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Abstract

Mathematical models analyzing tumor-immune interactions provide a framework by which to address specific
scenarios in regard to tumor-immune dynamics. Important aspects of tumor-immune surveillance to consider is the
elimination of tumor cells from a host’s cell-mediated immunity as well as the implications of vaccines derived from
synthetic antigen. In present studies, our mathematical model examined the role of synthetic antigen to the strength
of the immune system. The constructed model takes into account accepted knowledge of immune function as well
as prior work done by de Pillis et al. All equations describing tumor-immune growth, antigen presentation, immune
response, and interaction rates were numerically simulated with MATLAB. Here, our work shows that a robust
immune response can be generated if the immune system recognizes epitopes that are between 8 to 11 amino
acids long. We show through mathematical modeling of how synthetic tumor vaccines can be utilized to mitigate a

developing cancer.
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Introduction

One effective way to cure disease is to prevent the development of
it all together. One modality to combat disease is cancer vaccines that
would “program” an individual’s immune system to recognize foreign
antigens by stimulating cytotoxic T lymphocytes (CTL) to attack
cancer cells expressing a certain tumor antigen [1-5]. Current vaccine
strategies to combat cancer include vaccines consisting of lymphocytes,
which include: helper T lymphocytes (Th), dendritic cells (DC),
macrophages, or reprogrammed oncolytic viruses [1,2]. Such vaccines
may help deter cancer growth through stimulation of an individual’s
immune system or by directly attacking a cancer growth [1]. Important
questions arise when dealing with the idea of preventative cancer
vaccines such as the practicality of utilizing vaccines to prevent the
development of cancer as well as how many memory CTL’s need to
be produced to provide a sentinel within an individual [1,6,7]. Cancer
poses many issues to the vaccine development process as it displays
the ability of antigen mimicry, a process by which tumor cells produce
antigens with specific patterns of the host that can help cancer evade
immune processing and development. Tumor antigen mimicry with
self-antigen occurs since tumor-specific antigens (TSA) and tumor-
associated (TAA) antigens are either mutated or overexpressed self-
proteins, respectively (P53 and CEA). This results in active Th cells
having a difficult time selecting for self from non-self. In addition,
cancer growth displays variation; it may more rapid or slower than
that of other disease processes. Such properties can result in a weak
immune response. The multitude of complexities associated with
cancer as well as its ability to deter host defenses has challenged
researchers to seek for alternative therapies to chemotherapeutics due
to their harmful side effects upon a host. One approach to treating
cancer began in 1909 when the German scientist Paul Ehrlich proposed
the “cancer immunosurveillance” hypothesis, which is the idea that the
immune system can suppress an overwhelming number of carcinomas
[4,8]. This approach was not tested until the 1950’s when the field of
Immunology advanced. Experiments attempting to show support

utilized mice that were inoculated with chemically-induced cancer
cells; such cells lacked the capability to metastasize within a host.
Over time, this led to the development of cancer-specific immunity in
the recipient mice. This discovery provided the evidence needed for
Ehrlich’s hypothesis. Such experiments demonstrated that it is essential
to have the presence of an antigen to elicit an immune response in the
host, because if no distinctive structures exist, then no recognition
would be established [9]. F. Macfarlane Burnet and Lewis Thomas,
well-known immunologists during the 20" century, hypothesized
that for immunosurveillance to exist, lymphocytes would need to
act aggressively akin to sentinels to recognize and eliminate a cancer
threat. The cancer immunosurveillance theory revolves around three
transitions states, denoted as “E’s” [9]:

« Elimination- The establishment of a strong cancer surveillance
network by both the innate and adaptive immune system that seeks to
eliminate cancer populations.

« Equilibrium- The long-term process of combat between a cancer
population and a host’s immunosurveillance network.

o Escape- The overpowering of cancer surveillance network by
strong tumor variants, which results in host death.
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This hypothesis served as a foundation for a previous project
inspired by de Pillis et. al. which studied the interactions of cancer and
the immune system utilizing mathematical biology [9]. Mathematical
Biology is a field of research that draws aspects from both mathematics
and the biological sciences to represent, model, and analyze complex
biological processes through techniques such as numerical simulations
or phase plane analysis [7,10-13]. Mathematical modeling provides
insight and validity to a complex biological system for clinical research
without the utilization of human or animal models, entirely bypassing
ethics boards completely [7,10,12]. Generated data can have similar
validity to that of data obtained from human or animal experiments.
Describing systems in qualitative and quantitative manners means
that behaviors can be simulated and new behaviors that aren’t evident
to human/animal experimentation can be discovered. Differential
equations, for example, can predict how populations can behave by
analyzing variables such as time (ordinary differential equations-ODE)
or space (partial differential equations) [11,13]. The probability of
events can also be utilized within mathematical models through Monte-
Carlo Simulations [14-18]. The development of such mathematical
models has a wide range of implications including the possibility of
discovering hidden behaviors within systems and determining long-
term goals of a system. For the scope of this paper, we attempt to
illustrate how mathematical modeling can be utilized to predict the
strength of a host’s immune response to lung cancer using a coupled
Monte-Carlo/ordinary differential equation model. Our work is an
expanded mathematical model that is based on a previous validated
by a prior mathematical model by de Pillis et al. [9]. Her prior work
explored the dynamics of tumor rejection, the roles NK and CD8+ T
cells, as well as the development of protective immunity to subsequent
tumor re-challenges. Her model was validated through comparison of
mouse and human data to determine tumor growth and lysis rates. Her
model further underwent a sensitivity analysis to determine sensitive
aspects that could be patient specific that could be applied to a clinical
setting. Her variable analysis suggests which patients could respond
to treatment. Our model expands through the incorporation of
additional cellular lines; macrophages are introduced to complete the
innate immune system perspective and humoral immunity has been
expanded upon through the introduction of CD4+, CD8+, and CD4+ T
regulatory cell lines in both their dormant and active transitional states.
In addition, Interleukin-2 is introduced to see how cytokines impact
the immune response. Antigen presenting cells, such as dendritic cells,
have also been introduced to see how antigen presentation plays a
role in cancer immunosurveillance. While B cells play an important
part in the adaptive immune response, this cell line has been excluded
for the purposes of this model due to the focus on T cell response
and the complexity of the model. We also show how this model can
be utilized in a clinical setting to predict the long-term consequences
of a patient’s cancer status if injected with a vaccine composed of
different lung cancer tumor epitopes [13,17,18]. The development of
this model focused on first on establishing conditions in which the
cancer immunosurveillance hypothesis “exists” through parameter
estimations and bifurcation diagrams relating certain parameter
families. For details on this work, please refer to the references
section. This model then focused on validating which cell lines were
the principal cell line in the innate immune, antigen presentation, and
cell-mediated responses; of which, NK cells, dendritic cells, and CD8+
cells were key in the immune response against cancer. While not much
insight present, validation of theoretical knowledge confirms that the
development of the model is the right step. The next step of the model
was to introduce “randomization” of the immune response via the
introduction of Monte-Carlo simulation processes. Two variables of

the model were introduced as extra equations in the model to simulate
the strength of a tumor epitope vaccine that influences the strength of
the immune response based on the size of the epitope. The randomness
of the model can eventually be utilized in a clinical setting to allow
clinicians to prognosticate the long-term health status of a patient after
a tumor vaccine is utilized. We developed a mathematical model of
tumor dynamics in response to a vaccine injection composed of lung
cancer epitopes (Survivin, Kita-Kyushu lung cancer antigen 1 (KKLC1),
and epidermal growth factor receptor (EGFR)) of different fragment
sizes (8-12 amino acids (aa) long) with the goal of determining which
epitopes produce a strong immune response.

Methods

The dynamics of the mathematical model, as well as parameter
values, are borrowed from assertions, prior mathematical models, as
well as through parameter estimation through numerical simulations.
Our model is based on a previous model published by de Pillis et al. [9],
but expanded to include simplified T cell development and more cell
populations to better depict the immune response to cancer. No patient
data was integrated into this model yet as this model is in its infancy;
a literature review shows no prior model with an integrated Monte-
Carlo simulator. Generated data now is theoretical but has applicability
to the clinical setting. The basis for the model is listed below.

Model development

In this study, we developed a mathematical model of tumor
dynamics in response to a vaccine injection composed of lung cancer
epitopes of different fragment sizes (8-12 amino acids (aa) long) with
the goal of determining which epitopes produce a strong immune
response [9,13,19,20]. The biological assumptions are taken into
consideration during the development of the model, with prior work
done by de Pillis et al. [9], and accepted the knowledge of immune
function, including the following [21,22]:

1) Tumor cells grow in a myriad of ways if there is an absence of
an immune response. This assumption is based on previous studies
that considered population growth models such as logarithmic,
Gompertzian, exponential, etc. Gompertzian growth will be utilized
for this model as this correlates with the cancer immunosurveillance
hypothesis [1,11,12,23].

2) Natural Killer (NK) and CTLs can kill tumor cells [4,11,21,22].

3) Tumor cells can elicit endogenous defenses in primed cells
[4,11,21,22].

4) NK cells are abundant and constantly circulate in the immune
system in their non-primed state.

5) For cell-mediated immunity, T cells are abundant in their
naive stage and differentiate into CD4, CD8, and CD4 regulatory cells
through simplification of the maturation process in the thymus. This
model assumes a linear transitional state from the naive to mature
states [1,19,22].

6) The activation of cell-mediated immunity (CMI) is regulated by
professional antigen presenting cells (APC) such as Langerhans’s, B
cells, and macrophages [22].

7) Activation of naive T cells is dependent on Michaelis-Menten
kinetics.

8) IL-2 is secreted by mature T cells to activate and recruit
circulating effector cells. The process of recruitment is based upon IL-2
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secreted by Th cells that stimulate inactive Th cells, leaving a chemical
trail for newly activated ones to return to a site where an infectious
process began. There are a finite number of receptors on the cellular
surface of a naive T cell and an IL-2 molecule can be only be bound
to one receptor at a time. The model assumes an overabundance of
circulating IL-2 molecules [2,11]. For this model, we assume only IL-2
is the principal cytokine abundant in circulation and we opt to ignore
the presence of other cytokines.

9) Regulatory T cells (Tregs) are present to decrease the activity
of effector and helper T cells. This cell population is minute compare
other T cell populations as only a certain subset express CD25 and
FoxP3. This population is only present up to 5%. Our model accounts
for this fact and incorporates it as a valid assumption [2].

10) Two variables (Rc and Ma) will undergo a Monte-Carlo
simulation to simulate possible responses from lung cancer epitopes. A
Monte-Carlo simulation was necessary to incorporate into the model
since it considers a probabilistic input (tumor antigen size) and turns it
into a deterministic output (immune response). Multiple simulations
can be run and can determine possible outcomes of an individual’s
immune profile [2,10,11,12].

11) All immunological recruitment terms are assumed to be of
Michaelis-Menten kinetics as they are commonly used in mathematical
tumor models that include immune components; a saturation effect is
achieved because of this assumption. Here, we assume there are finite
cellular receptors for IL-2 and for cellular signaling to transition naive
immune cells to their primed state.

Utilizing the 10 assumptions from above, the system can be
described as 13 coupled differential equations (11 coupled equations
and 2 “stand-alone” equations) where each equation gives the rate of
change of a cell population in terms of growth, death, cell-cell kill,
cell recruitment, or cell inactivation. Previous versions of this model
studied different aspects of the immune response; for example, CTL’s
are the primary cell in cell mediated immunity and dendritic cells are the
principal cell that bridges the innate and adaptive immune responses
[1,7]. This model, now, has been modified further to introduce the
addition of lung cancer “vaccines” using Monte-Carlo processes to
simulate an antigen stimulation response to different HLA epitopes
[9,13,19]. The strength of binding will depend on the generated values
of two variables from the Monte-Carlo process. The model is as follows:

% =R ClogC—-kTC—-kMC 1)
d—N =B, —DnN+M—LnNc )
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T mT A
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dt mt+Ap
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e ot DT e rd -0, R.T, @
dt mt+Ap
H m H A
d n :bh_thn_M (5)
dt mz+Ap
m H A
ﬂ:u_DhHe_i_rTIZHe_iHReHe (6)
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%:CiIZ_diIZ_iHIZIL_iHI2He_VT12Re )
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dR, =b —dR, SNy 9
dt mt+Ap
m R A
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dt
dm, _, (13)
dt

Equation #1 describes the change in the population of a cancerous
pathology in which the state variable is C. Cancer populations
propagate (r ) at a fixed rate and die off due to cell-to-cell interactions
between NK cells (k,), CTL’s (k,), and macrophages (k,).

Equation #2 describes the change of NK cell populations in which
the state variable of this equation is (N). NK cells are born at a fixed rate
(B,) and die off (D,) in proportion to population levels. In addition,
NK cells are recruited in response to cancer antigen presentation at
a fixed rate (Rn and Mn) as well as die off due to cell-cell interactions
with cancer (L ).

Equation #3 describes the change of naive CD8 populations in
which the state variable of this equation is (T ). Naive CD8 populations
are born at a fixed rate (B)) and die off (D,) in proportion to population
levels. Such cells then transition from the naive to primed states due to
cancer antigen acquisition (M ) by antigen presenting cells at a fixed
rate (M,), which then present the processed cancer antigen to naive
populations.

Equation #4 describes the change of primed CD8 populations in
which the state variable of this equation is (T,). Naive CD8 populations
are primed with cancer antigen transition from their naive to primed
states to combat cancer (first term) and die off (D,) in proportion to
population levels. Primed CTL populations are then influenced due to
memory cell recruitment by interleukin-2 (R ) and are inhibited (I,) by
T regulatory cells.

Equation #5 describes the change of naive CD4 populations in
which the state variable of this equation is (R ). Naive CD4 regulatory
populations are born at a fixed rate (B) and die off (D) in proportion
to population levels. Such cells then transition from the naive to primed
states due to cancer antigen acquisition (M, ) by antigen presenting cells
at a fixed rate (M), which then present the processed cancer antigen to
naive populations.

Equation #6 describes the change of primed CD4 populations in
which the state variable of this equation is (R ). Naive CD8 populations
are primed with cancer antigen transition from their naive to primed
states to combat cancer (first term) and die off (D,) in proportion to
population levels. Primed CTL populations are then influenced due to
memory cell recruitment by interleukin-2 (R ) and are inhibited (I,) by
T regulatory cells.
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Equation #7 describes the change of interleukin-2 concentration
in which the state variable of this equation is (I,). IL-2 is produced at
a constant rate (C) by primed immune cells, mainly of HTL lineage,
and is consumed in varying proportions (R,, R, and R) to recruit
circulating memory cells to combat cancer populations. In addition,
IL-2 denatures (D,) in proportion to population levels.

Equation #8 describes the change of antigen presenting cells in
which the state variable of this equation is (A ). APC populations are
P
primed (R ) in direct proportion to cancer antigen and die off (d,) in
proportion to population levels.

Equation #9 describes the change of naive CD4 regulatory
populations in which the state variable of this equation is (R ). Naive
CD4 regulatory populations are born at a fixed rate (B,) and die off
(D,) in proportion to population levels. Such cells then transition from
the naive to primed states due to cancer antigen acquisition (M) by
antigen presenting cells at a fixed rate (M,), which then present the
processed cancer antigen to naive populations.

Equation #10 describes the change of primed CD4 regulatory
populations in which the state variable of this equation is (R ). Naive
CD4 regulatory populations are primed with cancer antigen transition
from their naive to primed states to combat cancer (first term) and die
oft (D)) in proportion to population levels. Primed CTL populations
are then influenced due to memory cell recruitment by interleukin-2
(R).

Equation #11 describes the change of macrophage populations in
which the state variable of this equation is (M). NK cells are primed at a
rate (R ) in proportion to cancer antigen and die off (D) in proportion
to population levels as well as interactions with cancer cells (L ).

Equations #12 and #13 act as placeholder equations for two
variables (R_and M )-that act as the Monte-Carlo Simulator via a
pseudo-number generator that affects the output of the other eleven
equations.

A Monte-Carlo simulator was added to the previous version of this
model to account for the random strengths of an individual’s immune
system when an APC encounters a tumor antigen. Selected antigens
from the database include EGFR1 and Survivin [18]. Tumor antigens,
obtained from Harvard University’s TANTAGEN epitope database,
are processed via an MHC class I pathway and are random sizes (8-11)
amino acids long. In addition, cancer growth rates, although slow, vary
from individual to individual [18]. Thus, a simulator (random number
generator for both R_and M,) was utilized to vary the response of an
individual’s immune system when exposed to a tumor vaccine or model
the immune system once lung cancer is detected. Each tumor antigen
selected from TANTIGEN would be simulated through the “Monte-
Carlo” simulator on MATLAB and such results would be incorporated
into final graphs. Parameters for the model were either estimated or
incorporated from another source [20] (Table 1). The above model was
then subjected to MATLAB, an open source math modeling program,
was utilized to simulate the model, estimate parameter values, as well as
determine scenarios in which tumor vaccines produce varying immune
responses. Below is a table of all parameters and estimated values.

Results

The above model can be utilized to simulate the strength of a host’s
immune response after he or she is inoculated with a lung cancer
vaccine. Results from the model are in silico, meaning that results
from this model can be applied to a clinical setting, but not to 100%
accuracy. Here, the term “injected vaccine” will re reference refers to

. Parameter Parameter Reference or
Parameter and units s . R
description value Estimation
Cancer 1 x 107"0<x<1 L
R, (1/day) Propagation x 10+ Estimation
Interaction 3.50 x 102
between cancer, 4.60 x 107 | de Pillis et al. in
K, K, K, L, (Cell/day x nL) NK, CD8, and 750 x 1072 2005
Macrophages 1.00 x 10
- " >
B, (cell/day x nL) Birth (fixed) and 1.30 x 10 de Pillis et al. in
death rates of NK . 2005
D, (1/day) cells/Macrophages 4.12x10
R, (1/day) Recruitment of 2.50 x 10® | de Pillis et al. in
M, (cell?/nL) circulating NK cells 20.2 2005
Antigen 1 x 107<x<1 N
M, (1/day) Presentation x 103 Estimation
B, (cell/nL x day) Birth and death 8.55 . .
t .. Kim et al. in
rates of naive CD4
D, (1/day) cells 3.00 x 10 2007
D, (1/day) Death rates of 2.00 x 10®
D, (1/day) CD4, CD8, and 4.00 x 10°® Kim et al. in
" CD4 regulatory 2007
D, (1/day) cells 1.00 x 10°
R, (cell/nL x day) Recruitment rates | 3.75 x x 108
RH (cell/nL x day) of CD4, CD8, and 1.88 x 10° de Pillis et al.
CD4 regulatory 200
R, (cell/nL x day) cells 3.75x 108
I, (1/day) Inhibition of CD4/
CD8 Activity by 5.00 x 107 de Pillis et al.
1, (1/day) CD4 Regulatory ’ 2005
cells.
B, (cell/nL x day) Birth andﬂdeath 6 Kim et al. in
rates of naive CD8 . 2007
D,, (1/day) cells 3.00 x 10
B_(cell/nL x day) Birth and death 4.50 x 10 ) .
r . Kim et al. in
rates of naive CD4 . 2007
b, (1/day) regulatory cells 3.00 x 10
C, (1/nL x day) Production and 1.00 x 10° Kim et al. in
D, (1/day) degradation of IL-2 ' 1.00 x 107 2007
R, (1/day) Antigen production  1.00 x 10 Kim et al. in
D, (1/day) and death of APCs |  3.00 x 10 2007

A list of parameters used for the model. Parameter values are indicated to be
utilized from another paper or estimated from computer simulations.

Table 1: Parameter descriptions and values.

a computerized simulation of a host’s immune response after he or
she is inoculated with a vaccine, and then subsequently encounters a
tumor antigen once discovered. All images depicted in this section run
on an arbitrary time scale rather than a 24-hour day. This timescale
is utilized to provide the basis for how the model can be applied to
a clinical setting. Previous versions of this model focused on the
“cancer immunosurveillance” hypothesis as well as confirming prior
knowledge of established immunological knowledge. A previous
version of the model, for example, did not have equations #11-13. The
output of previous models, first using GNU Octave, then MATLAB,
depicted cancer being eliminated over time coming from a powerful
immunological response. With such results and confirmations in
mind, the model then focused on the application of vaccines to the
immunological host. This model can be used to simulate the relative
strength of the immunological response to a cancer population within
a host after a tumor vaccine is injected into a host. Relevant parameters
to consider that help determine the strength of the immune response
include R_ (cancer propagation) and M, (Antigen presentation) as
both variables are important to utilize in the Monte-Carlo Simulator.
During the experiment’s course, biologically relevant parameter ranges
were estimated through multiple simulations with MATLAB. This was
necessary to determine what range of values for both variables have
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Figure 1A-1C: Time plots of cell populations with the utilization of the initial model. Figure 1A depicts a normal immune response to cancer (C=200,000). Figure 1B
depicts antigen presenting cells during the innate immune response with dendritic cells (C=200,000, M=DC=1,000). Figure 1C depicts a normal immune response with
modified naive CD4 and CDS8 cells (Naive CD8=Naive CD4=1,000). CD8 cells are predominant during the adaptive immune response.

applicability to the clinical setting. Figures 1A-1C establish the basis
of the model without the application of a Monte-Carlo simulator.
Our model, before the Monte-Carlo simulation was added, was valid
through confirmation of prior immunological knowledge; our model
demonstrated, for example, that macrophages played more of an active
role during the innate immune phase as this cellular population not only
could deter cancer to a limited degree but also has the role of acting as a
professional Antigen Presenting Cell (APC) along with dendritic (DC)
and B cells. Our model also confirmed that the main cell population
that bridges between the innate and adaptive immune system is APCs,
but the major cellular population involved is DCs. Our model also
confirmed that the principal cell that can eliminate cancer is Cytotoxic
T-Lymphocytes (CTLs) Such confirmations establish that the model
has a basis for the clinical setting. A previous version of this model
was also utilized to establish the basis the cancer immunosurveillance
hypothesis. .

The above images (Figures 1A-1C) are a product of the old model

through expansion of de Pillis et al. model. Here, the model tells a
complete story of the cancer immunosurveillance response through
multiple perspectives, except for B cells. The ultimate result from
all figures is the elimination of a cancerous population. Figure 1B
depicts the principal cell that bridges the innate and adaptive immune
responses, while Figure 1C depicts the major cell during the immune
response; the CD8 response is augmented through CD4 assistance. The
next step for this project is to show how it results can be applied to a
clinical setting to determine the effectiveness of a cancer vaccine prior
to a host developing cancer. For this part of the study, three processed
antigens from the TANTIGEN database were utilized for the Monte-
Carlo Simulator, which is: 1) Survivin, 2) Kita-Kyushu lung cancer
antigen 1 (KKLC1), and 3) Epidermal growth factor receptor (EGFR)
[24]. Most of these tumor antigens are processed via an MHC class
I pathway which requires HLA (Human Leukocyte Antigen) -A and
-B molecules to facilitate the immune recognition process. The size
of the tumor antigen, too, plays a role in the strength of the immune

J Cancer Sci Ther
ISSN: 1948-5956 JCST, an open access journal

Volume 9(10) 675-682 (2017) - 679



Citation: Quinonez J, Dasu N, Qureshi M (2017) A Mathematical Investigation on Tumor-Immune Dynamics: The Impact of Vaccines on the Immune
Response. J Cancer Sci Ther 9: 675-682. doi:10.4172/1948-5956.1000491

—

Figure 2: A time plot of cell populations with the utilization of the new model.
This figure illustrates an immune response after an individual is injected with
a tumor vaccine. Here, the patient is exposed to a tumor antigen (Survivin) of
11 amino acids long. Here, cancer is eliminated in 1750 days. C=20,000 cells.
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Figure 3: A time plot of cell populations with the utilization of the new model.
This figure illustrates an immune response after an individual is injected with
a tumor vaccine. Here, the patient is exposed to a tumor antigen (Survivin) of
weak or no affinity to an MHC class | molecule. Here, cancer is not eliminated.
C=20,000 cells.

response as certain sizes of each epitope interact with a specific HLA
molecule. The model accounts for such interactions through the two
Monte-Carlo simulators. Both Monte-Carlo simulators also account
for the “randomness” of antigen size due to the variation of both R and
M., . Generated graphs for this project assumes that for each simulation,
a patient was injected with a “cocktail” of vaccine epitopes of random
sizes. The immune system recognizes an epitope that is between 8-11
aa long and produces a robust immune response. Any other size of an
epitope will alter the immune response. Figure 2 shows an immune
response after inoculation with a lung tumor vaccine; for example, a
vaccine composed of synthetic survivin epitopes of random sizes.

For the above situation, the injected vaccine has a mix of synthetic
survivin molecules with different fragment lengths of 5-11 amino acids.
This situation illustrates the individual encountering a fragment of 10 aa
long viaan MHC class 1 pathway with a HLA-A molecule; HLA-A11:02
are the associated MHC class I molecule for survivin epitopes. Any
other interaction with other HLA molecules (HLA-A24:02, etc.) may
produce a weak response for the immune system due to the weak
binding affinity between survivin and other HLA molecules (data not

shown). Here to note are several differences between Figures 1 and 2.
With the addition of a tumor vaccine, cancer’s existence is cut down to
3/8 of its original lifespan. A cancer population lives up to about 1500
arbitrary days compared to 4,000 without a vaccine. In addition, the
immune response is more robust. A reason for these observations is that
with the addition of a tu