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Introduction
Quasi-interpolation methods have been used widely in data 

analysis, and have great values not only in theory but also in many 
application areas such as medicine, geology, economy and computer 
science. Multiquadric functions were first proposed by Hardy [1] in 
1968, and Franke [2] showed they performed well in many calculations 
including the numerical experiments. Powell [3], Beatson and Powell 
[4], and Beatson and Dyn [5] successively proposed a number of quasi-
interpolation schemes and discussed the convergence of the schemes. 
In 1994, Wu and Schaback [6] proposed a useful quasi-interpolation 
operator DL f  and discussed the convergence and shape preserving 
properties of this operator. In their convergence theorem (theorem 
A in our paper), they claimed interpolated functions 2( )f x C∈ . Based 
on these papers, Zhang and Wu [7], and Ma and Wu [8] did further 
researches. In this paper, we discuss the convergence of operator DL f  
for a wider range of approximated functions (namely functions with lower 
smoothness). To prove the convergence, we use two theorems showed by 
Beatson and Powell [4], and our method differs from that in [6]. 

Preparation
We assume that there are finite scattered points 0{ }Nj jx =  in the bounded 

interval [a,b] as follows:
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The basis functions used in this paper are 
2 2( ) ( ) , 0,..., ,φ = + − =j jx c x x j N
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where c>0 is a positive shape parameter

 In 1994, Wu and Schaback proposed the quasi-interpolation 
operator LD:
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They got the error estimate of this operator as follows:

Theorem A: For 2[ , ]f C a b∈  the quasi-interpolant DL f  satisfies 
an error estimate of type

2 2
1 2 3|| || log ,Df L f K h K ch K c h∞− ≤ + +

where positive constants 1 2 3, ,K K K  are independent of h and c.

 In 1992, Beatson and Powell [4] proposed the quasi-interpolation 
operator LB: 1
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They proved the following result:

 Theorem B: In interval [ , ],a b  the error function { ( ) ( )( )}Bf x L f x−  
satisfies the bound

|| || (1 / ) ( , ).Bf L f c h f hω∞− ≤ +

 Meanwhile, in [4] the quasi-interpolation operator LC was defined 
as follows:
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They got the following theorem:

Theorem C: If f has a Lipschitz continuous first-order derivative, 
then the maximum error of the quasi-interpolant CL f  satisfies the 
bound
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Main Result

It should be noticed that in Theorem A, Wu and Schaback demanded 
the approximated function 2[ , ]f C a b∈ . In this paper, we weaken this 
condition step by step. Using Theorem B and Theorem C proposed by 
Beatson and Powell, we get three theorems about convergence estimate 
for the approximated functions with lower smoothness.

Theorem 1: If f has a Lipschitz continuous first-order derivative, 
then we can draw the conclusion:
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Proof: We notice that quasi-interpolant DL f  and BL f  have the 

following relationship:
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In [4], Beatson and Powell have showed the relationship between

BL f  and CL f :
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For [ , ]x a b∈ , we can easily get the two inequalities:
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Remark 1: Usually we choose ( )c O h= , then Theorem 1 is basically 
in accordance with Theorem A.

Further, for the approximated function ( )f x  with lower smoothness, 
we can get the following results:

Theorem 2: If is f(x) Lipschitz continuous in [a,b], then

 || || (1 / ) ( , ),Df L f Mc c h f hω∞− ≤ + +  
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Proof: Due to (3), it is obvious that
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Finally, using Theorem B, we have
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Then Theorem 2 can be rewrote as:

If ( )f x  is Lipschitz continuous in interval [ , ]a b , then
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At last, for the general continuous approximated function ( )f x , 
the following theorem of convergence is valid:

Theorem 3: If ( )f x  is continuous in [ , ]a b , and the interpolation 
knots are 0 0{ }Nj jx x jh == +  (namely equally distributed), then we 

have the estimation:
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using Theorem B, we have
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Remark 3: Assuming ( )c O h=  in Theorem 3, we can conclude the 
convergence of Wu-Schaback’s quasi-interpolation operator dealing 
with continuous approximated functions when the interpolated knots 
are equally distributed. 
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