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Abstract

result.

Viscoelasticity with regular relaxation functions has attracted the attention of many researchers over the last
half century or so. Several results concerning existence and long-time behavior of solutions have been established.
In particular the exponential, polynomial decay and recently what so called the general decay have been proved.

For viscoelasticity, with singular kernels, less attention has been given and few results of existence and
exponential decay have been established. In this paper we extend the general decay result, established for regular-
kernel viscoelasticity, to that with singular kernels. We also present some numerical test to illustrate our theoretical
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Introduction

Since the pioneer work of Dafermos [1,2] in 1970, the viscoelastic
equation

u, —Au+'[(:g(t—s)Au(s)ds =0, (L.1)

with smooth kernel, has attracted a great deal of researchers
and several existence and stability results have been established. See,
for instance, the works of [3-19] where the relaxation function was
assumed to be either of polynomial or of exponential decay. Messaoudi
[20] studied (1.1) for more general decaying kernels and established
some general decay results, from which the usual exponential and
polynomial rates are only special cases. After that a series of papers
have appeared, using similar techniques, and obtaining similar general
decay results. See, among others, [21-25].

Following the work by Mustafa and Messaoudi [26], Lasiecka et al.
discussed (1.1) with a relaxation function satisfying
g () +H(g(s)<0,Vs>0,

Where H is a given continuous positive increasing convex function
such that H (0) = 0, and developed an intrinsic method for determining
optimal decay rates.

In all the above mentioned works, kernels are assumed to be regular
on %[0, +oo).

However, Kinetic theories for chain molecules as mentioned in
[27] and some experimental data [28] suggests that this a realistic
possibility, at least for some viscoelastic materials like dilute solutions
of coiling polymers. Contrary to the regular kernel case, only very few
results related to singular (at the origin) kernels have been established.
For instance, Hrusa and Renardy [29] studied a model equation in non-
linear viscoelasticity and proved local and global existence theorems,
allowing the memory function to have a singularity. To achieve their
result, they approximated the equation by equations with regular
kernels and then used the energy estimates to prove convergence of
the approximate solutions. In [30], the authors showed that a singular
kernel may yield smoothing effects for the solution of an evolution
prob- lem, though the gain in regularity cannot be derived without

specifying the kind of singularity [31]. Gentili considered a linear
viscoelastic material with a relaxation function which may exhibit an
initial singularity. He used the Laplace transform to study existence,
uniqueness and asymptotic behavior of the solution to the dynamic
problem. To provide these results, the author required the relaxation
function to satisfy only restrictions deriving from Thermodynamics.
He also used the energy method to establish a stability theorem and
obtained a regularity result for a class of singular kernels which ensures
the asymptotic stability of the solution. Tatar considered

, = Au—Au, + [[ gt = $)Au(s)ds =0,

together with initial and Dirichlet-boundary conditions and for a
relaxation function

gt)y=te? /T(1-a), O<a<l, %B>0

and proved an exponential decay result. Notice that the kernel here
exhibits an initial singularity, summable, and decays exponentially at
infinity. This type of kernels appears mostly in fractional calculus [32].
Wu [33] extended Tatar’s result to the equation

lu, |” u, —Au—Au, + J.(:g(t —$)Au(s)ds+|u|” u=0,

with p, p > 0and g in [34]. We refer the reader to Carillo et al. [35-37]
for more recent results regarding viscoelastic problems with singular
Kernels.

In this paper we are concerned with the following viscoelastic
problem

u, —Au+ J‘O/ g(t—s)Au(s)ds =0, in Qx(0,00)u =0,
u=0, on Q2 x (0,00)u(x,0) = u,(x), (1.2)
u(x,0) =u,(x), u,(x,0) =u,(x), xeQ,
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Where Q is abounded domain of R*(n = 1) with a smooth boundary
0Q) and the relaxation function g is a positive non increasing function
which can exhibit a singularity at 0. Our aim in this work is to show
that, with a slight modification in the arguments of [20], we extend
the general decay result, established for regular relation functions, to
singular kernels. As we show later, the exponential decay results of
Tatar [31] and Wu [27], among others, are only special cases. We also
give some examples and present some numeric to illustrate our decay
results. The paper is organized as follows. In section 2, we present some
hypotheses and technical lemmas and our main decay result. In section
3, the proof of our main result, as well as some illustrating examples
will be given. Section 4 is devoted to the numerical setting and tests of
our decay results. We finish our paper with some concluding remarks
[11].

Preliminaries

In this section we state our hypotheses, give, without proof a
standard existence theorem, and state our main decay result. So, we
assume

(H1) g: (0, +o0) > (0, +e0) is a differentiable integrable function
satisfying
1—j0 2(s)ds=1>0 (2.1)

(H2) There exists a differentiable non increasing function &: (0, +o)
- (0, +oo) such that

g ()< -E(g(r), Yi>0.

Remark 2.1: These conditions allow a larger class of functions than
that considered in [14,20] and others. In particular it allows singular
integrable functions such as

g(H)=t"7e", 0<a<l, 0<v<l1, b>0.
Notice, also, that | £'(¢)/ £(¢) |< M imposed in [14,20] is no longer
required. Now, we introduce the energy functional
1 I ' 1
E(t)= Ejﬂ(u; +(1 —jo g(s)ds)|Vul )dx+5( 2°Vu)(t), (2.2)
Where

(g°Vu)(t) = jﬂ L. gt —9)|Vu(t) = Vu(s)| dsd.

For completeness, we state the following existence result, which can
be proved using the Galerkin method [7]. For more about existence, see
[38] and [29].

Proposition 2.1: Let (u,,u,) € Hy(Q)x L*(Q) be given. Assume
that g satisfies (G1). Then problem (1.2) has a unique global solution

ueC([0, +x);Hy(Q)), u,eC([0, +0);I*(Q)). (2.3)
Our main stability result is
Theorem 2.2: Assume that (H1) and (H2) hold. Then, for any t >0,

there exist two positive constants k and K such that the solution of (1.2)
satisfies

E(t)< ke WO s . (2.4)

Main Result

In this section we prove our main decay result. We will use c,
throughout this paper, to denote a generic positive constant. We start
with the following lemmas.

Lemma 2.2: [20] Let u be the solution of (1.2). Then the energy

functional satisfies
E'(t):%(g"’Vu)f%%g(t)jg‘Vu‘zdxSO. (3.1)

Lemma 2.3: [20] For any u € H}(Q), we have
JoJL 866 =00 ~u(endz) e <1 -nCi e Va0,

Cp is the Poincar ‘e constant.

Lemma 2.4: Under the assumption (H1) and (H2), the functional
(1) = J‘Quutdx

Satisfies, along the solution, the estimate

(D'(Z)S—éj.ﬂ‘Vu‘z -J—J-Qu[2 +c(g°Vu). (3.2)
Proof: By using equation (1.2), we easily see that

()= Igufdx - IQ[Vu P dx+ jﬂ Vu(t). jo gt - 1)Vu(r)dzdx. (3.3)

We then estimate the third term in the right-hand side of (3.3), as
in Lemma 3.4 [20], to obtain

[ Vuto)[ gt—o)Vu(r)dedr <[ Wu(o) P dx
Q 0 2 Q

o (3.4)
+5[(1 #=D(EEV0 -1 [ wut)P dx},Vry > 0.

By combining (3.3) and (3.4), we arrive at
0 SJ‘Qufder%(l+ﬁ)(l—l)(g°Vu)(f)—%[l—(l+17)(1—1)2]L2]Vu(t) Fdx,v7>0 (3.5)

By choosing n = I/(1 — 1), (3.2) is established.

Lemma 2.5: Under the assumption (H1) and (H2), the functional
()= ~[ [ gt s)ul)~u(s))dsdx

With t,>0 satisfies, along the solution and for any 8>0, the estimate
W ()< —( [[ gts)ds —5)[{2143 o[ v + %g(gWu)—g(g'ovu), (3.6)

Proof: Direct computations, using (1.2), yield

Y1) = jﬂw(z).( j g(t—7)(Vu(t) - Vu(r))dr)dx (3.7)

_IQ(I;g(t - T)Vu(T)dT).(J‘; gt—7)(Vu(t)— Vu(z'))dz') dx

—Iﬂutj.; g (t—1)ut)—u(r))drdx - (LL g(s)ds)jnutzdx

Similarly to (3.3), we estimate the right-hand side terms of (3.7). So,
by Lemma 2.3, Young’s inequality and the fact that

f g(@)dr< [ g()dr=1-1,
the first term of (3.7) gives
-[ W(t).(j; gt —7)(Vu(t) - Vu(z'))dz')dx (3.8)

< 5jg|w P dx + %(g"Vu)(t), V& >0.

Similarly to (3.4), the second term of (3.7) can be estimated as
follows
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jﬂ( jo gt —s)Vu(s)ds).(j' g(t—9)(Vu(r) - Vu(s))ds)dx (3.9)
< [25 + %j(l —I)(g°Vu)(t)+25(1 - l)zjg\vu\zdx.

As for the third and the fourth terms of (3.7) we have

[ u j & (t — 7)(u(t) — u(r))drdx

< 5.{9‘“1 ‘zdx - %Cﬁj]; g (t—1)|Vu(t)=Vu(r) [} drdx (3.10)

t .
<[ |u[ax- %C;(g Vu)(t)

By combining (3.7)-(3.10), the assertion of the lemma is established.
Proof of Theorem 2.2: We set
F(t):= NE(t) + e®(t) + ¥(1), (3.11)
where N and ¢ are positive constants. Direction substitution leads to

F (1)< -[(J’ g(s)ds —8)— s:“gzufdx—{%‘— a}uvu‘z + [%_g}(g'OVu) +e(g°Vi).e

Ll
Since g(s) > 0, we can choose t>t, such that Jlio g(s)ds =g, >0.
Hence, we obtain
Flt)<-[(g,-5)-2] L)ufdxf[%g - 5} [ vuf +[§ —ﬂ(g"’w) +e(g°Vu), Vi1,

At this point, we choose § so small that

1 l
g0_5>5gos 5<§g0

And

A
4 2

So that

(g,—0)—¢>0, %g—é‘>0.

Finally, we then pick N so large that gfg 20and F ()« E(2).
Therefore, we have, for some y > 0,
F({t)<—yE({t)+c(g°Vu), Vit=t,. (3.12)
By using (H2) and (3.12), we easily deduce
(EWOF @) =EOF () +E (OF (¢)
<—yEME() +c(g°Vu), Yt >t,

Since & <0. By recalling F(r) © E(¢) , we get
L(t) < —yEME() < —kEQ)L(), V=1,
Where

L(t)=S@)F(t)+cE(t) 2 E(t).

k[ e(s)as
Ly <ke b Vi,
Then, (2.4) follows by (3.14) and continuity of £ and E.

(3.13)

(3.14)

Decay examples. To illustrate our result, we give four examples of
singular relaxation functions.

1. Let
gt)=ct e, 0<a<l, b>0,

And ¢, small enough o that Om g(#) <1 Direct calculations show
that §(t) =b + at™". So, the decay estimate (2.4) gives

E(t) <Ktk e™X,

for two positives constants k and K .

2. Let

g(t) = ¢ [In(1 +t)]**, 0<a<1,b>0,

and ¢, small enough so that I:C g(¢) <1. Direct calculations show that

sO=b+ So, the decay estimate (2.4) gives

a
A+0)In(l+1)
E(t) <K [In(1 + t)] =k etk
for two positives constants k and K .

- I
3.Letg(r) =c, 67, forc,»for cOsmall enough sothat | g(1) <1. Direction
1

calculation show that &(f)=—+

1
2 2_\/; So, the decay estimate (2.4)

gives
E(t) < Kt ¥V,
for two positives constants k and K.
4. Let
gt)=c,(1+)*(In(1+t))*,0<a<l,b>1,
and c; small enough so that J'Om g(t) <1. Direction calculations show

a

— 4+— — . So, the decay estimate (2.4) gives
1+t (A+t)In(1+7)

that £(¢) =

E(t) <K (1 +t)™ (In(1 + t))™,

for two positives constants k and K .

Numerical Test

In this section, we present a two dimensional case of system (1.1) in
order to illustrate our theoretical decay result.

Numerical scheme

For computational purposes, we rewrite (1.1) as follows

u, — (1 - I; g(s)ds)Au - J(:g(t - s)(Au(s) - Au(l))ds =0.

We consider a square domain [0, 1]x[0, 1] meshed uniformly in
N xN| grids with the space steps Ax=Ay= 1/max(N,, N ). We chose a
time interval [0, T] subdivided uniformly into N, = T /At sub-intervals
with a time step At = aAx. The solution u(x, y, t) approximated at each
point of the mesh (x;, y)) = (iAx, jAy) and at any time t" = nAt is given by
U, =u(x,,y,,t")=u;,. Ateach time t" the interval [0, t"] is subdivided
uniformly in n sub-intervals using the same time step At where the
function g at each time s* = kAt is given by g(s¥).

(4.1)

The full discretization of (1.1) in time and space is given by

AU}, =AU} + [ g =5)(AU, () - AU}, )ds =0, (42)
With the boundary condition
U, =Uy ,=U] = U;N‘ =0,v0<i,j<N,N, (4.3)

And the initial conditions
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%wU! U’

Uy, = sin(ﬂx,.)sin(ﬂyj),”T“" =1,Y0<i,j<N_,N,, (4.4)
Where
Uttt -2u" +UM! g

no_ i ij i _1_
AU, = oAy Jg=1 jo 2(s)ds
AU" = H—l/ _ZU” + Uzn Lj Ui’jj-#l _2Ui,,lj +Ui’,7j—1

" (AJC)2 (Ay)’
And
AU, (s)= U, ,(S) 20, (S) +U,_ 1J(s) + U, ,+1(s) _ZUI',/'(S) + U;,,/—I(S)

L] :

(Ax)z% ()

Then, the proposed scheme to solve problem (1.1) is as follows:

Vi=0,..,N,Vj=0..,N ,Vn=1..,N~1:

Uz =207, U+ a0 (18014 [ 9 -9(8U;, - a0, )ds | (45)
Consistency-Global truncation error

The global truncation error el.nj is obtained by replacing the
approximate solution U/, by the value of the exact solution u(x, y, t)
at the point (x,,y,,¢")(u(x;,y,,t") = u]' ) in the scheme (4.2) as follows:

no_ "
G = A!ui»;/

- (1 - Ll g(s)ds) Au}, + J-OI g(t" —s) (Auw ()~ Auf; ) ds #0. (4.6)

Suppose that u is at least C> and compute the Taylor approximation
of the second derivative of u with respect to t, x and y respectively:

n+l

—2u] +u

" 2 o'u".
Au! =L T W T W S AP W (A, (4.7)
e AP PEATE R
n n n 2 n 4 n
Uivi,j _2A":2/ tuy, _ aa”/z,,, +%sz aa”;.j +O(AYY),
X ! X
u . —2u +ul, 62u"f/. 2 u!
Ayz 6y2 41 v’ oy : +O(Ay ).
o, o Lo, Lo
A.”: w+ l./+7 AZ i,j +OAX4+A4,
T e o’ 4 6x4 o' ( VD, (48)

4
,0 uw(s)Jr

Ayz 54”:./(5)

n

oX

o ]+0(Ax‘ +ay"). (4.9)

oxt
By substituting (4.7)-(4.8)-(4.9) into (4.6), we find

az " . " "
el = u;,/ - (1 - jo g(s)ds) Au, + J.O g(t" —-s) (Auw (s)—Au/, ) ds

Yoot
64 {1
L YA TN gl =) s "(S)
12 ot

+Ayz{(3 "+I g(t" —s)

()

H+O(At +Ax* + ApY).

But the first term in the right hand side vanishes, using problem
(1.1). Hence, we obtain
SRENLICY ]

ot o'u!
¢ =] ar Ty gy T
AT ot 0
oul ( )
2 ij n ;/
+Ay [6y4 +-[n a(t

O(AF” +Ax* + AY)

H+O(At +Ax* + AYY).

(4.10)

We conclude that scheme (4.5) is consistent of order 2 in time and
in space.

Stability-Estimation of the discrete energy
The discrete energy of system (4.2)-(4.4) is given by

n+l n
vt -unf

1
gL
2 Z 0/ At

ij

AxAy + ; ( j g(s)dsJ Z AU U Axhy

%Z 2" =5 Y (~AU;, + AU WU Araxy. (4.11)
=0 i

If we compute the variation of the discrete energy, we obtain

AE=E"" -E"™" = Z ZF(k)AtAxAy,
ij k=0
Where
U AU -AUL) J=n-1,
(k)=
[ U @ U |AUL,  k=0,.,n=2.

The quantity AE is numerically strictly negative as expected.

Decay behavior of the discrete energy

In order to show the non-increasing behavior of g and the decay
relation E(t") < Eps(t"), we consider the examples stated in Section 3
and choose the following parameters:

a=0.3, Nx=Ny=50, T=10, k=0.01, K=4, ¢ =0.01, a=0.1, b=1.1.
The space step is Ax = Ay = 0.1 and the time step At = 0.033 (Figure 1).

Conclusions
In this work, we have the following conclusions

* The general decay result, known for viscoelastic problems with
regular kernels, has been extended successfully to problems
with singular kernels.

Figure 1: Energy decay examples.
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* The decay result is established with weaker conditions on the
function &(t).

» The exponential decay results of [33,34] are only special cases.

+ The numerical tests presented for the four types of relaxation
functions are in accordance with our theoretical result.
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