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Abstract
The famous Horn’s problem is about the possible eigenvalue list of a sum of two Hermi-

tian matrices with prescribed eigenvalue lists. The Spectral Problem is to describe possible
spectra for an irreducible finite family of Hermitian operators with the sum being a scalar
operator. In case when spectra consist of finite number of points the complexity of the
problem depends on properties of some rooted tree. We will consider the cases for which the
explicit answer on the Spectral Problem can be obtained.
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1 Introduction

Let A1, A2, A3 be Hermitian n× n matrices with given lists of eigenvalues

λ(Aj) = {λ1(Aj) ≥ λ2(Aj) ≥ . . . ≥ λn(Aj)}
The well-known classical problem about the spectrum of a sum of two Hermitian n×n matrices
(Alfred Horn’s problem) is to describe possible values of λ(A1), λ(A2), λ(A3) such that

A1 + A2 = A3

This problem was solved recently by Klyachko, Totaro, Knutson and Tao [2]. We shall briefly
recall the solution below.

Let α = λ(A1), β = λ(A2) and γ = λ(A3). One obvious necessary condition is the following
“trace equality”:

n∑

i=1

αi +
n∑

j=1

βj =
n∑

k=1

γk

It turns out that necessary and sufficient conditions can be given in terms of linear inequalities
of the form:

∑

i∈I

αi +
∑

j∈J

βj ≥
∑

k∈K

γk (1.1)

where I, J,K are certain subsets of {1, . . . , n} of the same cardinality r < n.
To describe such triples (I, J,K) we recall the standard correspondence between subsets and

partitions. A subset I = {i1 < i2 . . . < ir} ⊂ {1, . . . , n} corresponds to a partition

λ(I) = {ir − r, ir−1 − (r − 1), . . . , i1 − 1}
of length at most r consisting of nonnegative integers.

Let α, β and γ be three partitions and cγ
α,β be the corresponding Littlewood-Richardson

coefficient. Set

Rn
r =

{
(I, J,K)| cλ(K)

λ(I),λ(J) = 1
}

The solution of the Horn’s problem is given by
1Presented at the 3rd Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Göteborg,

Sweden, October 11–13, 2007.
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Theorem 1.1 ([2]). A triple (α, β, γ) is a triple of lists of eigenvalues of three Hermitian
matrices A1, A2, A3 such that

A1 + A2 = A3

if and only if inequalities (1.1) are satisfied for all r < n and (I, J,K) ∈ Rn
r and the “trace

equality”

n∑

i=1

αi +
n∑

i=1

βi =
n∑

i=1

γi

holds. In fact the resulting system of inequalities together with “trace equality” is a complete
and independent set of conditions.

The Littlewood-Richardson rule provides an algorithm to compute the sets Rn
r for a given n.

In fact the explicit recursive answer to Horn’s problem can be given using larger set of triples Tn
r

instead of Rn
r . That this is possible was conjectured by Horn in 1962 and proved by Klyachko,

Totaro, Knutson and Tao (see overview [2]). For a triple (I, J,K) of subsets of {1, . . . , n}, Horn
defined sets Tn

r of triples (I, J,K) of subsets of {1, . . . , n} of the same cardinality r, by the
following recursive procedure. Set

Un
r =

{
(I, J,K)

∣∣∣∣
∑

i∈I

i +
∑

j∈J

j =
∑

k∈K

k +
r(r + 1)

2

}

When r = 1, set Tn
1 = Un

1 . Otherwise, let

Tn
r =

{
(I,J,K)∈Un

r

∣∣∣∣
∑

f∈F

if +
∑

g∈G

jg≤
∑

h∈H

kh+
p(p+1)

2
, for all p<r and (F,G,H)∈T r

p

}

The result of Klyatchko, Totaro, Knutson and Tao is that (α, β, γ) is a triple of lists of eigenvalues
of three Hermitian matrices A1, A2, A3 such that A1 + A2 = A3 if and only if inequality (1.1)
holds for every triple (I, J,K) ∈ ⋃n−1

r=1 Tn
r .

2 Spectral Problem

A modification of the Horn’s problem is the Spectral Problem posed in [5]. The Spectral Problem
is to describe a connection between subsets of real numbers M1, M2, . . ., Mn and γ ∈ R necessary
and sufficient for the existence of Hermitian operators A1, A2, . . . , An such that

A1 + A2 + . . . + An = γI

and

λ(A1) = M1, λ(A2) = M2, . . . , λ(An) = Mn

For example when λ(Aj) = {0, 1} we have the following problem. Describe γ ∈ R such that
there orthoprojectors P1, . . . , Pn with

P1 + . . . + Pn = γI

Let

Σn = {γ| there are orthoprojections Pj such that P1 + . . . + Pn = γI}
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Clearly Σn ⊆ [0, n]. The following beautiful description of Σn was obtained in [7]:

Σn = ({φ+k(1)|k ≥ 0} ∪ {φ+k(0)|k ≥ 0})︸ ︷︷ ︸
Xn

∪[βn, n− βn] ∪ (n−Xn)

Here βn = (n−√n2 − 4n)/2 is a fixed point of the dynamical system

φ+(α) = 1 +
1

n− 1− α

In this work the sets M1, M2, . . . , Mn will be finite. Even for finite Mk it can be very com-
plicated to describe such n-tuples of operators up to unitary equivalence if the cardinality of
Mk is large enough. More precisely the corresponding ∗-algebras defined below may be ∗-wild
(see [10]).

Let us stress here that an essential difference with Horn’s classical problem is that we do not
fix the dimension of H and the spectral multiplicities.

The Spectral Problem can be stated in terms of ∗-representations of ∗-algebras introduced
in [9]. Namely, let α(j) = (α(j)

1 , α
(j)
2 , . . . , α

(j)
mj , 0) (1 ≤ j ≤ n) be vectors with positive strictly

decreasing coefficients. Put Mj = α(j). Let us consider the associative algebra defined by the
following generators and relations :

AM1,...,Mn,γ = C
〈
p
(1)
1 , p

(1)
2 , . . . , p(1)

m1
, p

(2)
1 , p

(2)
2 , . . . , p(2)

m2
, . . . , p

(n)
1 , p

(n)
2 , . . . , p(n)

mn

∣∣∣ p
(i)2
k = p

(i)
k ,

n∑

i=1

mi∑

k=1

α
(i)
k p

(i)
k = γe, p

(i)
j p

(i)
k = 0, j, k = 1, . . . , mi, j 6= k, i = 1, . . . , n

〉

Here e is the identity of the algebra. This is a ∗-algebra if we declare all generators to be
self-adjoint. Equivalently this algebra can be given by the following generators and relations

AM1,...,Mn,γ = 〈A1, . . . , An| A1 + . . . + An = γe, P1(A1) = 0, . . . , Pn(An) = 0〉

where Pk is a polynomial with simple roots from the set Mk.
We can associate a star-shaped graph G with n rays of lengths m1, . . . ,mn coming from a

single center. We will label the vertices of this graph by the points of the sets M1, . . . , Mn

to associated a labeled graph with the algebra AM1,...,Mn,γ which completely determines the
algebra. We can write AM1,...,Mn,γ = AG,χ where χ is the labeling of the graph G, i.e. χ assigns
real values to each vertex of the graph in such a way that χ assigns all values from Mk \ {0} to
the k-th ray such that they increase to the center. To the central vertex χ assigns value γ. We
will fix some enumeration of the vertices of graph G and thus χ will be identified with a vector
with m1 + · · ·+ mn + 1 coordinates.

The following theorem reveals a remarkable connection between complexity of the alge-
bra AG,χ and the properties of the graph G. Namely the complexity depends on whether
G is a Dynkin or a non-Dynkin graph. Recall that the Dynkin graphs are those for which
(m1, . . . , mn) ∈ {(2, 2, 2), (3, 3, 2), (3, 4, 2), (5, 3, 2)} and the extended Dynkin graphs are those
for which (m1, . . . , mn) ∈ {(2, 2, 2, 2), (3, 3, 3), (4, 4, 2), (6, 3, 2)}.
Theorem 2.1 ([11]). For a given graph G the following holds:

1. If G is a Dynkin graph, then algebra AG,χ is finite-dimensional for all χ.
2. If G is extended Dynkin graph, then algebra AG,χ has quadratic growth for all χ.
3. If G is non-Dynkin, then AG,χ contains the free algebra with 2 generators (hence it has

the exponential growth).
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Clearly the Spectral Problem is equivalent to a problem of a description of the set Σm1,m2,...,mn

of the parameters α
(j)
k , γ for which there exist ∗-representations of AM1,...,Mn,γ .

Let us call a ∗-representation π of the algebra AM1,...,Mn,γ non-degenerate if spectrum of
π(Ak) coincides with Mk for all k.

Consider the set

Σn.−d.
m1,...,mn

= {χ| there is a non-degenerate ∗-representation ofAG,χ}

which depends only on (m1, . . ., mn). Every irreducible representation of algebra AM1,M2,...,Mn,γ

is an irreducible non-degenerate *-representation of an algebra AfM1,...,fMn,γ
for some subsets

M̃j ⊂ Mj . Hence (M1, . . . , Mn, γ) ∈ Σm1,...,mn if and only if there exists (M̃1, . . . , M̃n, γ) ∈
Σn.−d.

|fM1|,...,|fMn|
.

Henceforth we will denote the set Σm1,...,mn by Σ(G). Irreducible representations of the
algebras AG,χ associated with the Dynkin graph G exist only in certain dimensions that are
bounded from above (see [8]). In [3, 4] we have given a complete description of Σ(G) for all
Dynkin graphs G and an algorithm for finding all irreducible representations.

3 Coxeter functors

The main tools for our classification are the Coxeter functors for locally-scalar graph represen-
tations. First we will recall a connection between category of ∗-representation of algebra AG,χ

associated with the graph G and locally-scalar representations of the graph G. For more details
see [3].

Henceforth we will use definitions, notations and results about representations of graphs in
the category of Hilbert spaces found in [8].

A graph G consists of a set of vertices Gv, a set of edges Ge and a map ε from Ge into the
set of one- and two-element subsets of Gv (the edge is mapped into the set of incident vertices).
We will consider only connected finite graphs without cycles. Fix a decomposition of Gv of the

form Gv =
◦
Gv t

•
Gv such that for each α ∈ Ge one of the vertices from ε(α) belongs to

◦
Gv and

the other to
•
Gv. Vertices in

◦
Gv will be called even, and those in the set

•
Gv odd.

Representation of G associates with each vertex g ∈ Gv a Hilbert space Π(g) = Hg, and with
each edge γ ∈ Ge such that ε(γ) = {g1, g2} a pair of mutually adjoint operators Π(γ) = {Γg1,g2 ,
Γg2,g1}, where Γg1,g2 : Hg2 → Hg1 . We now construct a category Rep(G,H). Its objects are the
representations of the graph G in H. A morphism C : Π → Π̃ is a family {Cg}g∈Gv of operators
Cg : Π(g) → Π̃(g) such that Γg2,g1Cg2 = Cg1Γ̃g2,g1 .

Let Mg be the set of vertices connected with g by an edge. Define operators

Ag =
∑

g′∈Mg

Γgg′Γg′g

A representation Π in Rep(G,H) will be called locally-scalar if all operators Ag are scalar,
i.e. Ag = αgIHg . The full subcategory Rep(G,H), the objects of which are locally-scalar repre-
sentations, will be denoted by Rep G and called the category of locally-scalar representations of
the graph G.

Denote VG = RGv . Elements x of VG we will call G-vectors. A vector x = (xg) is called
positive, x > 0, if x 6= 0 and xg ≥ 0 for all g ∈ Gv. Denote V +

G = {x ∈ VG|x > 0}. If Π is a finite
dimensional representation of the graph G then the G-vector (d(g)), where d(g) = dimΠ(g) is
called the dimension of Π. If Ag = f(g)IHg then the G-vector f = (f(g)) is called the character
and Π is called f -representation in this case. The support GΠ

v of Π is {g ∈ Gv|Π(g) 6= 0}.
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A character of the locally-scalar representation Π is uniquely defined on the support GΠ
v and

non-uniquely on its complement. In the general case, denote by {fΠ} the set of characters of Π.
For each vertex g ∈ Gv, denote by σg the linear operator on VG given by the formulae:

(σgx)g′ = xg′ , if g′ 6= g

(σgx)g = −xg +
∑

g′∈Mg

xg′

The mapping σg is called the reflection at the vertex g. The composition of all reflections at odd
vertices is denoted by

•
c (it does not depend on the order of the factors), and at all even vertices

by
◦
c. A Coxeter transformation is c =

◦
c
•
c, c−1 =

•
c
◦
c. The transformation

•
c (

◦
c) is called an odd

(even) Coxeter map. Let us adopt the following notations for compositions of the Coxeter maps:
•
ck = . . .

•
c
◦
c
•
c (k factors),

◦
ck = . . .

◦
c
•
c
◦
c (k factors), k ∈ N.

If d(g) is the dimension of a locally-scalar graph representation Π, then

◦
c(d)(g) =




−d(g) +

∑
g′∈Mg

d(g′), if g ∈
◦
Gv

d(g), if g ∈
•
Gv

•
c(d)(g) =




−d(g) +

∑
g′∈Mg

d(g′), if g ∈
•
Gv

d(g), if g ∈
◦
Gv

For d ∈ Z+
G and f ∈ V +

G , consider the full subcategory Rep(G, d, f) in RepG (here Z+
G is

the set of positive integer G-vectors), with the set of objects Ob Rep(G, d, f) = {Π| dimΠ(g) =
d(g), f ∈ {fΠ}}. All representations Π from Rep(G, d, f) have the same support X = Xd =

GΠ
v = {g ∈ Gv| d(g) 6= 0}. Let

◦
X = X ∩

◦
Gv,

•
X = X ∩

•
Gv. Rep◦(G, d, f) ⊂ Rep(G, d, f)

(Rep•(G, d, f) ⊂ Rep(G, d, f)) is the full subcategory with objects (Π, f) where f(g) > 0 if

g ∈
◦
X (f(g) > 0 if g ∈

•
X).

Put

•
cd(f)(g) =

◦
fd(g) =




•
c(f)(g), if g ∈

•
Xd

f(g), if g 6∈
•
Xd

◦
cd(f)(g) =

•
fd(g) =




◦
c(f)(g), if g ∈

◦
Xd

f(g), if g 6∈
◦
Xd

Let us denote

•
c
(k)

d (f) = . . .
•
c◦
c2(d)

◦
c◦
c(d)

•
cd(f) (k factors)

◦
c
(k)

d (f) = . . .
◦
c•
c2(d)

•
c•
c(d)

◦
cd(f) (k factors)

The even and odd Coxeter reflection functors are defined in [8],

◦
F : Rep◦(G, d, f) → Rep◦(G,

◦
c(d),

◦
fd) if (d, f) ∈ S◦

•
F : Rep•(G, d, f) → Rep•(G,

•
c(d),

•
fd) if (d, f) ∈ S•

These functors are equivalences of the categories. Let us denote
◦
F k(Π) = . . .

◦
F
•
F
◦
F (Π) (k

factors),
•
F k(Π) = . . .

•
F
◦
F
•
F (Π) (k factors), if the compositions exist. Using these functors, an
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analog of Gabriel’s theorem for graphs and their locally-scalar representations has been proven
in [8]. In particular, it has been proved that any locally-scalar graph representation decomposes
into a direct sum (finite or infinite) of finite dimensional indecomposable representations, and
all indecomposable representations can be obtained by odd and even Coxeter reflection functors
starting from the simplest representations Πg of the graph G (Πg(g) = C,Πg(g′) = 0 if g 6=
g′; g, g′ ∈ Gv).

Here we will describe the connection of representations of the algebra AG,χ and locally-scalar
graph representations.

Let π be a ∗-representation of the algebra AG,χ in space H of dimension n. Let P
(s)
j denote

projection π(p(s)
j ). Let us define projections R

(s)
j = P

(s)
1 + . . . + P

(s)
j , and subspaces H

(s)
j =

=m R
(s)
j . Let Γ(s)

j : H
(s)
j → H be natural isometries. Then, in particular, Γ(s)∗

j Γ(s)
j = I

H
(s)
j

,

Γ(s)
j Γ(s)∗

j = R
(s)
j . Let V

(s)
j denote the operator Γ(s)∗

j+1(
∑j

i=1 ξ
(j)
s,i P

(s)
i )Γ(s)

j acting from H
(s)
j to

H
(s)
j+1, where 1 ≤ j ≤ ms − 1 and coefficients ξ

(j)
s,i for a fixed S are defined by the following

recursion:ξ(l−1)
s,k =

√
ξ
(l)2
s,l − ξ

(l)2
s,k , with initial data ξ

(ms)
s,ms = λ

(s)
1 , ξ

(ms)
s,ms−1 = λ

(s)
2 , . . . , ξ

(ms)
s,1 = λ

(s)
ms .

It is easy to check that if λ
(s)
1 ≥ . . . λ

(s)
ms ≥ 0 then the above recursion determines ξ

(j)
s,i uniquely.

Then V
(s)∗
j V

(s)
j +V

(s)
j−1V

(s)∗
j−1 = ξ

(j)2
s,j I

H
(s)
j

, V
(s)∗
1 V

(s)
1 = ξ

(1)2
s,1 , V

(s)
ms V

(s)∗
ms = A(s). Here A(s) : H → H

is a self-adjoint operator. Moreover, A(1) + . . . + A(t) = γIH . Operators V
(s)
j together with

their conjugate give raise to a locally-scalar representation of the graph G with a character with
coefficients of ξ

(j)2
s,i and γ appropriately ordered.

This correspondence is in fact an equivalence functor between category of non-degenerate ∗-
representations of algebra AG,χ and the category of non-degenerate locally-scalar representations
of the graph G.

Since we will be concerned with extended Dynkin star-shaped graphs we will simplify simplify
notations and consider only graphs with three rays. This will exclude graph D̃4 for which the
formulae are analogues and are left to be recovered by the reader.

So we will use notations α, β, δ instead of α(1), α(2), α(3). By χ we will denote the vector
(α1, α2, . . . , αk, β1, β2, . . . , βl, δ1, δ2, . . ., δm, γ).

Definition 3.1. A finite-dimensional ∗-representation π of the algebra AG,χ such that π(pi) 6= 0
for 1 ≤ i ≤ k, π(qj) 6= 0 for 1 ≤ j ≤ l, π(sd) 6= 0 for 1 ≤ d ≤ m and

∑k
i=1 π(pi) 6= I,∑l

j=1 π(qj) 6= I,
∑m

d=1 π(sd) 6= I will be called non-degenerate. By RepAG,χ we will denote the
full subcategory of non-degenerate representations in the category RepAG,χ of ∗-representations
of the ∗-algebra AG,χ.

The above functor transform the representation of the algebra with character (α, β, δ, γ) to
locally-scalar representation of the graph G with the following character f : f(g0) = γ and on
the first ray f(gk) = α1, f(gk−1) = α1 − αk, f(gk−2) = α2 − αk, f(gk−3) = α2 − αk−1, f(gk−4) =
α3 − αk−1, . . .. It is clear by analogy how to define f on other two rays.

A locally-scalar representation of the graph G with the character f(gi) = xi ∈ R∗ corresponds
to a non-degenerate representation of AG,χ with the character

α1 = xk

αk = xk − xk−1

α2 = xk − xk−1 + xk−2

αk−1 = xk − xk−1 + xk−2 − xk−3

α3 = xk − xk−1 + xk−2 − xk−3 + xk−4

. . .
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Here xj = 0 if j ≤ 0. Analogously one can find βj and δt. We will denote Π by Φ(π).
The mentioned above functor Φ acts between categories RepAG,χ and RepG, see [4].
The representation Π is unitary equivalent to an irreducible representation from the image

of the functor Φ if and only if

0 < x1 < x2 < . . . < xk, 0 < xk+1 < xk+2 < . . . < xk+l

0 < xk+l+1 < xk+l+2 < . . . < xk+l+m

0 < d1 < d2 < . . . < dk < d0, 0 < dk+1 < dk+2 < . . . < dk+l < d0

0 < dk+l+1 < dk+l+2 < . . . < dk+l+m < d0

The vector n = (n0, n1, . . . , nk+l+m) is called the generalized dimension of the representation
π of the algebra AG,χ. Let Π = Φ(π) for a non-degenerate representation of the algebra AG,χ,
d = (d1, . . ., dk+l+m, d0) be the dimension of Π. It is easy to see that

n1 + n2 + . . . + nk = dk

n2 + . . . + nk−1 + nk = dk−1

n2 + . . . + nk−1 = dk−2

n3 + . . . + nk−2 + nk−1 = dk−3

. . .

4 Spectral problem for algebras associated with extended
Dynkin graphs

Let us recall a few facts about root systems associated with extended Dynkin diagrams. Let G
be a simple connected graph. Then its Tits form is

q(α) =
∑

i∈Gv

α2
i −

1
2

∑

β∈Ge,{i,j}=ε(β)

αiαj , α ∈ VG

The symmetric bilinear form is (α, β) = q(α + β) − q(α) − q(β). The vector α ∈ VG is called
sincere if each component is non-zero.

It is well known that for Dynkin graphs (and only for them) bilinear form (·, ·) is positive
definite. The form is positive semi-definite for extended Dynkin graphs. And in the letter case
Rad q = {v|q(v) = 0} is equal to Zδ where δ is a minimal imaginary root. For other graphs
(which are neither Dynkin nor extended Dynkin) there are vectors α ≥ 0 such that q(α) < 0
and (α, εj) ≤ 0 for all j.

For an extended Dynkin graph G a vertex j is called extending if δj = 1. The graph
obtained by deleting extending vertex is the corresponding Dynkin graph. The set of roots is
∆ = {α ∈ VG|αi ∈ Z for all i ∈ Gv, α 6= 0, q(α) ≤ 0}. A root α is real if q(α) = 1 and imaginary
if q(α) = 0. Every root is either positive or negative, i.e. all coordinates are simultaneously
non-negative or non-positive.

It is known that for an extended Dynkin graph the set ∆∪ {0}/Zδ is finite. Moreover, if e is
an extending vertex then the set ∆f = {α ∈ ∆∪{0}|αe = 0} is a complete set of representatives
of the cosets from ∆ ∪ {0}/Zδ. If α is a root then α + δ is again a root. We call a coset α + δZ
the δ-series and a coset α + 2δZ the 2δ-series. If α is a root then its images under the action of
the group generated by

◦
c and

•
c will be called a Coxeter series or C-series for short. It turns out

that each C-series decomposes into a finite number of δ-series or 2δ-series of roots.
Note that to find formulae of the locally-scalar representations of a given extended Dynkin

graph we need to consider two principally different cases: the case when the vector of generalized
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dimension is a real root and the case when it is an imaginary root. In the letter case the vector
of parameters χ must be orthogonal to a imaginary root. Hence χ must belong to a ceratin
hyperplane hG which depends only on the graph G.

It is know (see [11]) that in case χ ∈ hG the dimension of any irreducible representation is
bounded (by 2 for D̃4, by 3 for Ẽ6, by 4 for Ẽ7 and by 6 for Ẽ8). Thus in case χ ∈ hG we
can describe the set of admissible parameters χ using Horn’s inequalities. In case χ 6∈ hg the
dimension of any irreducible locally-scalar representation is a real root. In what follows we will
relay on the following result [6].

Theorem 4.1. Let π be an irreducible non-degenerate ∗-representation of the algebra AG,χ,λ

associated with an extended Dynkin graph G and π̂ be the corresponding locally-scalar represen-
tation of the graph G. Then either generalized dimension d of π̂ is a singular root or vector-
parameter (χ, λ) ∈ hG.

For a vector v = (v0, . . . , vn) and 0 ≤ s ≤ n we shall write v ≥s 0 if vj > 0 for all j 6= s and
vs = 0.

The equivalence functor Φ assigns to every representation π ∈ AG,χ of generalized dimension
(l1, . . . , ln) a unique locally-scalar representation of graph G with a character (x1, . . . , xn, x0) and
dimension (v1, . . . , vn, v0). Let Mf denote the transition matrix which transform the vector χ
to (x1, . . . , xn, x0), i.e. Mfχt = (x1, . . . , xn, x0)t (where vt denote the transposed vector v). Let
Md be the transition matrix which transforms generalized dimension (v1, . . . , vn, v0) of a graph
representation to generalized dimension (l1, . . . , ln) of the corresponding algebra representation,
i.e. Md(v1, . . . , vn, v0)t = (l1, . . . , ln)t. Further we will omit t superscript and Mfv instead of
Mfvt.

Theorem 4.2. Let G be an extended Dynkin graph and π be a non-degenerate irreducible ∗-
representation of a generalized dimension v of AG,χ for some character χ. Then one of the two
possibilities holds:

• χ ∈ hG and d = Mdδ where δ is the minimal imaginary root of the root system associated
with G.

• There exist k and t such that

•
c
(k)

d Mfχ ≥t 0,
•
ck(M−1

d v) = et (4.1)

or

◦
c
(k)

d Mfχ ≥t 0,
◦
ck(M−1

d v) = et (4.2)

(depending on the parity of k + t). Moreover, systems of inequalities (4.1), (4.2) are
necessary and sufficient conditions for existence of representation of AG,χ in dimension v.

The explicit answers to the Spectral Problem for all extended Dynkin graphs will appear
in [6].
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