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Abstract

In this communication, we introduced a general system of regularized non-convex variational inequalities
(GSRNVI) and established an equivalence between this system and fixed point problems. By using this equivalence
we define a projection iterative algorithm for solving GSRNVI, we also proved existence and uniqueness of GSRNVI.
The convergence analysis of the suggested iterative algorithm is studied.
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Introduction

The originally variational inequality problem introduced by
Stampacchia [1] in the early sixties has a great impact and in influence
in the development of almost all branches of pure and applied sciences
and has witnessed an explosive growth in theoretical advances,
algorithmic development. As a result of interaction between different
branches of mathematical and engineering sciences, we now have a
variety of techniques to suggest and analyze various algorithms for
solving variational inequalities and related optimizations [2-6]. Verma
[7-10] studied some systems of variational inequality with single
valued mappings and suggest some iterative algorithms to compute
approximate solutions of these systems in Hilbert spaces. Agarwal et al.
[11] studied sensitivity analysis for a system of generalized nonlinear
mixed quasi variational inclusions with single valued mappings. Several
authors studied different kinds of systems of variational inequalities
and suggested iterative algorithms to find the approximate solutions of
the systems [12-15]. We remark that the results regarding the existence
of solutions and iterative schemes for solving the system of variational
inequalities and related problems are being considered in the setting
of convex sets and the technique defined on the characteristics of the
projection operator over convex a set which does not hold in general
when the sets are non-convex. It is well known that the uniform prox
regular sets are convex and include the convex set as special cases. Wen
[16] considered a system of non-convex variational inequalities with
different nonlinear operator and asserted that this system is equivalent
to the fixed point problem and suggested an iterative algorithm for the
system of non-convex variational inequalities. The convergence analysis
of the proposed iterative algorithm under some certain assumption is
also studied. In [17] point out the equivalence formulation used by
Wen [16] is not correct. Inspired and motivated by the works of [18-
26], we introduced and studied a general systems of regularized non-
convex variational inequalities. By using the equivalence, we defined
a projection iteration algorithm for solving GSRNVI. Further, we
proved the existence and uniqueness of solutions of general system
of regularized non-convex variational inequalities. The convergence
analysis of the proposed iterative algorithm is also studied.

Basic Foundation

Let H be a real Hilbert space endowed with norm || . || and an inner
product < ., . > respectively. Let Q2 be nonempty closed subsets of H.
We represent d(.) or d(;Q2) the distance function from a point to a set

Q that is
do(w) =inf [u—v]
Definition 2.1: Let u 2 H be a point not lying in Q. A point v € Q is

called a closed point or a projection of u onto Q if d, () = |u — v||: The
set of all such closed points is denoted by P, (u), that is

Py(u)={V € Q:dy(u) = u—v|}

Definition 2.2 The proximal normal cone of Q) at a point u € Q is
given by

Oaw={¢ e H :ueQ,(utal)}
where a>0 is a constant.

Lemma 2.3 [26] Let Q be a nonempty closed subset of H. Then
¢ €Qh(u) if and only if there exists a constant o = a ({, u) > 0 such that

<{,v—u SaHu—vHZVveQ

Lemma 2.4 [27] Let Q be a nonempty closed and convex subset of
H. Then ¢ € O/ (u)if and only if

<{,v-us0vveQ

Definition 2.5 [4] Let f : H > R be a locally Lipschitz near a point

x. The Clark's directional derivative of f at x in the direction v, denoted
by £ (x; v) is define by
. +7v)-f
£°(x:v) = limsup S+ -f©)
YoX, T
where y is a vector in H and 7 is a positive scalar.
The tangent cone to Q at a point x € (2, denoted by T (x) is defined
by
T,(x)= {v e H:dj(x;v) = O}

The normal cone to Q at x € Q); denoted by Q(x) is defined by
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QQ(X):{Q' eH:<{,v><0Vv ETQ(X)}

The Clarke normal cone denoted by O (x) is defined by
04 (x)=co[Q5(X)]

where a(S] denotes the closure of the convex hull of S and
0r(x)c QS (x); whereQS (x) is a closed convex cone and Qf(x) is
convex but may not be closed.

Definition 2.6: [4] For a given t € (0, + oo]; a subset t of H is called

the normalized uniformly prox-regular (or uniformly t-prox-regular)
if every nonzero proximal normal to Q, can be realized by an t-ball.
That s forall x e Q, and 0 ¢ eQf, (x)
<£, x—;>Sin—}HZ xeQ,

I 2t
Therefore, for all ;th and 0= ¢ eQF (x)with ||]=1we have

2
, XeQ,

— 1 —
<, x—-x >S—Hx—x
2t

Lemma 2.7 [23] A closed set Q c H is convex if and only if it is
uniformly t-prox-regular for every t>0 Proposition 2.8 [25] Let t>0 and
Q, be a nonempty closed and uniformly t-prox -regular subset of H.
Let U(t)={u € H: 0 < d_, (u)<t} Then the following statements are hold:

(a) for all x € U(t); P, (x) #0;

(b) for all t0 2 (0; t); Pt is Lipschitz continuous mapping with

t
constant p

onU(r) = {ueH:0<d,(u) <t}

X

If Oq () is a closed set valued mapping, hence

050 =Q%, (%)

and

0, (0 =Q5 (0= Qf, (x)

The union of two disjoint intervals [a,b] and [c,d] is uniformly
t-prox-regular with ¢ = €= The infinite union of disjoint intervals is
also uniformly t-prox-regular and t depends on the distance between

the intervals.

Basic Remarks and Formulations

Let t be an uniformly Q prox-regular (nonconvex) set and g;: Q>
Q, be a given mapping for i = 1; 2; 3: For given mappings T, T, T,: Q>
Q, we consider the following problems of finding (x', ', z') € Q x Q x
Q, such that

< r1T1 (y*=X*)+gl(x")7gl(y*)= gl(x)ig](x‘) >20= gl(x)Eszrl >0
(B2 3+ 8,0 -2:), () -2:() 20, £,(x) Q.1 >0
(BT, (7)) +2,(2) - g, (r), g,(0) - &:(x)) 20, gy (e Q>0 (1)

The problem (3.1) is called a general system of regularized non
convex variational inequalities. We note that if T =T,=T,=T : Q >
Q is an univariant nonlinear operator, g=Li=123 (the identity
operator) and x*=y*=z*=u, then the system (3.1) reduces to the
following classical variational inequalities defined on the nonconvex
set Q find u € Q such that

(Tu,y—u)20, ¥ve Q, (32)

and (3.2) is equivalent to find u € Q such that
0e Tu+Q; (v (3.3)

P
Where Uo, (W denotes the normal cone of Q, at u over the non
convex set.

Lemma 3.1 (x,y,z) € Q x Q x Q is asolution set of problem (3.1)
if and only if

g (x) =P, [g,(y) =1L (v, x)],
gz(y*):PQ, [gz(Z*) —-nl, (z*,y*)], (3.4)
2(z) =P, [g(x) = 1T (x",2))],

where P is the projection of H on to the uniformly t-prox-regular set
Q. In the proof of Lemma 3.1, there occur three fatal errors. First in
view of Proposition 2.8, for any t € (0, 1) the projection of points in
the tube U(r) = {u e H : 0 < dg, (1) < t'}onto the set Q, exists
and unique, that is for any x € U(t), the set P, (x) is nonempty and
singleton. From the Lemma 3.1 and Proposition 2.6 the points g (y') -
r, T (y5x); g,(z)-1,T,(z,y) and g, (x) - 1,T,(x, z') should be in U(t")
for some t’ € (0, t) it is not necessary true, hence (3.4) are not necessarily

well defined. If /i <

> 1

5 < t" —,and 7
1+,

t t'
147 (v, x) <1+Hn(f,£)H’ and

t’ € (0, t). Then we have

dq (2,() =1 T, (v, x") )<dq (g, )+ [T, (v, x)

_tnetx
B ITES)

<t', for g, (y*)th,

Hence, (g,(y)-15T,(y,x") e U()
Similarly ~we  have (2,(z)-tT,(z,y)eU() and
(gs(X*) - r3T3 (X*aZ*) € U(t')
t' t' t'
< T < - and 15 < o
147 (v7.x) 147, (2", 147y (7.2

s

If 7

for t’ € (0; t); then the equation (3.4) are well defined.

Secondly the following general system of regularized non convex
variational inclusions is equivalence to the system (3.1):

0erT; (v, x)+g(x)-g () + 10, (g(x)
0enl, (z,y)+g, () -g(@)+1n0" (g,¥))

0enT, (x',7)+2,(z) -2, (X )+ 10", (2,2 ), (35)

Since 0", (/(x)), 0% (€,(y)) and O, (g,(z")) are cone,
the system (3.1) is equivalent tothe following system:

OenT, (v, x)+8,(x)-g () + 0" (g,(x)

0enly(z,y)+&, ()= )+ 0% (&)

0erTy(x',2 )+ 2,(2 )~ g, () + Q% (8,(2). 6)

The system (3.1) is equivalent to the system (3.5) which is not true
in general.

Example 3.2 Let H=R and t=[0, b] [c, d] be the union of two disjoint
intervals [0, b] and [c, d] where 0 <b<c<d: Then t is an uniformly t-prox-
regular set with t = cXb 2. Define 7,: Q, x Q,» Q,and g, : Q, - Q, by
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Z(X,y,z):g[es,m ,
g/(x) =kx" X, V,Z € Qt

where for j=1,2,3, si,m e R,0,<0 and b <k < are arbitrary
but fixed. b"

Assumex'=y =z=bandr>0,i=1,2,3

.s'zhz _ s3b2
-1,6,e r,0.e
2 2

c—kb" ~ c—kb"

be the fixed arbitrary. Hence for all w e Q,
(hT(" )+ g6 =g, () w=g, () +allw=-g, () I1”
=16 (W—kb")+a (w—kb")?
=(w—kb")+(a (W—kb" )+ 1,0, ).
If w € [0, b], then
kb" < w—kb" < b—kb" = b(1—kb" ™)
and
—kab™ + 10" <a(w—kb™)+ 10" < 16 + ab(1—kb"")
For w € [c, d] we have
c—kb" < w—kb" < d —kb"

and
a(c—kb")+r0e" <a(w—kb™)+r0e"” < a(d—kb")+rOe"”

(w—kb") (a(W—kb")+76," )20 ¥V eQ, (3.8)
From (3.7)-(3.8), we have
(07 X+ 8,6~ (6 w=g () +allw—g (I 20V, eQ,

Since ;«ﬂlef”’Z (w—kb™)< 0 forall we[c,d]ie,

(hT(" )+ g () =g (0 hw=g (x)) <0V, eQ

Hence

(hT(v 2+, =g w=g,(x)) 2 0, we ©,
cannot hold. Similarly we have

(WL Y )+ 8,0~ & @ hw=-g,(0) +allw-g,)I’ 20V, €Q,
while the inequality

(hLE Y+ 8- 2@ ) w-2,()) 20,7, € ©,

cannot hold. Again in similar way we have

(W, 2)+ g,(2) - g (X hw=g,(2) +a lw=g,(2)II’ 20V, € Q,
the inequality

(BT, 2+ g,(2) — gy (X ) w=gy(2)) 2 0

cannothold. Therefore we can see that every solution of (3.2) isa solution
of (3.3) but converse need not be true in general. On the basis of example
we define as the general system of regularized non-convex variational
inequality. For given nonlinear mappings 7,:HxH — H and
g, :HxH — H i=1,2,3 weconsider the general system of regularized

non-convex variational inequality for finding (x",y",z")e H xH x H
such that (g| (X )a gl(y )7 gi(Z )) € Qt X Qz X Q/ and

(hT,( X )+ () =g, ("), (0 —g,(x))

ML, x }nglt(x )—& OO | g(x)—g, (P20, forx € Q,,

(B0 Y+ 2,0)-8,(), £:0-2,()

rT(Z,y - ) *
P LLEYA y)+g22t(y) SO o (=g, (y)1220, forx e Q,,

(BL( 2+ g,(2)- g, (x), g (0 —g,(x))

AT,z )+g23t(z V=& o (=g xIP20, forx e Q. (3.9)

Proposition 3.3: Let () be an uniformly t-prox regular set. The
system (3.9) is equivalent to the system (3.6).

Proof: Let (x',(y'),(z)e HxH xH (g,(x").g,(y).g(z)eQ,xQ,x0,1 = 15 2; 3 be
a solution set of the system (3.9). If ATy x)+g,(x)-g(y)=0then
0erT (v, x)+g(x) =g () +0 0 (N If 1T (v ,x)+g (x)-g (y)=0
then

(-HL0" X))+ 2 () =g (). () - g ()

MALGN XD+ 2 (D) -g 0O

5 llg,(x)-g,x)II*,Vxe Q, From Lemma 2.3,

~(L (G x )+, (x) =g (y)eQ g (g X)),

Hence  0erZi(y',x)+g,(x)-g )+ Qg )

Similarly we have

0e BT (2, y )+ 22y )~ 822+ Qou(e, ()
and

O nT(x",2)+g(z) g, (x)+ Qo (g (2)

Conversely, (x',y',z") € HxHxH with (g,(x*); g (y); g(z")) €Qx Q x
Q; i=1; 2; 3be a solution set of the system (3.6) then from Definition
2.6, (x', y',z') € HxHxHwith (g(x'); g(y); g, (z)) € Q x Q x Q;i=1,2,
3 be a solution set of the system (3.9).

Lemma3.4: Fori=1,2,3let T; g;r,be the same asin the system (3.9),

then (x',y',2) € H x H x H with (g(x*); g(y); g(2)) € Q x Q x Q bea
solutionsetofthesystem(3.9)ifandonlyif(x',y’,z") satisfiesthesystem(3.4)
t' r !

with% <

t €(0,t)

—— 1 < ——and 1, <——————— f,
LGN x) T TIHILGE YY) T HIL ) I
Proof: Let (x', ¥, z') € H x H x Hwith g(y); g(z)) € Q x Q x Q;
i=1,2, 3 be asolution set of the system (3.9). Since g(y); g(2)) € Q, x
Q xQ

< — 5 < ——andr, <—————
1T (y . x) 1+ Ty(z .y ) 1+ T3(x 2 ) ||

it follow that the equations (3.4) are well defined. By using
P,, = (1+Qf,) " and Proposition 3.3 we have

0e T (y",x)+g,(x)-g )+ Q' lg (x)
< g (y)-nT(y,x) e g (x)+ Q' (g (x)
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< g ()-rL( . x) e I+ Q) (g (X))
g (X)) =Py [g(V)-rT( . x)],

where I is an identity mapping. Similarly we have
0e nT(z',y )+g,(y)-g,(z )+ Q42 (¥))
< g,Z)-nL(z,y) e gy )+ Q%2 ()
< g,(2)-nh(z,y) e I+ Q' ), ()
S g,() =Py [ (2)-nTi(z .y,

and
0e nT(x',z)+g,(z)—g,(x )+ Q'4,(g;(2))
o g, (xX)-nT(x,2) € g(z)+ Qo (g (2))
© g,(x)-nL(x,z) e (I+ Q') (g (2))
© g,(Z) =Ry, [& (x)-nLi(x",2)]
This completes the proof.

Existence and Convergence Analysis
Definition 4.1 A mapping T>Hx HxH is said to be
(i) monotone in the first variable if for all x, y € H
<T(x,u)—T(y,v),x—y>20 Yu,ve H,
(if) p -strongly monotone in the first variable if there exists a
constant p>o such that
<T(x,u)—T(y,v),x—y)Z,uHx—y II* Yu,v e H,
(iii) p -cocoercive if there exists a constant pu>o such that
(TCw)=T (n,v),x=y)2pll TCe) =T (V) I” Vx,y € H,
(iv) relaxed p-cocoercive if there exists a constant u>o such that
(T,u)=T (y,v),x=p)= —ul|T(x,u)-T (y,v)|I> Vx,y € H,

(v) relaxed (u,v)-cocoercive if there exists a constant w,v>o such
that
(TCow) =T (pv),x =)= = ullTCow) =T () I +vllx=yII* Vx,p,u,v € H,

(vi) p-Lipschitz continuous in the first variable if there exists a
constant p>o such that for all x, y€ H

ITCeu)=T(y,v) < pllx=ylI Vx,y e H
(i) p-strongly monotone if there exists a constant p>0 such that

(g(x)-g(»),x—y)=K|lx=y||* Vu,veH

(ii) &-Lipschitz continuous if there exists a constant £>0 such that
forallx,y€H

(g(x)—g(»),x—y)=&llx—y|l Vx,yeH

Now we prove that existence and unique solution set of general
system of regularized non-convex variational inequalities.

Theorem 4.3: Let the mappings T, g, and r;i=1,2,3 be the same
as in the system (3.1) such that g (H) C Q: Let gi be the p.-cocoercive
with constant >0 and Lipschitz continuous mapping with constant
p>0: Let T, be the relaxed (1, v,)-cocoercive with respect to the first

variable with constants n, v>0 and A -Lipschitz continuous mapping
with constant }\i>0: If the constant I, for i=1; 2; 3: satisfy the following

conditions:
t t t

r'<1+HT,(y,x)|| s rz<1+IITZ(Z,y)H and ’}<1+||T3(x,z)|\ Vx,yeH, fort'e(0,1) (4'1)

And

=] N0 -2 -2 (8 ~(1-(1+8) p))
A 225

1

=] 022y 8 -2 (8 ~(1-(+6) p.))

<

2 /122 ‘ 1225

v 2| Ny =22n) 8 A (8~ (1-(1+0) p.)")

B ot 6

5 -(1-(1+5)p,)’
yoain V= W+,
V>,
b, :VI_zﬂi§2i+§2i >
208, <1+&E%, (4.2) fori=1,2,3 (42)
t

o= -then the system (3.9) admits a unique solutions.

Proof. Define ¢, ¢,y :H x H — H by

P (x,y) =x =g (x)+ Fy, [8,(») = 1T (v, x)]

P(,2) =y =&+ Fy[8,(2) -1 (2 y)]

v (z,X) =2-g,(2)+ Ry [8;(X) -1 T3(x,2)], VX,y,zeH  (4.3)
Define |||| on HxH x H by

||(x, »z)|. = ||x|| + ||y|| + ||z|| Vx,y,ze H (4.4)

Since (HxHxH, | define
I:HxHxH — HxHxHDby

¢(x,y,2)=(¢(x, ), 0(y,2),¥(x,2)), Vx,y,2ze HxHxH (4.5)

We claim that < is a contraction mapping. Indeed let (x,y), (x,y") €

.)is a Hilbert space, we

Hx Hx H, g (y) e Qand 7,

g0)-rL(.x)eUt)
and the t-prox-regularity of Q implies thatP, [g,(¥)—nrT (y,x)]
exists and unique.

<——— for t’s (0,t), hence
1+ T (y, %)

Similarly Py,[g,(2)—%T,(2,y)] and P,.[g,(x)—rT;(X,2)]also
exists and unique. Using

Proposition 2.8, we have

190e 1) =p (", ylI=lx =g, (¥)+ By [81 () = 1T (1, 0)]= (" =g, () + By, [g, (0 =r T v, x DI
Sllx=x"=(g(0) =g NI+ 18, (=g () =1 (T (r,0) =Ty x NI
<llx—x" (g, -g NI+ (Uly -y ~(@W-g NI+ Iy -y T -T07xD D (4.6)

Where § = L, By u,-cocoercive of g, and £ -Lipschitz continuity
of g wehave /77

<llr=x" =(g () =g NI =llx=x" 11 =2 (g () =g (), x=x" )+ (g, () -, ()

< x=x" 117 =2 118, () =g, () I+ 1(g, () —g, (<) I?
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*12 2 *112 2 *112
Slhx=x 1" =285 [[x=x |I"+&7 llx—x |

<(-248%+ &) Ix-x"I?

Sllv-x - g () -g (NI <pyllx— | )
Where, p,=y1-24&% + &% Similarly we obtain
y=y -gM-gNI<plly-yI (4.8)

Since T, is relaxed (n,, v,) cocoercive and A, Lipschitz continuous
mapping with first variable, we have

ly =y =5 @00~ TG DI =1y =2l =26 (G050 = LONx) =3 )+ 1500 - TG5O

Sy =y 1P =27 Cm) 1T, 0) = TGO 1P =100 = LN DI =My =y
=y 17 = I L) = T

<(1+2nny, /121—2rlvl+r21 ﬂzl)lly—y* II?

Sy -y R G0- T DI <A+ 2527 250 +7 40 Ny =2 | (4.9)
From (4.3)-(4.9) we have
g (x, )= (YIS P llx=x" [1+6 1l y=y" |l

Where B =/1-2,¢% + &% and 6,= 6(p, +\/l+2r177|/12, —2rv 417 A%)

Since g, is p,-cocoercive and £,- Lipschitz continuous mapping and
T, is relaxed (n,, W,) cocoercive mapping and A, Lipschitz continuous
mapping with first variable, we obtain

le,2)~ oy, 2 < B lly=y II+6,]1z—2"|

Where D=+ 1- 2#26‘:22 + éﬂz and 6,=6(p, +\/l + 2r2772122 -2nV, +r222,22 )

Again, since g, is p, cocoercive and £, - Lipschitz continuous and T,

(4.10)

(4.11)

is relaxed (n,, v,)-cocoercive and A,-Lipschitz continuous with first
variable, we obtain
ly (z.x)=w(z . x)II< B llz=—z [I+6,]lx—x || (4.12)

Where Py=v1-2448"+¢% and 6, = 5(p, + 1+ 2,0, 2w, 417,27 It
follows that from (4.4)-(4.12), we have

13(x,3,2) =& (" 2) L =llg(x, ) =g (x", ¥ || +]]
(v, 2)-p(y .z |+l v (z.x) -y ,x)||

(P +O)Ix=x" I+ (p, + )y =y lI+(ps +6)llz =2 ||
Sf”(%)’sz)_(x*,y*,z*) ”*s

and

(4.13)

(=max{p+¢:p=p,,i=12,3}.

The condition (4.2) implies that 0 <I<1 and (4.13) guarantees that
T is a contraction mapping. By Banach fixed point Theorem, there
exists a unique point(%, y,2) e Hx Hx H such that 3(x, J,%) =(%, 7, 2)

From (4.3) and (4.4) we have
&) =Fy [ &) -rT (3,%)]
&M =F18@-nT,(27)]
8(2)=F,[ &%) 1T (X,2)]

for the constant r>0, i=1, 2, 3, In same way deduce that the above
equations are well defined.

Lemma 3.4 guarantees that (X,7,Z)eHxHxH with
(g,(%),g,(0),2,(2) e Q,xQ,xQ,,i=1,2,3 i=1; 2; 3 is a solution set of
general system of regularized non-convex variational inequalities. This
completes the proof. By using Lemma 3.4, we suggest the following
explicit projection iterative method for solving the general system of
regularize non-convex variational inequalities. Algorithm 4.4 Assume
that mappings T,, g and constant r,>0 for i=1; 2; 3 be the same as in the
system (3.9) such that g, (H) <=2, For arbitrary initial points x,, y,, z,
H compute the sequences {x },{y,} and {z } in H in the following way:

Yu=0-a)x,+a,lx,—gx,)+F, (g,)-rL(y,.x,)]
Yon=U-a)y,+ o, [y, -, +th (g (z,)-rT,(z,,Y,))]

z,u=(-a,)z,+ a,[2,-g(z,)+F, (&x,)-rLX,,2,)], (4.14)
where {an} is a sequence in [0,1]

Assume that g=1,i=1, 2, 3 is an identity mappings, then we have
the following algorithm.

Algorithm 4.5: Let mapping Ti and constant r>0 for i=1; 2; 3 be
the same as in the system (3.9). For arbitrary initial points x, y,,z,;e Q,
compute the sequences {x }, {y } and {z } in Qin the following way:

xn+1 :PQr (Yn+1 - rlT{(YrHl’ Xn ))
Vi1 =0 20 =1 (Z,,.15Y,))

Z, = X —11(X,40,2,)),

where {a"} is a sequence in [0, 1].

Again assume that g=1,1=1,2,3 isan identity mappings, then we
have the following algorithm.

Algorithm 4.6 Let mapping Ti and constant r>0 for i=1, 2, 3 be
the same as in the system (3.9). For arbitrary initial points x, y,, z,& Q,
compute the sequences {x }, {y } and {z } in Q in the following way:

xn+] :(1_an)xn + an pQ (yn_’i]-;(yn’xn))
yn+l :(l_an)yn + an PQ (Zn _FZTVZ(Zn’yn))

Zn+l :(1_an)zn + an PQ (Xn _VST;(XH’ZV:))’

where {an} is a sequence in [0, 1]:

Now we prove the strong convergence of the sequences generated
by Algorithm 4.4 to a unique solution set of the system.

Theorem 4.7 Let the mappings T, g and r>0,i=1,2,3 be the same
as in the Theorem 4.3. If the constant r,i=1;2;3 satisfy the conditions

(4.1), (4.2) and Z:io a, =0 then the iterative sequences {(x, v, 2}
generated by Algorithm 4.4 converges strongly to a unique solutions
(x, ¥, 2") of the system (3.9).

Proof: Theorem 4.3 guarantees that the existence of a unique
solution set (x',y,z) e Hx Hx H
With (g(x'), g(y), g(z)) € Qt x Qt x Qt for the system (3.9). Since
t t t
< — . h
LI (x|

I 5 < —— and n<————— ,1'€(0,1)
I+IT,(z .y )l I+ T (x 2 )|l
Therefore, from the Lemma 3.4, (x', ¥, z') satisfies the system (3.4).

For each n > 0 we have
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¥ =(l-a,)x +a,[x =g () Py (g, ) -1 T,(y",x)) |
y=(—a,)y +a,[ ¥ =g, () + By (8,21, T,z ,y) |

2 =(l-a,)z +a,[ 2 ~g, )+ Py (&) -5 (x,2) ], (4.15)

where {an} is a sequence in [0, 1]: Since n e N, (g(y"), g(yn)) eQt;
t/ ZV t/
n< T o h < —— and ,<—————,
T (v ) Tz, )l I+IT(x 2 )l

t'e(0,1)

It is easy to see that for eachn e N,

(& ()=rL (X)) (&)= 1T, (v,.x,)) eU(t)

From (4.14),(4.15) and Proposition 2.8, we have

20. | (x,; =X < A= )I(x, =x)+a, (Il x, —x"=(g,(x,) - g I
+1 By (g ()= 1T (3,5 %)) = By (0= KT (0, x ) I
<A-a ), -x" 1 +a, llx, —x —(g,(x,)-g )

+5(1 g (r) - () =1 (T (. x,) Ty . xNI)
<(l-a)ll(x,—x | +a, llx,—x =(g,(x,)-g &)l

+6(1y, =¥ =€) =g NI+ llyn=y*=r G, x,)H (Y, xNID) (4.16)

Since T, is relaxed (n,, v,) cocoercive mapping and A, -Lipschitz
continuous mapping in the first variable and g, is u -strong cocoercive
mapping and X -Lipschitz continuous mapping, we have

lIx, =" = (g,(x,)~ &N I <A [lx, =x"l, (4.17)

Iy, =y = (&) - NI<R Iy, -yl (4.18)

and

1y, = =n (G, x) Ly XD <1270, -7 +7247 1y, =" 1l (4.19)
Combining (4.16)-(4.19) we get

%, =x 1 <A=a,) llx, =" ll+a(pllx,=x" [ +0 |y, =y ) (4.20)

n+l

where p1 and 0 are same as in (4.10). By (g,(2),8,(z,)€Q, (neN)
¢ t
< Pa— , 1 <
1+ (v x )l 1+T5(z,, y) I

r2
Therefore, for eachn X N,

8> (Z*)_ rsz (z*,y*), g (Zn)_rsz (Zn, yn) Ey(t’).

Since T, is relaxed (n,v,)-cocoercive mapping and A -Lipschitz
continuous mapping in the first variable and g, is _2-strong cocoercive
mapping and _2-Lipschitz continuous mapping in a same way of (4.16)
- (4.20), we get

*

1y,0=y I<A=a)lly, -y I +a(p,lly, =¥ 1+6,1lz, - 21| (4.21)

where p2 and _2 are same as in (4.11). By (g;(x),g; (x,)€Q,, (neN)
t ¢
n< —— .5 <
I+HIT (x ,z )l 1+ T(x,,2,) Il

Hence for each ne N
g3 (X*)_ 737; (X*)Z*)9 g3(X“)—I‘3T3 (Xn’zn)eﬂ(t’)'

Since T, is relaxed (n,, v,)-cocoercive mapping and A,-Lipschitz

continuous mapping in the first variable and g, is y,-strong cocoercive
mapping and & -Lipschitz continuous mapping, as same way of (4.16)
- (4.20), we get

lz=2 1S0-a,) llz,-2 I +a(p;llz, =2 [ +6; || x,~x"[) (422)
where p, and ©, are same as in (4.12). Now

IG5 V> Ze) =5 55 2L < =@ )I(X,,3,,2,) = (x, ¥, 2.
+a, (p+6) lx=x" (| + (ps+0) ly=y Il + (ps +O)| z— 2|
<(-a)I(x,,5,2)-"y 2l +a, (9 +6,) Ix=x | +(py+O)Ily =y I+ (ps +O)llz—2" |
<= )l (x,.3,.2,)-(x". 3" 2) .+ @ l(x,.,.2,) - (x", y".2)l.
<(A-1-Da)(x,,y,.z) -y, 2.
sl_:[(l—(1—l)a,-)||(x0,y0,zo)—(x*,y*,z‘)||* 423

where ' is same as in (4.13). From condition (4.2) we get * 2 (0; 1). Since
® 4 =
n=0 1

we get

1i£2f[(1 ~(1-1)a)=0 (4.24)

Therefore from (4.23)-(4.24)

«—0asn—w

||(xn9ynazn)_(X*7y*9Z*)

and the sequences {(x; y; z )} suggested by algorithm 4.4, converges
strongly to a unique solution set (x, y', z°) of the general system of
regularized nonconvex variational inequalities. In a similar way, we can
prove the convergence of iterative sequences generated by Algorithm
4.5 and Algorithm 4.6.
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