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Abstract

With the recent release of FDA draft guidance (2010), adaptive designs, including adaptive randomization (e.g.
response-adaptive (RA) randomization) has become popular in clinical trials because of its advantages of flexibility
and efficiency gains, which also have the significant ethical advantage of assigning fewer patients to treatment arms
with inferior outcomes. In this paper, we presented a general overview of adaptive randomization designs for clinical
trials, including Bayesian and frequentist approaches as well as response-adaptive randomization. Examples were
used to demonstrate the procedure for design parameters calibration and operating characteristics. Both
advantages and disadvantages of adaptive randomization were discussed in the summary from practical perspective
of clinical trials.

Keywords: Adaptive design; Clinical trials; Bayesian adaptive
randomization

Introduction
The general goals of randomized clinical trials are to treat patients

effectively and differentiate treatment effects efficiently. On one hand,
a clinical trial tries to discriminate the effects of different treatments
quickly, so that more patients outside of the trial would benefit from
the more efficacious treatment sooner. For this purpose, patients'
allocation should be (nearly) balanced across the comparative arms.
On the other hand, each trial participant should be treated the most
effectively, and patients themselves also hope that they would be
assigned to the arm that performs better. This often leads to an
unbalanced allocation through adaptive randomization by equipping a
better arm with a higher allocation probability [1]. Therefore,
randomized clinical trials need to strike a balance between individual
and collective ethics.

With the recent release of FDA draft guidance (2010), adaptive
designs, including adaptive randomization (e.g. response-adaptive
(RA) randomization) has become popular in clinical trials because of
its advantages of flexibility and efficiency gains, which also have the
significant ethical advantage of assigning fewer patients to treatment
arms with inferior outcomes. In this paper, we presented a general
overview of adaptive randomization designs for clinical trials,
including Bayesian and frequentist approaches as well as response-
adaptive randomization. Examples were used to demonstrate the
procedure for design parameters calibration and operating
characteristics. Both advantages and disadvantages of adaptive
randomization were discussed in the summary from practical
perspective of clinical trials.

ADs have received a great deal of attention in the statistical,
pharmaceutical, and regulatory fields. The US Food and Drug
Administration (FDA) released a draft version of the “Guidance for
Industry: Adaptive Design Clinical Trials for Drugs and Biologics” in
2010 [2]. The guidance defined an adaptive design as ‘a study that
includes a prospectively planned opportunity for modification of one

or more specified aspects of the study design and hypotheses based on
analysis of data (usually interim data) from subjects in the study.’ The
most common adaptive designs used in clinical trials include, but are
not limited to the following types: adaptive randomization design,
seamless adaptive phase II/III design, adaptive dose-response design,
biomarker adaptive design, adaptive treatment switching design,
adaptive-hypothesis design, multiple adaptive design, group sequential
design, sample size re-estimation design, etc. (Figure 1).

Figure 1: Illustrates the different type of adaptive designs used for
clinical trials [3].

Why Is Adaptive Randomization Important?
The design of any clinical trial starts with formulation of the study

objectives. Most clinical trials are naturally multi-objective, and some
of these objectives may compete. For example, one objective is to have
sufficient power to test the primary study hypothesis, and consequently
have sufficient sample size. However, cost considerations may preclude
a large sample size, so the twin objectives of maximum power and
minimum sample size directly compete. Other objectives may include
minimizing exposure of patients to potentially toxic or ineffective
treatment, which may compete with having sufficient numbers of
patients on each treatment arm to conduct convincing treatment group
comparisons. In the case of K>2 treatments, where (K–1) experimental
treatments are to be compared with the placebo group with respect to
some primary outcome measure, the primary objective of the trial may
be testing an overall hypothesis of homogeneity among the treatment
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effects, and a secondary objective may be performing all pairwise
comparisons among the (K–1) experimental treatments versus
placebo. Investigators may have an unequal interest in such
comparisons. In addition to statistical aspects of a clinical trial design,
there may be a strong desire to minimize exposure of patients to the
less successful (or more harmful) treatment arms. Clearly, in these
examples it is very difficult to find a single design criterion that would
adequately describe all the objectives. Many of these objectives depend
on model parameters that are unknown at the beginning of the trial. It
is useful, and indeed sometimes imperative, to use accruing data
during the course of the trial to adaptively redesign the trial to achieve
these objectives. These design considerations must be achieved without
sacrificing the hallmark of the carefully conducted clinical trials—
randomization— which protects the study from bias.

Once the study objectives are formally quantified and ranked in the
order of their importance, an experimental design problem is to find a
design that accommodates several selected design criteria. Frequently,
the treatment allocations are unbalanced across treatment groups, and
they depend on model parameters that are unknown a priori and must
be calibrated through simulation. Adaptive randomization uses
accruing information in the trial to update randomization probabilities
to target the allocation criteria. Hu and Rosenberger [4] classify
adaptive randomization into four major types:

• Restricted randomization: a randomization procedure that uses
past treatment assignments to select the probability of future
treatment assignments, with the objective to balance numbers of
subjects across treatment groups.

• Covariate-adaptive randomization: a randomization procedure
that uses past treatment assignments and patient covariate values
to select the probability of future treatment assignments, with the
objective to balance treatment assignments within covariate
profiles.

• Response-adaptive randomization: a randomization procedure
that uses past treatment assignments and patient responses to
select the probability of future treatment assignments, with the
objective to maximize power and minimize expected treatment
failures.

• Covariate-adjusted response adaptive (CARA) randomization: a
combination of covariate-adaptive and response-adaptive
randomization procedures.

Frequentist and Bayesian Approach for Adaptive
Randomization
The standard statistical approach to designing and analyzing clinical

trials and other medical experiments is frequentist. A primary purpose
of this report is to describe an alternative approach called the Bayesian
approach. The eponym originates from a mathematical theorem
derived by Thomas Bayes (1763), an English clergyman who lived from
1702 to 1761. Bayes' theorem plays a fundamental role in the
inferential and calculational aspects of the Bayesian approach. The
Bayesian approach can be applied separately from frequentist
methodology, as a supplement to it, or as a tool for designing efficient
clinical trials that have good frequentist properties. The two
approaches have rather different philosophies, although both deal with
empirical evidence and both use probability.

Practitioners exposed in traditional, frequentist statistical methods
appear to have been drawn to Bayesian approaches for three reasons
[5-9]. One is that Bayesian approaches implemented with the majority

of their informative content coming from the current available data,
and not prior information, typically have good frequentist properties
(e.g. low mean squared error (MSE) in repeated use). Second, these
methods as now easily implemented in WINBUGS, Open BUGS and
other available MCMC software packages now offer the convenient
approach to hierarchical or random effect modeling, as regularly used
in longitudinal data, frailty model, spatial data, time series data, and a
wide variety of other settings featuring interdependent data. Third,
practitioners are attracted by the greater flexible and adaptive features
of the Bayesian approach, which allows for early stopping for efficacy,
toxicity, and futility, as well as facilitates a straightforward solution to a
great many other advanced problems such as dosing selection, adaptive
randomization, equivalence testing, and others.

Flexibility is the major difference between Bayesian and frequentist
method, in both design and analysis. In the Bayesian approach,
experiments can be altered in midcourse, disparate sources of
information can be combined, and expert opinion can play a role in
inferences. An important property of Bayesian design is that it can
utilize prior information and Bayesian updating while still maintaining
good frequentist properties (power and Type I error). Another major
difference is that the Bayesian approach can be decision-oriented, with
experimental designs tailored to maximize objective functions, such as
company profits or overall public health benefit. Designing a clinical
trial is a decision problem. Drawing a conclusion from a trial, such as
recommending a therapy is a decision problem. Allocating resources
among R&D projects is a decision problem. When to stop device
development is a decision problem. There are costs and benefits
involved in every such problem. In the Bayesian approach these costs
and benefits can be assessed for each possible sequence of future
observations.

All of this is not to say that the frequentist approach to clinical trials
is totally without merit. Frequentism fits naturally with the regulatory
“gate-keeping” role, through its insistence on procedures that perform
well in the long run regardless of the true state of nature. And indeed
frequentist operating characteristics (Type I and II error, power) are
still very important to the FDA and other regulators.

Response-Adaptive Randomization
Response-adaptive randomization is one of the most important

adaptive trial design in which the randomization ratio of patients
assigned to the experimental treatment arm versus the control
treatment arm changes from 1:1 over time to randomly assigning a
higher proportion of patients to the arm that is doing better [10]. It is
very attractive when ethical considerations or concerns make it
potentially undesirable to have an equal number of patients assigned to
each treatment arms. Suppose the trial objective is to compare
treatment A and B. Patients are enrolled in sequential groups of size
{Nj }, j =1, . . . , J , where Nj is the sample size of the sequential group j.
Typically, before planning the trial, researchers have limited prior
information regarding the superiority or effectiveness of the
experimental treatment arms. Therefore, at the beginning stage of the
trial, for the first j’ groups, e.g. j’=1, patients are allocated to two
treatment arms with an equal probability of 0.5. The response
information observed from these patients then can be used to update
the allocation probability in subsequent coming patients.

Let PA be the response rate of treatment A and PB be the response
rate of treatment B. We set N to be the maximum sample size allowed
for the trial and NA (NB) to be the maximum number of patient
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assigned to treatment A (B). We assign the first N1 patients equally to
two treatments (A, B) and observe the response Yk (k=A, B). Assign pk
a noninformative prior of beta(αk, βk). If, among nk subjects treated in
arm k, we observe yk responses, then

Yk ∼ binomial(nk,pk) 

and the posterior distribution of pk is

pk | data ∼ beta(αk +xk, βk +nk –xk)

During the trial conduct, we could continuously update the
bayesian posterior distribution of pk , and allocate the next Nj patients
to the kth treatment arm according to the posterior probability that
treatment k is superior to all other treatment arms.

πk = Pr (pk = max{pl , 1 ≤ l ≤ K} | data)

One of the advantages of a Bayesian approach to inference is the
increased flexibility to include sequential stopping compared to the
more restrictive requirements under a classical approach.
Noninformative stopping rules are irrelevant for Bayesian inference. In
other words, posterior inference remains unchanged no matter why
the trial was stopped. Several designs make use of this feature of
Bayesian inference to introduce early stopping for futility and/or for
efficacy.

• Futility: if Pr (pk < p. min | data) > θu, where p. min denotes the
clinical minimum response rate, that is, there is strong evidence
that treatment k is inferior to the clinical minimum response rate,
we drop treatment arm k.

• Superiority: if Pr (pk > p. target | data) > θl, where p. target denotes
the target response rate, that is, there is strong evidence that
treatment k is superior to prespecified response rate, we terminate
the trial early and claim the treatment k is promise.

At the end of the trial, if Pr (pk > p.min | data) > θt, then treatment k
is selected as the superior treatment. Otherwise, the trial is
inconclusive. To achieve desirable operating characteristics (type 1
error and power), we use simulations to calibrate the pre-specified cut-
off points θu , θl , and θt.

Example
We conducted simulations to show the procedure for design

parameters calibration. The patient allocation probability is
determined by algorithm [3]. The minimum allocation probability is
10% to ensure a reasonable probability of randomizing patients to each
arm. The minimum clinical response rate (p.min) is 0.2 and the target
response rate (p.target) is 0.4. In this trial, we set maximum sample
sizes of 90 and maximum sample size of 30 per treatment arm. We
equally assigned the first 15 patients to three treatments (A, B, or C)
and started using the adaptive randomization at the next 16th patient.
The cohort size is set as 10, so that the early stopping rule and
allocation probability updating will act after 10 new patients response
cumulated. Although the design allows continuous monitoring after
every patient’s response outcome becomes available, from the
operational and computational point of view, it’s more convenient to
monitor the trial for early termination with a cohort size of 10. A total
of 5,000 independent simulations were performed for each
configuration.

In the first stage, we set θu=θl=1, so that the trial would not be
terminated early, to determine the threshold values of θt. We
performed a series of simulation studies with different values of θt and

compared the corresponding type 1 error rates and powers. Table 1
shows the simulation results. Similarly, we can obtain a set of values of
θt that reached the desired power. The value of θt that close to both
type 1 error and power will be selected for the next stage selection
(Table 1).

Arm

θt

0.9 0.91 0.92 0.93

A 0.07 0.065 0.056 0.049

B 0.842 0.838 0.832 0.825

C 0.998 0.994 0.992 0.989

Table 1: Type 1 error rates and power, without early termination.

In the second stage, fixing θt = 0.92, we followed the similar
procedure to calibrate (θu, θl), which determine the early termination
of a trial due to equivalence or superiority respectively. Note that θl has
to be greater or equal to θt because the decision criteria must be tighter
during the trial than at the end of trial. Our goal is still to maintain a
treatment-wise type 1 error rate of 5% or lower and to achieve desired
power when the trial is allowed to terminate early (Table 2).

θl

 

θu Arm 0.92 0.93 0.94 0.95

0.85

A 0.073 0.071 0.064 0.066

B 0.828 0.819 0.84 0.817

C 0.991 0.996 0.989 0.992

0.86

A 0.082 0.071 0.065 0.057

B 0.821 0.824 0.814 0.839

C 0.993 0.99 0.989 0.986

0.87

A 0.08 0.07 0.067 0.057

B 0.822 0.819 0.838 0.845

C 0.996 0.994 0.994 0.993

0.88

A 0.078 0.07 0.069 0.053

B 0.843 0.847 0.82 0.801

C 0.996 0.993 0.995 0.996

0.89

A 0.079 0.072 0.069 0.048

B 0.852 0.832 0.845 0.819

C 0.991 0.994 0.997 0.994

0.9

A 0.069 0.063 0.062 0.048

B 0.831 0.83 0.821 0.826

C 0.997 0.989 0.992 0.994

Table 2: Type 1 error rates and power, with early termination.
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Alternatively, we can set θt = θl which means that we will not relax
the decision criteria at the end of the trial. Extensive simulation for
various scenarios have to be carried out to ensure controlled type 1
error and satisfied power for all possible situations in real trial (Table
3).

θu

θt = θl Arm 0.8 0.82 0.84 0.86 0.88 0.9

0.85 A 0.142 0.127 0.127 0.126 0.115 0.105

 B 0.871 0.869 0.866 0.864 0.857 0.857

 C 0.992 0.994 0.991 0.995 0.993 0.994

0.87 A 0.121 0.121 0.117 0.108 0.1 0.085

 B 0.876 0.877 0.87 0.87 0.869 0.852

 C 0.996 0.994 0.992 0.994 0.996 0.986

0.89 A 0.109 0.102 0.093 0.091 0.071 0.075

 B 0.855 0.861 0.849 0.861 0.847 0.857

 C 0.992 0.994 0.995 0.988 0.996 0.995

0.91 A 0.097 0.082 0.08 0.078 0.075 0.077

 B 0.83 0.848 0.848 0.84 0.849 0.825

 C 0.993 0.994 0.996 0.987 0.989 0.988

0.93 A 0.095 0.074 0.071 0.071 0.064 0.06

 B 0.797 0.809 0.835 0.833 0.817 0.799

 C 0.994 0.99 0.991 0.996 0.99 0.992

0.95 A 0.065 0.042 0.039 0.039 0.036 0.025

 B 0.784 0.792 0.775 0.764 0.79 0.778

 C 0.988 0.995 0.989 0.989 0.986 0.994

Table 3: Type 1 error rates and power with θt= θl.

Suppose the trial require 0.1 type 1 error and at least 0.85 power for
treatment B and 0.99 power for treatment C, we chose the design
parameters as θt=θl=0.89 and θu=0.9. The operation characteristics is
list in Table 4.

Arm
Pr

(Success)

Pr

(Selected Early)

Pr

(Stopped Early)

#Patients

(2.5%,97.5%)

Arm1 0.2 0.012 0.386 24.15 (6, 35)

Arm2 0.4 0.496 0.077 27.72 (6, 37)

Arm4 0.6 0.827 0.005 16.45 (7, 32)

Table 4: Operation characteristics with θt=θl=0.89 and θu=0.9.

Discussion
While response-adaptive randomization procedures are not

appropriate in clinical trials with a limited recruitment period and
outcomes that occur after all patients have been randomized, there is
no reason why response-adaptive randomization cannot be used in
clinical trials with moderate delayed response. Sequential estimates
and allocation probabilities can be updated as data become available.
Updates can also be made after groups of patients have responded,
rather that individually. From a practical perspective, there is no
logistical difficulty in incorporating delayed responses into the
response-adaptive randomization procedure, provided some responses
become available during the recruitment and randomization period.

A major criticism of response-adaptive randomization is that,
despite stringent eligibility criteria, there may be a drift in patient
characteristics over time. Using covariate-adjusted response-adaptive
randomization can be a solution to this problem if the underlying
covariates causing the heterogeneity are known in advance. This may
not cause issues with large sample size since the randomization
automatically balances prognostic factors among treatment groups
asymptotically. However, for clinical trials with small or moderate
sample sizes, the impact from the imbalance of the prognostic factors
can be substantial when using response-adaptive randomization
designs, and thus causes difficulties to the interpretation after
randomization [11].
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