our coding 
conventions to the following script: ‘1’ is the global state in which the 
cue ‘L’ occurs, followed by action ‘A’, and ending in the ‘D’ reinforcer of 
negative value {-2} ; after this elementary behavior, the system global 
state is shifted towards the ‘3’ deficit caused by ‘D’. ‘D’ is the cue which 
also starts the second elementary behavior (‘DER’); given its location in 
this behavior, ‘D’ can itself be modulated by the current reinforcer (‘R’) 
of positive value {+2} (after action ‘E’, here).

Results
Training session

Starting from the preset input/output DEs described above, the 
software goes through an initial training period using almost the full 
set of data (except extreme reinforcers ‘X’ and ‘Z’), composed here of 
68 ‘behaviors’ of the ‘1LAD 3DER’ type (e.g.: 1LOCK 2KEY, 0SAD 
3DOG …). This training can be compared to the exploration of an 
environment comprising a few initial reinforcers (D, R, and Y). Actions 
performed in this environment may be concluded either by one of 
these reinforcers, or by a neutral stimulus which does not impact action 
selection. The training dataset (S4 Dataset) has been organized so that 
each first consonant can be followed by any of the vowels; in other 
words, after an initial cue, all available actions may possibly occur. This 
is worth noting that the size of our dataset comes from the decision 
to code elementary input/output by a single alphabetic character, for 
the sake of clarity. Thanks to its learning-by-growing skill and real-
time coincidence detection, GP supports more extensive data without 
interference between stored representations, nor without increase of 
the theoretical response-time. Given the artificial immediacy of both 
epu recruitment and link creation in a computer environment, the 
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Figure 4: Matrix of modules representing an instance of GP emotional model.
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GPS training session is fast, and does not require many rehearsals. The 
first training of twice 68 sequences is completed after only 25 seconds 
(on Intel Core 2 duo processors E6400 @2.13Ghz RAM: 3.25, Cache 
2Mo); within this period of time, up to 988 epus are recruited and 2861 
links are created. 293 modulating cross-links are also built between the 
channels during only two passes of the training data (Figure 5).

In this composite image, modules frames have been filled with 
histograms of the few paths effectively involved in the selection of ‘A’, 
among other possible actions. Within the histogram of a given epu 
(labelled by its specific number given at ‘birth’), the horizontal axis 
represents the GPS processing steps across time, and the vertical axis 
gives the epu activity and response threshold. The latter is displayed by 
a dotted line which may be shifted up or down under the influence of 
modulation signals (light blue arrows). For each positive gap between 
the activation level and the threshold, the elicited response level (up 
to Amax = 100) is shown just below the horizontal axis. For indicating 
the propagation of activity from an epu to one of its downstream 
neighbors along a memory path, grey arrows have been drawn between 
histograms. The right-hand module C31 receives all the modulation 
signals. In the present case, the ‘LAD’ path, including its ‘A’ action, has 
first undergone a repressive modulation (due to the negative value of 
‘D’). The related increase of the epu n°76 threshold (within brackets) 
codes for the anticipation of an immediate punishment (‘D’). Shortly 
after, a facilitating signal conveys the anticipation of compound behavior 
‘LADDER’, given its positive end (‘R’). This second modulation appears 
strong enough to overcome the earlier repression of the ‘A’ epu (n°76), 
the response of which is transmitted through facilitation (upward blue 
arrow) toward the motor channel C4. The shorter route which conveys 
the repressive signal is here highlighted in pink. The longer emotional 
circuit which crosses the GPS 2nd level is highlighted in yellow. Both 
circuits share at least the initial priming of the Conditioner (C2) by the 
Emotion detector (C1), as triggered by the system inner state (‘1’).

 While a given series of stimuli/actions is scanned by the GPS, the 
current character activates in parallel its associated channels’ input/
output. For example, the ‘D’ cue activates simultaneously the ‘d{-2}’-
DE of channel C1, another ‘d’-DE for C2, as well as ‘D’ for C3. When 
upper-case consonants occur, both C2 and C3 are stimulated, whereas 
lower-case consonants (i.e.: imprecise stimuli) only feed the emotional 
C2. For instance, the ‘1LAD 3DER’ sequence eventually results in the 
growth of the following paths:

•	 in module C11: two paths respectively labeled ‘1d’ and ‘3r’

•	 in C21 : two paths ‘ld’ and ‘dr’

•	 in C22 : one path ‘lddr’

•	 in C31 : ‘LAD’ and ‘DER’

•	 in C32 : one path ‘LADDER’

The learning algorithm can be validated by checking that the 
number of epus and links remains fixed after two passes of the data set, 
all along a third pass. 

During each subsequent test, the GPS is fed with a single of the 16 
conditioned cues become ‘emotional’ (e.g.: ‘B’) occurring in the context 
of a given inner state (e.g.: ‘0’). The parallel operations through which 
an action is quickly selected can be analyzed thanks to epus histograms 
of activity.

The evolution of a system involving hidden or unpredictable 
variables is uncertain, and deserves a statistical analysis. This is not 
the case of a GPS, only regulated by a few deterministic rules: every 
epu output is a piecewise linear threshold function of its activating 
input’s coincidence ; this transfer function can be modulated by only 
two control parameters, with known consequences (Appendix 2); 
both modulating and activating signals propagate without any random 

Figure 5. Histograms of memory paths involved in the selection of an action (‘A’) elicited by a single emotional cue ‘L’.
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variation. In the absence of self-fluctuations of the system internal state, 
nor variable recognition rates of the stimuli, our experimental results 
are fully replicable, and do not require statistics. This point clarified, a 
complementary discussion about the deterministic or stochastic nature 
of the model biological target goes beyond the scope of this paper. 

Tests with emotional cues

At the interface with the motor channel C4 (i.e.: A, E, I, O, U), the 
DE showing either the greatest or the earliest facilitation from a C31 epu 
is considered as the GPS response. In Figure 5, a short-circuit (level-1) 
modulation tends to suppress the response of an action, while a long-
circuit (level-2) modulation is capable of facilitating the same action 
shortly later. Despite the rather numerous representations distributed 
across two levels, GPS responses occurs in real-time (about one second) 
after a given stimulation, which raises the question of how many epus 
get involved in each trial.

Rate of active epus during a testing trial: It appears that a 
relatively small proportion of epus participates in guiding the selection 
of one action (Figure 6). Compared to a previous set of experiments in 
which no global internal state was modeled [30], propagation is even 
more focused, with only 3% of epus activated above their thresholds 
in both C21 and C31. Although less rein forcers are anticipated because 
of this ‘motivational’ effect, one third of C11 and almost two thirds 
of C22 participate in action selection, which shows the prevalence of 
emotional channels activity. Even more convincing is the likely absence 
of GPS response when one of the emotional channels (C1, C2) is ‘shut 
down’. However, as shown below, the rehearsal of behaviors makes them 
less sensitive to the contribution of emotional circuits. If emotional 
channels are then rendered mute, only actions belonging to these 
repeated behaviors can still be quickly selected by the GPS.

The modules coordinates within the full architecture matrix are 
distributed along the horizontal axis, with their respective amounts of 
epus within square brackets. For each module Cxy (channel x, level y), 
the darker cylinder (to the left-hand side) gives the ratio of all activated 
epus; its neighbor brighter cylinder gives the ratio of epus activated 
above their response threshold, thus having actually participated in 
action selection. Apart from the emotional C1 and C22 (in which 69% 
of the 197 epus are activated and 37% propagate their activity), the 
system subset involved in any quick selection of action stays limited in 
size; this is especially true in the sensory-premotor module C31 (where 
only 11% of the 295 epus get activated and only 4% respond above their 
threshold).

Contribution of repetitive training: Rehearsing can selectively 
consolidate involved GP sensory-premotor paths by gradually 
increasing their epus Excitability within known theoretical limits (File 
2). This long-run modification improves the effectiveness of potential 
modulations signals from C2, until a C3 path is strengthened enough to 
be self-sufficient. The related behavior can then be called ‘habitual’. This 
happens when the C3 inner-flow becomes sufficiently strong to activate 
an action-epu before a possible facilitation generated by C2 (Figure 7). 

Accuracy of action selection: After the initial training session, the 
respective outcomes of 16 conditioned stimuli have been considered 
one after the other in two possible global states (‘0’ and ‘1’). The GPS 
always responded a few processing steps before the characteristic time 
at which actions were elicited during training. For each trial, the most 
facilitated action accounted in a deterministic manner for its two-level 
emotional influences. Two instances of these reproducible results are 
shown in Figures 1,8,9 and 10. 

 Along the front axis, T1 to T7 correspond to a series of trials in 
which the same behavior (‘BOY’) occurs. The activity shown for each 
trial is displayed since the triggering cue (‘B’), at processing step (ps) 
52 (surrounded). The response of the C3 epu associated with action ‘O’ 
(labelled ‘i’ in Figure 1) is shown until 70 ps along the depth axis. The 
T1 trial (in green) shows the epu response to facilitation induced by 
C2 at ps = 60. Successive repetitions of ‘BOY’ gradually decrease the 
threshold of epu ‘O’, which results in its early (step 55) and increasing 
(from yellow to dark red) response. The following onset caused by C2 
facilitation becomes less and less useful for the selection of ‘O’, since its 
effect is gradually overtaken by the C3 inner-flow onset. Proprioceptive’ 
feedback from the selected DE ‘O’ in C4 (labelled ‘j’ in Figure 1) is 
represented by the tip at the right-back of the figure (ps = 70). If the 
‘O’-DE response threshold had been set to 50% of Amax (dotted line), 
this action would have been elicited as soon as the threshold was 
crossed, namely at ps = 60 before T5, and even early (ps = 55) from 
T5 to T7. Another effect of repetition is the GPS hyper-sensitization 
to the involved reinforcer: At T10, an imprecise version of the ‘Y’ 
reinforcer, namely ‘y’ occurring at the C2 input, can facilitate alone the 
C3 strengthened path, and activate ‘O’ up to 38% of Amax (in purple).

Adding extreme stimuli to data

During additional training sessions, emotional cues were submitted 
to reinforcers with extreme values (‘X’{+5}, or ‘Z’{-5}). One action (‘I’) 
thus conditioned to lead to the very positive outcome ‘X’ overcame other 
possible actions, a behavior similar to addiction [32]. On the opposite, 
an action leading to the trauma-like ‘Z’ was systematically avoided [33]. 
In both extreme cases, the diversity of actions to be selected, and hence 
possible behaviors, had decreased.

Two options have been considered so far to oppose this dysfunction: 
1/ To depress the level-1 modulation controlling the cue-induced 
prediction of an immediate drug-like reward [30] 2/ To perform 
counter-conditioning by conducting another training session in which 
the extreme reinforcer is replaced by another one of the same high 
intensity but opposite sign.

Simulated counter-conditioning: As stated above, a cue 
previously paired with a drug-like reinforcer strongly orientates the 
GPS output towards actions possibly leading to this positive reinforcer 
(Figure 2 and 9). In contrast to this ‘addictive’ trend, avoidance can 
also be simulated. This occurs when a cue prevents the GPS from 
selecting actions associated with aversive reinforcers (Figures 2 and 
10). Assuming a common ground for these decision-making biases, 
counter-conditioning has been applied to both situations. Accordingly, 
a ‘cue-action’ sequence conditioned to lead to a reinforcer of extreme 
value was then associated with a reinforcer of opposite value. For 
instance, sequences ‘1WIZ’ and ‘1WIX’ contradict each other, since 
they end in reinforcers of opposite values (‘Z’ and ‘X’). When ‘1W’ 
occurs, the same action (‘I’) and two opposed reinforcers (‘X’) and (‘Z’) 
are both anticipated by channel C2. Related modulating signals reach 
simultaneously their partner-paths in C3, propagate backward and 
meet at the level of the ‘I’-epu. With the calculation described above 
(see “Superimposition of modulating signals”), counter-conditioning 
may either enable again a repressed action or repress a highly prevalent 
action (Figures 3, 4, 9 and 10).

Responding to a cue previously associated with a reinforcer 
decreases when this cue is then presented repeatedly alone, a behavioral 
feature known as extinction [44]. To account for this effect, the absence 
of an expected reinforcer can be implemented in a way similar to GP 
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counter-conditioning by growing an extra path stimulated by a ‘noStim’-
DE, and competing with the reinforcer (Figure 3). Consistently with 
this common ground, a growing body of research is focused on the 
neural mechanisms of both relapse and extinction [45].

Simulated relapse: Given the co-existence of conflicting 
conditionings in parallel memory paths of C3, a behavior temporarily 
masked by a subsequent one may return to the foreground under specific 
conditions to be specified. One condition is obvious, namely when the 
initial reinforcer (even a fuzzy version) occurs in the initial context. 
The sudden reactivation of the masked memory path then results from 
environmental cues. But inner factors may also be involved.

Repression is triggered whenever an emotional cue anticipates a 
stressful reinforcer. In a similar way for an opposite effect, compulsive 
searching for immediate gratification repeatedly involves facilitation 
signals. Both types of modulation only last as long as required to 
make an orientation decision, but they are stronger than for usual 
‘emotions’, and both arise with every occurrence of their triggering 
cues. This intensive use of modulating resources may entail their 
depletion. Reminding a basic constraint of the GP theory, a significant 
increase of epu Excitability (for implementing facilitation) must be 
accompanied by an increase of its inner-flow ‘transfer factor’; otherwise, 
inappropriate ‘off-context’ or even ‘free’ responses may occur (Figure 
8). If the transfer factor (Rn) cannot be increased enough, this may 
impede proper dynamic modulation. The undesirable combination of 
a ‘too-low’ Rn and a moderate-to-high Excitability En induces improper 
epu responses. An imprecise reinforcer may even be perceived by C2 in 
situations different from the original trauma (or drug-seeking), which 
makes relapse more likely to occur.

In order to simulate this possible cause of relapse, the Rn parameter 
normally targeted towards the HP area has been kept to a lower value 
(inside the area defined by En > 2.5 in Figure 8). For values of En lower 
than 2.5, targeted by ‘non-extreme’ reinforcers, Rn does not undergo 
depletion (Figure 8).

The horizontal axis represents the ‘transmission factor’ Rn of the epu 
inner-flow input, whereas possible values of the epu Excitability En are 

distributed along the vertical axis. The epu is: - inhibited in the grey 
area, - requires both inner-flow and stimulus input in the ‘Wait-and-see’ 
(WAS) green sector for being activated above its response threshold, 
and - can be more and more activated by the only inner-flow, from the 
‘pro-active’ to the ‘highly pro-active’ (HP) areas (from light to deep 
blue). Inside the forbidden ‘Off-context’ and ‘Free’ red areas, the epu 
can respond to its only stimulus input, without being primed by the 
inner-flow which conveys short-term contextual information (for more 
details, see Appendix 2). In the GP emotional architecture, the target 
Excitability Etn is calculated in first place from the modulating signal 
that reaches the epu. In the (Rn, En) space, facilitating value(s) (plotted 
by diamond-like dots) may fall into the free-propagation areas. This En 
increase (blue arrows issuing from the round dot) must therefore go 
with a corresponding increase of the contextual ‘transmission factor’ 
Rn, for both parameters values to escape from the forbidden zone (Rn 
shift is shown by green arrows towards square dots in the ‘pro-active’ 
sector). The curved yellow arrows represent the resulting onset/offset of 
a modulating signal. The upper diamond shape illustrates the great shift 
of En induced by a strong positive emotion, causing an equally great shift 
of Rn (upper green arrow). At the opposite, the bottom diamond shape 
located in the ‘inhibited’ area corresponds to a repressive modulation.

Related experimental results summarized in Figures 4,5,9 and 10 
are based on the following pre-requisites:

Figure 6: Ratio of activated epus within each GPS module after exposure to a 
single emotional cue. Color conventions parallel those of the model architecture 
(red cylinders for C1, yellow ones for C2, green ones for C3).

Figure 7: Early contribution of the sensorimotor inner-flow to the selection of 
an action belonging to a repeated behavior.

Figure 8: Modulation of epu propagation parameters. The two main parameters 
(Rn, En) of the nth epu can be set in different functional areas.
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Figure 9: Selection of actions in episodes associated with simulated drug-addiction. Like a graphic novel, six scenes show responses of GPS sensorimotor paths 
experiencing an extremely positive reinforcer, and measures taken to remedy related consequences.

H1: Both conditioning AND counterconditioning can undergo a 
depletion of the Rn parameter along the C1 & C2 emotional paths, only 
when associated with extremely positive or negative values.

H2: The more recent the conditioning episode (i.e.: counter-

conditioning) the greater the reduction of the Rn parameter.

In the reported experiments, the recent counter-conditioning has 
undergone a 90% reduction factor of its high-value Rn (in the HP area 
of Figure 8), whereas an ‘initial conditioning’ Rn is only reduced by 20%. 
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This second prerequisite H2 allows the initial conditioning to overcome 
the masking influence of counter-conditioning where they both meet 
in C31 (epu n° i in Figure 1), thereby reinstating dysfunctions. Other 

regulations of the Rn parameter may be considered in future work.

Because of the decrease of Rn in epus recruited by extreme 

Figure 10: GP selection of actions in episodes associated with a traumatic reinforcer. Five scenes show the responses evolution of a GPS experiencing an extremely 
negative reinforcer and attempts to cope with related outcomes.
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conditioning (H1), these epus are no longer driven by their inner-
flow contextual input. An imprecise high-value reinforcer can thus be 
perceived by C2 in any context, and inappropriately elicit an action (say: 
ak). This ‘hypersensitivity’ makes the impaired behavior more likely to 
be reinstated in a context different from the one which accompanied 
the initial trauma or drug experience. Interestingly, this phenomenon 
is not observed with a precise version of the same stimulus. In this case, 
it is also perceived in parallel by C3, where the paths it stimulates can 
forbid ak through lateral inhibition (Figure 3). 

Remedy to relapse: Spontaneous relapse is caused here by the 
deregulation of a single parameter (Rn) distributed over some paths of 
the emotional channels C1 and C2. A straightforward solution to this 
problem is to identify these paths and regulate their faulty parameter. 
In the computer simulation, this can be performed by replaying every 
cue previously paired with an extreme reinforcer, and by gradually 
increasing the Rn parameter of the epus activated in emotional channels 
until a significant improvement is obtained (Figures 5,6,9 and 10). 
Despite this specific and precise operation, the initial drug-free and 
trauma-free situations cannot be fully recovered (Figures 9 and 10). 

The patterns of selected actions can be paralleled in these six 
situations where the system undergoes one cue per trial (B, C, V, x) in 
the same global context (inner state ‘1’). Only the system experience 
has evolved from one scene to the other. The selection of one action is 
performed here at processing step (ps) 70 (tips of activity at the right-
back of each scene), 18 steps after the cue (ps = 52). The response level 
of an action depends on the way it emerges from other pre-activated 
actions (100 if this gap exceeds 5% of Amax). Before this final decision, 
action-epus can be activated by three different signals all elicited by a 
single input stimulus: 1°/ At ps=55, shortly after the cue, the inner-flow 
onset may cross an action epu threshold which has previously been 
lowered through overtraining (Figure 6); 2°/ At ps=60: anticipation 
of an immediate reward through the short-circuit; 3°/ At ps=67: 
anticipation of a future reward through the long-circuit (Figure 4). 

Scene 1: After training of a series of 68 compound behaviors 
presented twice at the GPS interface. ‘1C’ elicits action ‘E’ (in yellow) 
which gets mostly pre-activated at time 60 (short-circuit reward) but 
also at ps=67 (long-circuit reward). Note that rewards are non-additive. 
If given ‘1V’ instead of ‘1C’, this is action ‘U’ (in green) which becomes 
pre-activated the most after facilitation conveyed by the short circuit, 
whereas action ‘A’ activity (in purple) only results from facilitation 
carried by the long circuit. 

Scene 2: The ‘I’ action (in red), corresponding to ‘drug taking’, has just 
been associated twice with two cues through ‘1BIX’ and ‘1CIX’ situations 
during an extra training session. The GPS exhibits a trend for ‘I’ to 
overcome the actions selected in the previous scene, except in the control 
situation (‘1V’) in which the extreme reinforcer has not been experienced. 

Scene 3: ‘1B’ and ‘I’ pairing has just been strengthened through a 
few repetitions of ‘1BIX’. As shown in Figure 6, an earlier activation of ‘I’ 
occurs, followed by the short-circuit facilitation elicited by ‘B’. Already 
visible in Scene 2, an imprecise version ‘x’ of the ‘drug stimulus’ ‘X’ is 
capable of pre-activating ‘I’ whatever the context (whereas the precise 
version ‘X’ would not). 

Scene 4: Strong aversive conditioning (‘1BIZ’, ‘1CIZ’) has just been 
performed twice; the pattern of action selection appears close to scene 
1. However, the pre-activation of ‘I’ still occurs in parallel to the action 
eventually selected, especially more for the strengthened situation ‘1B 
=> I’ than for ‘1C => I’. Furthermore, the system remains sensitive to ‘x’. 

Scene 5: A relapse into the simulated addiction shown in scene 3 
is observed once the Rn parameter of every highly facilitated epu has 
undergone a selective decrease. 

Scene 6: After Rn supplement, the period which followed the 
aversive conditioning (scene 4) is reinstated, plus the initial non-
sensitivity to the degraded drug stimulus ‘x’. In every scene, the control 
situation ‘1V’ remained unimpeded (Figure 10).

The parameters setting, initial training data, as well as graphical 
conventions are similar to the ‘drug-addiction’ scenario reported in 
Figure 9. 

Scene 1: After initial training. Among the pre-activated actions, ‘A’ 
is selected when the system is stimulated by ‘C’ in the ‘0’ global context. 

Scene 2: Both ‘0CA’ and ‘0FA’ have been conditioned twice with the 
same traumatic reinforcer (‘Z’), namely by ‘0CZ’ and ‘0FZ’. As a result, 
the ‘A’ action is not anymore pre-activated in both situations, except 
by the remaining anticipation of a future reward (see the ‘OC => A’ 
line). With the ‘OF’ input, the repression of ‘A’ allows the previously soft 
response of ‘O’ to be enhanced (shape in blue). 

Scene 3: After counter-conditioning by ‘0CAX’ and ‘0FAX’ 
is repeated once, the initial episode (scene 1) is reinstated, plus 
hypersensitivity to an imprecise version (‘x’) of the highly positive 
stimulus (‘X’).

Scene 4: the relapse episode resembles a depressed version of the 
after-trauma one (scene 2), since the global lack of activation also 
concerns the control situation ‘0B’ which had not undergone the 
simulated trauma. Compared to scene 2, hypersensitivity to ‘x’ in any 
context can also be noticed. 

Scene 5: After Rn supplement, the initial episode (scene 1) is 
reinstated, plus remaining early sensitivity to ‘x’.

Discussion
Experimental results obtained in the present study appear to 

be consistent with a subset of behavioral data. The main issue for 
discussion revolves around the central question of learning, including 
the part of reinforcement in action selection.

Behavioral features

At a relatively large scale (70 compound ‘behaviors’ in the GPS trials 
reported here), neutral stimuli can acquire emotional values through 
association with reinforcers, which is a basic tenet of natural learning. 
Previous GPS experiments [30] also showed that 2nd-order conditioning 
could be simulated by assigning the label of an often used emotional cue 
to a new DE at the top of the Emotion-detector channel. This solution 
comes from the availability of a pool of epus for extending Detectors/
Effectors banks. The dynamic recruitment of GP cells is however mostly 
used for sprouting new memory paths. Rather than being attributed to 
the unlearning [38] of a cue-action-reinforcer association, extinction 
can thus be linked with the sprouting of a ‘noStim’ parallel branch in 
mutual inhibition with the existing reinforcer branch. The resulting 
co-existence of competing ‘noStim’-epu and reinforcer-epu predicted 
by the same action-epu (in C3) allows extinction to suddenly resolve, 
as in the case of relapse. This acquired connectivity remains to be 
investigated for other phenomena, including the fundamental role of 
context in extinction. Interestingly, such conflicting information about 
a cue in different phases of an experiment, which hinders one another 
afterwards, fits into the global theory called interference paradigm [44]. 
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More specific behavioral findings have been modelled in the present 
study, indicating that exposure to an emotional cue is able to modulate 
retrieval of its associated events, but only when the retrieval processes 
are not fully effective [4,43,46]. Beside this, the way superimposed 
modulation signals are worked out in the model is consistent with the 
observation that, in rats, exposure to several cues is not more effective 
than exposure to a single cue [43].

Mapping model items onto brain components

From a general perspective, drawing parallels between running GP 
modules and highly-interconnected brain structures may shed light on 
useful neural connections at various steps of a particular task such as 
action selection.

Contrary to the distributed processing view conveyed by the ANNs 
main streams, the GP local coding is consistent with the recent discovery 
of concept-cells [16,17]. At a more structural level, the ‘inversed-tree’-
like content of every GP module (Appendix 2) can be compared to the 
hypothetical ‘call-trees’ organization of cortical columns in the frontal 
lobe [47]. At a more global level which includes neuromodulation, the 
dependency relationship between GP channels has been inspired by the 
‘ascending spiral’ proposal, including the functional roles attributed 
to dorsal (D) and ventral (V) tiers in the cortico-striatal connections 
(Figure 2). Inhibitory feedbacks from D play the same part as the I1 
reset of stimuli in GP (Appendix 2). Other GP inhibitory links proved 
necessary along chains of modulating epus, for implementing lateral 
inhibition between anticipated behaviors (I2), as well as for the dynamic 
reset of previous anticipations (I3). These supplementary inhibitions 
could be added to the ascending spiral model, between and upstream 
the substantia nigra modulating paths (Figure 1).

Concerning the neural processing of emotions, the GP channel 
that responds to emotional cues and internal states (channel C1) 
corresponds to the amygdala, with its ability to influence other brain 
structures. For its involvement in decision-making and expectation, its 
integration of the emotional values (akin to somatic markers [4]) of cues 
for motor control, C2 may be likened to a striatal region connected to the 
orbito-frontal cortex. With its epus running like mirror neurons [48], its 
integration of both stimuli and actions, C3 represents a premotor cortico-
striatal region, whereas C4 holds a motor part. Other predictions of 
the model concerning its neural correlates remain to be tested through 
biological investigations, including: - the only facilitating influence of 
C1 over C2, even for negative emotions, - the absence of proprioceptive 
(action-oriented) stimuli in C2, - the widespread response to emotional 
cues in C1 and C2, compared to C3 (Figure 6). 

With respect to neuromodulation, previous GP hypotheses [49] 
have assigned roles to monoamine-like parameters for regulating 
epus. The ‘Dopamine’ parameter (Da) modifies decision thresholds, 
whereas ‘Serotonin’ (5-ht) increases the inner-flows. In the GP 
formalism, the Rn parameter undergoes antagonist effects of ‘serotonin’ 
and ‘noradrenaline’ (Na), whereas En reflects the Da regulation. Both 
rewarding and aversive effects are mediated by Da, provided receptors 
inducing opposite effects at the place where modulation signals meet 
sensorimotor structures (at the bottom of C31). With the same Da 
release, D1-like receptors facilitate a sensorimotor trace by decreasing 
its response thresholds, whereas D2-like receptors hold an inhibitory 
effect, a GP mechanism shared with models of the striatum [50].

Given the above hypothetical links between epu parameters and a 
few receptors of neuromodulators, a simulated relapse into either drug 
abuse or traumatic memories can be predicted to implicate local 5-ht 
deficits, especially along the most recent counter-conditioning paths. 

This effect can be compared to a local “breakdown” of neural structures 
involved in anticipating extreme emotions: a depletion of serotonin at 
the locations where it would have been overused. Given that an increase 
of Na (as caused by a stressful aversive situation) has a similar effect in 
GP as a decrease of 5-ht in the epu sensitivity, the implication of stress 
[51] appears to be consistent with the model of spontaneous relapse 
proposed here.

Gating and strengthening together

Although the current GPS showed the effectiveness of its level-2 
modulation circuit in anticipating distant positive emotions, a similar 
architectural distinction between circuits conveying either immediate 
or future rewards has not been evidenced in the brain. Other divisions 
of labor among parallel pathways are suggested by physiological 
data, instead. Distinct cortico-striatal circuits would support either 
automated or gated computation, and could be learnt in parallel [37]. 
Becoming habitual through repetition, cortical associations could 
elicit actions independently of striatal modulating (gating) signals. 
Interestingly, the classical distinction between ‘habitual’ and ‘goal-
oriented’ circuits [35] does not apply to GP, in which repetitions of 
a given behavior makes its C3 paths less sensitive to modulation by 
C2, thus becoming habitual after having been goal-oriented. More 
precisely, when a sensorimotor/behavioral path has been strengthened 
enough (in C3), its action can be selected before the onset of guiding 
(gating) signals from emotional channels C1 and C2 (Figure 7). On the 
biological side, more involvement of modulation (issued from the basal 
ganglia) has recently been reported for learning associations, rather 
than for the execution of habitual behavior. After a function has reliably 
been learned via reinforcements, these structures would even refrain 
from modulating the behavior [26]. 

To sum up, gating and strengthening could both participate in 
action selection whenever an emotional cue occurs. Whereas gating 
through neuro modulation would be essential for selecting new, 
rare or even obsolete occurrences of actions, strengthened behaviors 
would autonomously be generated by sensorimotor areas, and earlier 
than the possible arrival of gating signals. Accordingly, strengthened 
paths would achieve a competitive advantage over the other memory 
paths. This appears to be consistent with the differential effectiveness 
of emotional cues across time: the retention performance is improved 
by such cues only when retrieval processes are not fully effective, such 
as recently after training (1 h), long after training (21 days), but not in 
between (after 3 days) [43]. 

Another anatomical separation has been evidenced in the brain 
between two striatal pathways that would act in an opposing manner, 
respectively involving D1 and D2 dopaminergic receptors. The 
direct pathway would control rewarded behaviors, while the indirect 
pathway would deal with aversive cues, and also promote resilience 
to compulsive drug-seeking [52]. According to the current main 
modeling hypothesis, D1 and D2 are mostly considered as mediating 
RL by modulating synaptic plasticity. By contrast, their GP correlates 
operate instead during action selection (by giving emotional values 
of opposite sign to the transient modulation signals). In the present 
GPS release, emotional pathways targeting either D1-like or D2-
like outputs of the sensorimotor channel are mixed, although future 
refinements of the control system may require different locations for 
pathways targeting either ‘D1’ or ‘D2’. However, with the discovery of 
other neural pathways (hyper-direct and indirect) in the basal ganglia, 
a neural separation appears clearer at the functional rather than at the 
anatomical level [26].
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Reinforcement learning in question

Computer simulations reported in this paper notably account 
for the sudden nature of relapse, a phenomenon known to question 
reinforcement/unlearning theories [53]. Although reinforcement could 
beneficially release the modulation system from gating well-rehearsed 
behaviors, and hence avoid the potential depletion of modulating 
resources, the part of reinforcement in learning might have been 
overestimated in other computational models. In RL, the phasic bursts 
of activity observed in DA neurons of the basal ganglia [9] have been 
proposed in the last two decades as a means to drive conditioning 
[8,10]. In this influential formal framework, the level of released 
dopamine is similar to an error signal evaluating the prediction of a 
reward. A novel interpretation of the DA activity profile is put forward 
by the GP modulation system, in which an early modulation pulse 
conveys anticipation of possible future emotions and their causal 
actions. According to models based on RL, the amplitude of a first Da 
burst generated shortly after the cue carries a probability of reward, 
followed by an error signal right after the reinforcer, at the behavior 
end. According to GP, the first Da pulse results instead from an inner-
flow which is strong enough to instantly reach the end of a Conditioner 
(C2) path, right after its initial cue (Figure 3). The second Da pulse is 
elicited by the actual occurrence of the reinforcer. In this view, only the 
first pulse is useful for quickly modulating the sensorimotor channel 
(C3). As soon as a ‘cue-reinforcer’ path of C2 is built, it can right away 
be facilitated (rendered proactive) by a partner emotional path of 
channel C1, and convey the early modulation of C3.

A variety of associations, possibly embedded, is not quite handled 
by the ‘reward prediction error’ theory of dopamine, in which each cue 
is repeatedly paired with the same reinforcer. By comparison, GP deals 
with several conflicting predictive cues, several possible outcomes, as 
well as compound behaviors. The amplitude of the modulation (1st) 
pulse mirrors the current ‘motivation’ level (transiently expressed 
by C1), as well as the degree of consolidation of the involved C2 
memory path, rather than being key in subsequently teaching this very 
consolidation. There is consequently no time loss in the GP approach: 
the early modulation-pulse is effective as soon as emitted, whereas its 
occurrence requires extra computing in RL.

GP dynamic learning in question

A justified criticism of the GPS learning scheme concerns the 
instantaneous recruitment of epus as a plausible biological model. The 
instantiation of computer data structures (epus, pointers to simulate 
connections) is indeed instantaneous, and permits the rapid creation of 
a GPS memory path, whenever a new differential behaviour is required. 
Taking into account the time constraints inherent in the development 
of a natural substrate, a similar biological differentiation would only 
constitute the last step of a process initiated by neurogenesis. The 
migration of newborn cells from their “nursery” towards areas of 
work could beforehand have been guided by chemical messages [23]. 
“Teenager”-cells would then form chains or neutral memory paths in 
active areas, made thus ready to receive new connections from series 
of unexpected stimuli at the time they occur. A differentiation episode 
would thus be restricted to new connections established along pre-
formed memory paths, by following a coincidence-detection criterion 
[25].

In experiments reported here, learning is not only artificially fast, 
but also not more autonomous nor flexible than in other computational 
approaches. The occurrence of learning episodes is controlled by the 
user, who can set the full GPS in the WAS ‘restricted propagation’ 

mode, for all channels to possibly grow new paths simultaneously. 
But in a natural setting, the system should learn by itself new pieces 
of information across a lifetime. A complementary study is under way, 
showing how the GP learning constraint can be overcome. The updated 
architecture involves a new channel (C0) which runs in the learning-
compatible WAS mode while other modules operate in the HP mode. 
Unexpected events can thus be recorded in C0 while other channels are 
busy anticipating emotions and acting accordingly. ‘Off-line’ sessions 
periodically handle the system self-training: Events previously recorded 
by C0 are sequentially replayed at a high rate and possibly learnt by 
other GP parallel channels set one after the other in the WAS mode. 
The initial training session reported here can therefore be considered 
as an accelerated version of many cycles during which the model would 
alternately feed (‘off-line’) and use (‘on-line’) its multi-channel long-
term memory.

Interestingly, C0 can functionally be compared to the Hippocampus, 
whereas the required GP modulation states can be correlated with 
those observed across sleep cycles, including the decrease of both 
5-HT and NA monoamines. If the GPS 5-ht remains active during 
simulated sleep cycles, the proper development of parallel channels is 
impeded, including their influential cross-relationships. Related deficits 
of parallelism in the brain development can thus be modeled, with a 
therapeutic solution [54]. 

Conclusion
Whether following a traumatic or extremely rewarding event, 

the decline or upgrade of concerned sensorimotor traces may not be 
required to account for retrieval impairments. Rather than expressing 
a gradual and long-term change in the strength of behavioral memory 
traces, the GP model shows that forgetting - or compulsive revival - can 
be implemented through transient modulation elicited by emotional 
cues. Memory traces would keep their integrity, but their access could 
either be repressed (avoidance case) or, on the contrary, be so facilitated 
that other optional traces would be circumvented (addiction case). 
Because of its dynamic nature, this model offers a novel interpretation 
of the relapse phenomenon: it is proposed that spontaneous relapse 
may result from neuromodulation resource depletion, possibly 
enhanced by stress. Recharging this resource, akin to serotonin at the 
level of the depleted structures, would result in the system partially 
recovering from relapse. Still, in GPS experiments, inappropriate 
actions remain more pre-activated than before the occurrence of their 
extreme reinforcers. However, the initially selected action is shown to 
outperform its competitors after the proposed simulated remedy.

Similar underlying mechanisms are thus proposed for pathologies 
sharing the experience of extreme emotions. Be it ‘drug seeking’ or 
‘trauma avoidance’ an impaired behavior may be masked by an event 
involving an opposite emotion, by giving rise to a new trace of opposing 
value. Behavioral deficiencies would be masked rather than actually 
fading through extinction; memory traces would not be deleted, but 
overshadowed by traces of opposing value instead. Accordingly, apart 
from diseases in which the neural substratum is affected, memory 
impairments might be caused by transient, non-permanent, modulating 
processes. This puts emphasis on being able to replay the situations 
which gave rise to impaired memory access, and retrieve every related 
stimulus for reactivating the emotional traces to be selectively reshaped.

Besides its potential clinical applications, the computational model 
presented here shows that a parallel architecture consistent with recent 
neurobiological data can perform action selection in real-time by 
instantly combining its past emotional conditioning.



Citation: Beroule DG, Gisquet-Verrier P (2016) A Functional Model of Action-Selection Selection Guided by Emotional Stimuli. Int J Swarm Intel Evol 
Comput 5: 132. doi: 10.4172/2090-4908.1000132

Page 16 of 17

Volume 5 • Issue 2 • 1000132
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

References

1.	 Russell SJ, Norvig P (2003) Artificial Intelligence: A Modern Approach; Robotics 
Upper Saddle River, New Jersey: Prentice Hall 971-1019. 

2.	 LeDoux J (2012) Rethinking the emotional brain. Neuron 73: 653-676.

3.	 Proust M (1913) In Search of Lost Time, Gallimard, Paris. 

4.	 Damasio AR, Tranel D and Damasio HC (1991) Somatic Markers and the 
Guidance of Behavior: Theory and preliminary testing. Frontal Lobe Function 
and Dysfunction. New York: Oxford University Press, pp: 217-229. 

5.	 Spear NE (1973) Retrieval of memory in animals. Psychological Review 80: 
163-194. 

6.	 Stanton PK (1996) LTD, LTP, and the sliding threshold for long-term synaptic 
plasticity. Hippocampus 6: 35-42.

7.	 Cajal RS (1959) Degeneration and Regeneration of the Nervous System, 
Hafner, New York, NY, USA. 

8.	 Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic 
dopamine systems based on predictive Hebbian learning. J Neurosci 6: 1936-
1947. 

9.	 Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine 
neurons to reward and conditioned stimuli during successive steps of learning 
a delayed response task. J Neurosci 13: 900-913.

10.	Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and 
reward. Science 275: 1593-1599.

11.	Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, et al. (2015) Human-level 
control through deep reinforcement learning. Nature 518: 529-533.

12.	Robins A (1995) Catastrophic forgetting, rehearsal, and pseudo-rehearsal, 
Connection Science: Journal of Neural Computing, Artificial Intelligence and 
Cognitive Research 7: 123-146. 

13.	Gallistel CR, Balsam PD (2014) Time to rethink the neural mechanisms of 
learning and memory. Neurobiol Learn Mem 108: 136-144.

14.	Verrier PG, Riccio DC (2012) Memory reactivation effects independent of 
reconsolidation. Learning Memory 19: 401-409. 

15.	 Verrier PG, Lynch III J, Cutolo P, Toledano D, Ulmen A, Jasnow AM, et al. 
(2012) Integration of New Information within Active Memory Accounts for 
Retrograde Amnesia: A Challenge for the Consolidation /Reconsolidation 
Hypothesis? J Neuroscience. 

16.	Gross CG (2002) Genealogy of the "grandmother cell". Neuroscientist 8: 512-
518.

17.	Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual 
representation by single neurons in the human brain. Nature 435: 1102-1107. 

18.	Reddy L, Thorpe SJ (2014) Concept cells through associative learning of high-
level representations. Neuron 84: 248-251.

19.	Bonini L, Serventi FU, Bruni S, Maranesi M, Bimbi M, et al. (2012) Selectivity 
for grip type and action goal in macaque inferior parietal and ventral premotor 
grasping neurons. J Neurophysiol 108: 1607-1619.

20.	Quiroga RQ (2012) Concept cells: the building blocks of declarative memory 
functions. Nat Rev Neurosci 13: 587-597.

21.	Nottebohm F (1989) From bird song to neurogenesis. Sci Am 260: 74-79.

22.	Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, et al. (2013) 
Dynamics of hippocampal neurogenesis in adult humans. Cell 153: 1219-1227.

23.	Fuchs E, Flugge G (2014) Adult neuroplasticity: more than 40 years of research. 
Neural Plast p. 541870.

24.	Kirn JR (2010) The relationship of neurogenesis and growth of brain regions to 
song learning. Brain Lang 115: 29-44.

25.	Béroule D (1988) The Never-ending Learning, in: Neural Computers, 
R.Eckmiller, Springer Verlag, 219-230. 

26.	Schroll H, Hamker FH (2013) Computational models of basal-ganglia pathway 
functions: focus on functional neuroanatomy, Front. Syst. Neurosci 7:6. 

27.	Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in 
primates form an ascending spiral from the shell to the dorsolateral striatum. J 
Neurosci 20: 2369-2382.

28.	Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and 
human imaging. Neuropsychopharmacology 35: 4-26.

29.	Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in 
the human prefrontal cortex. Science 302: 1181-1185.

30.	Béroule D, Verrier PG (2012) Decision Making Guided by Emotion: A 
computational model, WCCI 2012 IEEE World Congress on Computational 
Intelligence, IJCNN Proceeds pp: 355-362. 

31.	Verrier PG (2009) Hypersensitivity to cue-elicited memory reactivation as a 
possible source for psychiatric pathologies such as relapse to drug addiction 
and post-traumatic stress disorder. Endophenotypes of psychiatric and 
Neurodegenerative Disorders in Rodent Models, pp: 41-82. 

32.	Garbusow M, Sebold M, Beck A, Heinz A (2014) Too Difficult to Stop: 
Mechanisms Facilitating Relapse in Alcohol Dependence, Neuropsychobiology 
70: 103-110. 

33.	Vanelzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM (2014) From 
Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and 
anxiety disorders. Neurobiol Learn Mem 113: 3-18.

34.	Frank MJ (2011) Computational models of motivated action selection in 
corticostriatal circuits. Curr Opin Neurobiol 21: 381-386.

35.	Doll BB, Simon DA, Daw ND (2012) The ubiquity of model-based reinforcement 
learning. Curr Opin Neurobiol 22: 1075-1081.

36.	Meer MAV, Johnson A, Schmitzer Torbert NC, Redish AD (2010) Triple 
dissociation of information processing in dorsal striatum, ventral striatum, and 
hippocampus on a learned spatial decision task. Neuron 67: 25-32. 

37.	Thorn CA, Atallah H, Howe M, Ann Graybiel M (2010) Differential Dynamics 
of Activity Changes in Dorsolateral and Dorsomedial Striatal Loops during 
Learning, Neuron 66: 781-795. 

38.	Niv Y (2009) Reinforcement learning in the brain, Journal of Mathematical 
Psychology 53: 139-154. 

39.	Béroule D (1987) Guided Propagation inside a Topographic Memory, Proceeds. 
1st Conf. On Neural Networks San-Diego pp: 469-476. 

40.	Blanchet P (1994) Architecture for Representing and Learning Behaviors 
by Trial and Error, in: From Animals to Animats 3: Proceedings of the Third 
International Conference on Simulation of Adaptive Behavior, Brighton, P:10. 

41.	Beroule D (2004) an instance of Coincidence Detection Architecture relying 
on Temporal Coding, in IEEE Trans. On Neural Networks, Special Issue on 
Temporal Coding for Neural Information Processing 15: 963-979. 

42.	Arkin RC (2005) Moving Up the Food Chain. Motivation and Emotion in 
Behavior-Based Robots, in "Who Needs Emotions? The Brain Meets the 
Robot, Oxford University Press p: 173-202.  

43.	Verrier PG, Dekeyne A, Alexinsky T (1989) Differential effects of several retrieval 
cues over time: Evidence for time-dependent reorganization of memory. Anim 
Learn Behav. 17: 394-408. 

44.	Todd TP, Vurbic D, Bouton ME (2014) Behavioral and neurobiological 
mechanisms of extinction in Pavlovian and instrumental learning. Neurobiol 
Learn Mem 108: 52-64.

45.	Bouton ME (2014) Why behavior change is difficult to sustain. Prev Med 68: 
29-36.

46.	Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of 
remembering. Learn Mem 7: 73-84.

47.	Burnod Y (1990) an adaptive neural network: the cerebral cortex. Masson Paris. 

48.	Rizzolatti G, Cattaneo L, Destro MF, Rozzi S (2014) Cortical mechanisms 
underlying the organization of goal-directed actions and mirror neuron-based 
action understanding. Physiol 94: 655-706. 

49.	Toffano C, Béroule D, Tassin JP (1998) A Functional Model of some Parkinson's 
Disease Symptoms using a Guided Propagation Network. Artificial Intelligence 
in Medecine 14: 237-258. 

50.	Antzoulatos EG, Miller EK (2011) Differences between neural activity in 
prefrontal cortex and striatum during learning of novel abstract categories. 
Neuron 71: 243-249. 

51.	Sinha R (2007) The role of stress in addiction relapse. Curr Psychiatry Rep 9: 
388-395.

http://www.ncbi.nlm.nih.gov/pubmed/22365542
http://www.ncbi.nlm.nih.gov/pubmed/8878740
http://www.ncbi.nlm.nih.gov/pubmed/8878740
http://www.ncbi.nlm.nih.gov/pubmed/8441015
http://www.ncbi.nlm.nih.gov/pubmed/8441015
http://www.ncbi.nlm.nih.gov/pubmed/8441015
http://www.ncbi.nlm.nih.gov/pubmed/9054347
http://www.ncbi.nlm.nih.gov/pubmed/9054347
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://www.ncbi.nlm.nih.gov/pubmed/24309167
http://www.ncbi.nlm.nih.gov/pubmed/24309167
http://www.ncbi.nlm.nih.gov/pubmed/12374433
http://www.ncbi.nlm.nih.gov/pubmed/12374433
http://www.ncbi.nlm.nih.gov/pubmed/25374351
http://www.ncbi.nlm.nih.gov/pubmed/25374351
http://www.ncbi.nlm.nih.gov/pubmed/22745465
http://www.ncbi.nlm.nih.gov/pubmed/22745465
http://www.ncbi.nlm.nih.gov/pubmed/22745465
http://www.ncbi.nlm.nih.gov/pubmed/22760181
http://www.ncbi.nlm.nih.gov/pubmed/22760181
http://www.ncbi.nlm.nih.gov/pubmed/2643827
http://www.ncbi.nlm.nih.gov/pubmed/23746839
http://www.ncbi.nlm.nih.gov/pubmed/23746839
http://www.ncbi.nlm.nih.gov/pubmed/24883212
http://www.ncbi.nlm.nih.gov/pubmed/24883212
http://www.ncbi.nlm.nih.gov/pubmed/19853905
http://www.ncbi.nlm.nih.gov/pubmed/19853905
http://www.ncbi.nlm.nih.gov/pubmed/10704511
http://www.ncbi.nlm.nih.gov/pubmed/10704511
http://www.ncbi.nlm.nih.gov/pubmed/10704511
http://www.ncbi.nlm.nih.gov/pubmed/19812543
http://www.ncbi.nlm.nih.gov/pubmed/19812543
http://www.ncbi.nlm.nih.gov/pubmed/14615530
http://www.ncbi.nlm.nih.gov/pubmed/14615530
http://www.ncbi.nlm.nih.gov/pubmed/24321650
http://www.ncbi.nlm.nih.gov/pubmed/24321650
http://www.ncbi.nlm.nih.gov/pubmed/24321650
http://www.ncbi.nlm.nih.gov/pubmed/21498067
http://www.ncbi.nlm.nih.gov/pubmed/21498067
http://www.ncbi.nlm.nih.gov/pubmed/22959354
http://www.ncbi.nlm.nih.gov/pubmed/22959354
http://www.ncbi.nlm.nih.gov/pubmed/23999219
http://www.ncbi.nlm.nih.gov/pubmed/23999219
http://www.ncbi.nlm.nih.gov/pubmed/23999219
http://www.ncbi.nlm.nih.gov/pubmed/24937649
http://www.ncbi.nlm.nih.gov/pubmed/24937649
http://www.ncbi.nlm.nih.gov/pubmed/10753974
http://www.ncbi.nlm.nih.gov/pubmed/10753974
http://www.ncbi.nlm.nih.gov/pubmed/17915078
http://www.ncbi.nlm.nih.gov/pubmed/17915078


Citation: Beroule DG, Gisquet-Verrier P (2016) A Functional Model of Action-Selection Selection Guided by Emotional Stimuli. Int J Swarm Intel Evol 
Comput 5: 132. doi: 10.4172/2090-4908.1000132

Page 17 of 17

Volume 5 • Issue 2 • 1000132
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

52.	Macpherson T, Morita M, Hikida T (2014) Striatal direct and indirect pathways 
control decision-making behavior. Front Psychol 5: 1301.

53.	Redish AD, Jensen S, Johnson A, Kurth-Nelson Z (2007) Reconciling 
Reinforcement Learning Models With Behavioural Extinction and Renewal: 

Implications for Addiction, Relapse, and Problem Gambling, Psych. 114: 784-
805. 

54.	Béroule DG (2016) Offline Encoding of Memory whereby an early Dysregulation 
of Sleep may induce Autism.

Citation: Beroule DG, Gisquet-Verrier P (2016) A Functional Model of Action-
Selection Selection Guided by Emotional Stimuli. Int J Swarm Intel Evol 
Comput 5: 132. doi: 10.4172/2090-4908.1000132

http://www.ncbi.nlm.nih.gov/pubmed/25429278
http://www.ncbi.nlm.nih.gov/pubmed/25429278
http://dx.doi.org/10.4172/2090-4908.1000132

	Title
	Corresponding author
	Abstract
	Abbreviations
	Introduction
	Method
	Channels linked through a modulation device 
	Superimposition of modulating signals 
	Computer simulation and conventions 

	Results
	Training session 
	Tests with emotional cues 
	Adding extreme stimuli to data 

	Discussion
	Behavioral features 
	Mapping model items onto brain components 
	Gating and strengthening together 
	Reinforcement learning in question 
	GP dynamic learning in question 

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	References

