A Hypothesis Concerning Schizophrenia

Theresa Hannon BA Hons
Open University, UK

Corresponding author: Theresa Hannon BA Hons, Department of Psychology, Open University Science, 31 Meadowbank Street, Belfast, N.I. BT9 7FG, UK, Tel: +007411748477; E-mail: eugene.hannon@live.co.uk

Received date: July 17, 2016; Accepted date: July 30, 2016; Published date: August 07, 2016

Copyright: © 2016 Hons THBA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Opinion

In 1965, Bell noted that amphetamine psychosis mimicked schizophrenia [1]. Later, van Ree and Otte [2] elucidated that amphetamine and alpha-endorphin had similar effects [2] in the Central Nervous System, while Wiegant et al. [3] found increased levels of gamma and alpha-endorphin in the hypothalamic tissue of schizophrenic human cadavers [3].

Theresa Hannon’s suggestion is that this endogeneous alpha-endorphin isn’t degraded, and so tends to pile up in the CNS; an analysis of alpha-endorphin’s role in the endorphin metabolic pathway is provided by Burbach et al. [4].

The aminopeptidase responsible for degrading alpha-endorphin in the CNS has been identified as Aminopeptidase N (also known as CD13 and Alanyl (Membrane) Aminopeptidase); Hannon suspects that this enzyme is miscoded in the case of schizophrenics, such that it fails to degrade alpha-endorphin. A human alpha-endorphin ELISA assay which may reveal the resulting excess of alpha-endorphin is suggested [5].

The perceptive reader may be wondering why Hannon has selected the human gene ‘ANPEP’ for detailed study; the reason is that ANPEP codes for Alanyl (Membrane) Aminopeptidase in humans. Interestingly, ANPEP exists as more than one isoform: Hannon suspects that this enzyme is miscoded in the case of schizophrenics, such that it fails to degrade alpha-endorphin. A human alpha-endorphin ELISA assay which may reveal the resulting excess of alpha-endorphin is suggested [5].

The perceptive reader may be wondering why Hannon has selected the human gene ‘ANPEP’ for detailed study; the reason is that ANPEP codes for Alanyl (Membrane) Aminopeptidase in humans. Interestingly, ANPEP exists as more than one isoform: Hannon would argue that the first isoform is expressed in childhood and another isoform is expressed from adolescence onwards. Childhood Schizophrenia might be explained by a defect common to both isoforms (alternatively spliced over time), while Adolescence-Onset Schizophrenia might be explained by miscoding of the second (later) isoform. In humans, ANPEP is located on Chromosome 15; its NCBI Accession Number is NC_000015.10, and its range is 89784895..89814854.

CD13 isn’t just expressed on CNS synaptosomes but is also present on the plasma membrane of skin fibroblasts [6]. This would indicate that defects in ANPEP could be characterized by ordinary skin fibroblast biopsies (taken from children and adults). Human ANPEP mRNA has been sequenced; its NCBI Accession Number is NM_001150.2. This has been mentioned as Lorenz et al have noted in 2011 that cells can ingest mRNA and translate it (to some extent) into working protein [7].

An animal model of Schizophrenia exists: namely, mad dogs. Intravenous injection of this mRNA into these animals should correct their (canine) psychosis—although (as NM_001150.2 codes for a human protein) there would be a risk of an immune response. Correction of canine psychosis should provide evidence that NM_001150.2 ought to correct Human Schizophrenia.

References