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Introduction
Healthy diet with balanced nutrition is key to the prevention of 

overweight and obesity, cardiovascular disease, as well as other life-
threatening metabolic comorbidities such as type 2 diabetes, and 
cancer [1], which warrants personal diet monitoring. In contrast 
to the traditional manual food logging that is time consuming and 
hard to sustain [2], smartphones applications such as MyFitnessPal, 
LoseIt and Fooducate, have demonstrated high level of usability [3,4] 
by providing effective dietary feedback [5]. However, many of these 
applications require significant amount of manual input from users 
and poorly perform in assessing the exact ingredients and food portion 
of a meal [6], which has hindered users’ experience in a long run. In 
order to make food journaling easier and more accurate, we proposed 
to develop a novel automated system that integrates diet recoding 
via interactive food recognition and assessment though smartphone 
apps, exercise detection via wearable devices, and personalized energy 
balance monitoring through metabolic network modeling, and just-in-
time dietary intervention. For instance, a user can take photos of his/
her meal using smartphone and within seconds, receive nutritional 
information about the underlying food items. With more food logging 
activities, the system is capable of identifying individuals’ eating 
patterns and rendering interventions, e.g., recommending healthier 
food or providing warnings when detecting bad eating habits. To 
accomplish this, we first explored new methodologies in Computer 
Vision and Machine Learning to address key issues in each of the 
following components: 1) a comprehensive food image database that 
contains diverse and abundant images from a large number of food 
classes, in order to avoid the food discrepancy when training a food-
image classifier [7]; 2) a food segmentation strategy that can correctly 
identify all items in an image from the background regardless the 
lighting conditions or if the foods are mixed or not [8]; 3) a Machine 
Learning model to be trained for classifying each segmented item; 4) 
volume and weight estimation to be performed on each food item, 
followed by the nutrient analysis [9,10]. In addition, one unique feature 
included in this system is a metabolic network simulation that takes into 
consideration individual’s basal metabolism and monitors the real-time 
energy production in the presence of nutrients available in the meal. 

The rationale behind the modeling is that, with different respective 
metabolic baselines, individuals may respond differently in terms of 
energy production to the same meal or similar combination of nutrients. 
This paper is organized as follows: it starts with a general review of the 
related work in food image processing and classification, followed by 
an overview of the entire workflow of this project. We then present the 
details of our methodologies and results, followed by the discussion on 
remaining challenges and future outlook to close the paper.

Related Work
As mentioned above, a complete automated food monitoring and 

dietary management system should be composed of a comprehensive 
food image database, robust food segmentation and food classification, 
accurate food volume estimation, and insightful dietary feedback and 
advices. It is notable that every step involves technical challenges, 
which has been documented in the related research. Current food 
image datasets vary in many aspects, e.g., type of cuisine, number of 
food groups, and total images per food class. For instance, Menu-Match 
dataset [11] contains 41 food classes and a total of 646 images captured 
in 3 distinct restaurants while PFID [12] has 61 classes with a total of 
1098 pictures captured in fast food restaurants and laboratory. There 
is no default food image database for general classification purpose 
since most databases archive specific food type. For examples, the 
UNIMIB2016 database has Italian food images from a campus dining 
hall and the UEC Food-100 [8] consists of items from Chinese culinary. 
Chen [13] and PFID consist of images from traditional Japanese dishes 
and American fast food, respectively while Food-101 [14] and UEC 
Food-256 [15] contain a mix of eastern and western food. Except for 
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the realization of real-time energy balance monitoring through metabolic network simulation. As a proof of concept, we 
have demonstrated the use of this system through an Android application.
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database used for training a food classification model and assessing 
nutrients of each classified food; 2) an interactive smartphone system 
for image-based food recognition; 3) a metabolic network simulation 
for monitoring the real-time energy balance, which was integrated in 
such automated system for the first time; 4) an intervention module 
which identifies individual’s eating patterns based on logged meals and 
activity information and provides feedback. To access this system, users 
interact with a web-based system through a smartphone application 
that captures images from meals and exercise activities from a wearable 
device (currently using Fitbit). The output consists of classified food 
and nutritional information corresponding to the meal. By monitoring 
the individual’s energy production from food and energy expenditure 
from exercise, our system is able to provide users their real-time energy 
balance and recommendations about the best eating time and food 
portion. After detecting user’ eating habits, the intervention module can 
also generates timely warnings and feedback, as recommended in Kerr 
DA [5]. Below we will briefly describe the design of each component 
and focus on the technical implementation mainly on food recognition 
and assessment and energy minoring in this study.

Food recognition and assessment 

The food recognition system is designed to deal with the challenges 
in food image segmentation, classification, and volume and nutrient 
estimation. Figure 1 shows the workflow of this module. The smartphone 
app requires users to take four pictures of meals, one from the top of 

food type, factors such as if the picture was obtained in the wild or in 
a controlled environment, or whether the images is segmented or not 
have been taken into consideration when developing those databases. 
The objective of segmentation, when dealing with food, is to localize 
and extract food items from the image. For examples, one approach 
asks user to draw bounding boxes over food items on the smartphone 
screen, and performs segmentation using GrabCut algorithm over 
selected areas [16]. Another strategy segments items by integrating 
four methods to detect candidate region, including the whole image 
(assuming each image has one food), Deformable Part Model (DPM, 
a method utilizing sliding windows to detect object regions), circle 
detector (detecting circular in an image), and JSEG segmentation to 
segment regions. In addition, the work presented in [17] tries to segment 
food by its ingredients and their spatial relationship applying Semantic 
Texton Forest (STF). Segmentation of food images is often challenging 
due to the following reasons: 1) The food image may not present specific 
attributes such as edges and defined contour [17]; 2) one food item can 
be underneath the other, being obstructed and hidden in the given 
image [17]. Furthermore, external factors such as illumination can also 
interfere negatively in this aspect, where shadows can be identified as 
part of the food or even a new food item [18]. Currently, there are two 
major classification strategies for food image recognition, traditional 
Machine Learning approach using handcrafted features and Deep 
Learning approach. The former usually start with a set of visual features 
extracted from the food image and use them to train a prediction model 
based on Machine Learning algorithms such as Support Vector Machine 
(SVM), Bag of Features, or K Nearest Neighbors. For example, one study 
uses features of SIFT (Scale-invariant feature transform), LBP (Local 
Binary Pattern), color and Gabor filter, with a multiclass Adaboost. 
Menu-Match extracts features of SIFT, LBP, color, HOG (Histogram of 
Oriented Gradient) and MR8 to train a SVM classifier. However, there 
is a common concern that general image features, as listed above, may 
not be descriptive enough to distinguish foods since the properties of 
the same food may change when the food is prepared in different ways 
[19]. For example, Penne and Spaghetti have same color and texture 
but distinct shape. On the other hand, it has been recently shown that 
the deep leaning classification often outperforms traditional Machine 
Learning approaches. For example, in [20], color and HOG features are 
integrated to a strategy similar to Bag of Features, called Fisher Vectors, 
which achieved accuracy of 65.3% on UEC Food-100. Based on the 
same database, the Deep Learning architecture DCNN-FOOD [21] 
showed an improvement of 13.5% over the handcrafted method. Next, 
estimation of food volume and nutrient content represents another 
challenge in automatic food analysis. In fact, not even an expert dietitian 
can estimate the total calories without a precise instrument, e.g., a scale. 
Crowdsourcing [21] and a depth sensor camera have been applied for 
food volume estimation and nutrition assessment. In addition, user’s 
finger was also used as reference while taking a picture of the plate to 
estimate food volume. Similarly, another study used a checkerboard to 
help obtaining depth information alongside camera calibration [22]. 
Last, users can receive feedbacks based on the detected food habit. 
For examples, one introduces a Semantic Healthcare Assistant for 
Diet and Exercise (SHADE) that can identify user habits and generate 
suggestions not only for diet, but also for exercise for diabetic control 
[23]. Similarly, Lee et al. presents a personal food recommendation 
agent that can creates a meal plan according to a person’s lifestyle and 
particular health needs towards a certain health goal [24]. 

Overview of the System and Methods 
In this study, we propose a new system that comprises the following 

functional modules (Figure 1): 1) a food image and nutrition fact 
Figure 1: Functional modules in the proposed system.



Citation: Silva BVRE, Rad MG, McCabe M, Pan K, Cui J (2018) A Mobile-Based Diet Monitoring System for Obesity Management. J Health Med 
Informat 9: 307. doi: 10.4172/2157-7420.1000307

Page 3 of 8

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 9 • Issue 2 • 1000307

the plate and one from each of the three sides of the plate. The plate 
image will be partitioned into 3 fixed areas in order to improve food 
localization and segmentation. The user will be asked to place each food 
item in one of the partitions if possible, as seen on Figure 2. We adopt 
the user’s fingertip as a reference to ease the volume and nutrients 
estimation. The length and width of the selected finger will be asked at 
the first registration of the app.

Food segmentation 

To facility the segmentation, we first partition the image view 
into three sections for users to place their plate on the center of the 
camera screen (Figure 2) and cover each food item on each section. 
Once the image center is determined, Otsu’s segmentation [25] was 
first performed to extract food items based on a threshold value that 
separates background to foreground, assuming that the image has 
only food (foreground) and plate (background). Subsequently, a color-
image clustering [26] is performed to separate the finger from all three 
side views (Figure 2).

Feature extraction and food classification

Visual information from food images are extracted using feature 
extractors such as Local Binary Patterns (LBP), color information, 
texture and Scale-Invariant Feature Transform (SIFT), known as 
handcrafted features. Specifically, we divided the cropped image center 
into four quadrants, and from each extracted color, the Histogram of 
Oriented Gradients (HOG) was extracted from 32 x 32 and 16 x 16 
grids on the cropped area. The LBP feature was extracted following 
a modified approach: instead of 1 feature vector [27], we combined 
features from radius 1, 3, 5, thresholding the center pixel against its 
8, 16 and 24 adjacent neighbours (horizontal, vertical, and diagonal), 
respectively. The resulted vector has more features than the original LBP 
that encodes more information from the image. Particularly, it captures 
larger scale structure information that is important to differentiate one 
(food) image from another. Speeded Up Robust Features (SURF) [28] 
and Gabor features [29] were also extracted. Based on the reported 
performance on food image classification using SVM, Bag of Features 
[30], and K Nearest Neighbors, we decided to train our system using 
quadratic SVM [31] based on the collected features on each image. 
To train an effective food-classification model and benchmark the 

prediction performance, we selected the most comprehensive and 
widely-used database, Food-101, in this study, along with our locally 
compiled new food classes from the internet. The new expanded 
database contains 60 food classes, with 1,000 images each. All newly-
collected images have been resized to 299 x 299 pixels. For classification 
purpose, we first divided all images into training set (70%), testing set 
(20%), and independent validation set (10%). Meanwhile, 10-fold 
cross-validation was performed for feature evaluation. In contrast 
to the traditional handcrafted approach, we also applied the Deep 
Learning method in this study that automatically extracts the features 
from each image before classification. The pre-trained model Inception 
V3 available on Google’s Tensor Flow framework [32] was used after 
we modified its final layer to classify classes in our food image dataset.

Weight estimation

After identifying all food items from an image, it is important 
to assess the nutrient content, e.g., amount of carbohydrates, sugar, 
proteins, lipids, and calorie, which will require weight estimation, 
another major challenge. Specifically, each classified food item will 
have its area (by the top picture) and height (based on side images) 
estimated using user’s fingertip as a reference object. As illustrated 
in Figure 2, the fingertip and the food items need to be positioned in 
specific areas when taking the pictures. After segmentation of the top 
image, we have the total pixels that form the finger area and the food 
items, respectively, ready for the estimation of the size of each food 
area. Based on the side pictures. One can estimate the food height 
after segmentation. The final step is to multiply the area by height, 
which results in food volume. As mentioned in the previous section, 
our system contains a database of food items with correlated volume/
weight and nutrient information, which was collected, based on a 
nutritional facts table from the USDA Food Composition Database 
[33] and can be directly used for the calculation of nutrient content 
based on the estimated volume and weight.

Metabolic network modeling 

After discovering what is on the plate, nutrition, and the energy 
consumption, all information will be sent to the metabolic network 
to monitor individual’s energy balance. The metabolic modeling was 
performed based on the major ATP-production related metabolic 
pathways, as demonstrated in Figure 3. Specifically, the nutrients 
identified from each meal, including mainly proteins, carbohydrates, 
sugar, and fats, are input to the system to be broken down through 
three main interconnected pathways participating in the metabolism 
of proteins, polysaccharides, and lipids. The carbohydrate pathways are 
the backbone of the energy production network where the breakdown 
of big carbohydrate molecules is the first step of a series of reactions 
that produces alpha-DGlucose as the input for the glycolysis pathway. 
This pathway alongside with pyruvate oxidation, TCA cycle, oxidative 
phosphorylation, amino acid, and fatty acid pathways complete the 
model as central energy-related metabolism. Each of the twenty amino 
acids may participate in one or more metabolic pathways, including 
carbohydrates and lipids pathways. On the other hand, lipids will be 
broken down into smaller fatty acid molecules, which is easier for 
ATP production. Combining these set of reactions helps to build a 
comprehensive network model to be used in the proposed tool. 

The first step in metabolic modeling is to build an independent 
database achieving parameters regarding participating metabolites 
and chemical reactions in each selected metabolic pathway. Pathway 
information was collected from the KEGG database [34] while the 
initial concentrations were collected from HMDB database [35] and 

Figure 2: Pictures taken from the top and side of the plate for classification and 
weight estimation (with one finger as the reference).
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start eating healthier when they see such a color-based label [40]. A 
similar system has utilized additional nutrients such as cholesterol, 
sodium and dietary fibre to classify American [41]. We labelled the food 
items in our nutrition database based on this recent approach. Advisory 
messages are displayed to warn users of unhealthy eating or alter them 
not to overeat during the next meal, if the previous one was skipped.

Results
This section contains the results derived from each of aforementioned 

analysis.

Image segmentation and classification 

After receiving the uploaded meal images, the system performs 
segmentation on the top image to extract each food items, along with 
user’s finger (Figure 4a). We did the same segmentation for every 
image in our database before training the classification system.

After each item has been identified from the image, it is subject to 
aforementioned classifiers with the compiled image features. We first 
evaluated the performance of our modified LBP approach. In this case, 
5 vectors were extracted from different radiuses (from 1 to 5) instead 
of one vector (as described in methods). As shown in Table 1, the new 

literature, e.g., [36]. Using the Michaelis-Menten equations, ODEs 
(Ordinary Differential Equations) were derived for each metabolite 
and Runge-Kutta method was used to calculate the concentration of 
each metabolite for each time step [37]. As this study focuses on the 
energy level, the ATP and glucose level were monitored. The real-time 
energy balance between energy produced by food intake and energy 
expenditure from exercise will determine the overall energy gain or loss 
of each individual. More detailed description of the metabolic system 
was presented in our recent work [38].

Intervention module

The intervention module is responsible for generating insightful 
information about each meal. It is basically a junction of three 
interventional functions, which are: 1) creating a comprehensive report 
that contains all nutrient information about the meal, nutrition report 
about each meal; 2) detecting if users are overeating or consuming 
unhealthy food, and recommending them to reduce quantity or take 
alternative healthier food; 3) sending alert to users when they tend to 
overeat according to the detected eating habit. The comprehensive 
report consists of complete nutrition information, such as calories, 
protein, and carbohydrate, based on the size of each classified food item 
in the meal. The recommendations are generated at each meal of a day 
(breakfast, lunch, and dinner) based on the energy balance of the user. 
Alongside with exercise data from activity trackers, which indicates 
the total of calories burned throughout the day, it will verify if the 
user consumes more energy than needed that possibly leads to weight 
gain. If that happens, smaller food amount will be recommended, or 
healthier food will be suggested to substitute unhealthy ones. For the 
latter, foods are labelled according to their levels of fat, saturated fats, 
sugar, and salt, where low calorie/healthy foods are marked as green, 
medium level ones as yellow, and high calorie/unhealthy ones are red 
according to [39]. This traffic light like system has shown that people 

Figure 3: Major metabolic pathways participating in ATP production.

 

Figure 4: (a): Segmentation of food items and user’s finger; (b): Top ranked 
predictions for each of the food items.
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LBP feature outperforms existing one on food image classification 
when we compared to other three studies [42]. Therefore, we included 
modified LBP and performed feature selection through combining 
with other feature groups. As a result, different feature sets have led to 
somehow different performance, as shown in Table 2. Our SVM model 
(using color, HOG, modified LBP, Gabor, and SURF) outperforms the 
standard one (51.1% versus 43.0%) (Table 1), when validated on Food-
101 dataset.

More importantly, when trained based on the extended dataset 
where the Food-101 dataset was artificially extended by applying 
random distortions in the training images, such as cropping images, 
distorting brightness, contrast, saturation and hue, instead of including 
more food class, our model can achieve higher accuracy of 65.5% 
(with 59.0% sensitivity and 72.0% specificity). Furthermore, our 
approach using Deep Learning strategy shows much more improved 
performance than the traditional handcrafted approach, achieving 
overall performance as 87.2% (with 90.0% sensitivity and 84.4% 
specificity) on the expanded dataset. The main reason behind is that 
Deep Learning strategies learn relevant features automatically through 
convolutional layers, compared to the pre-defined features that might 
not be effective enough to distinguish images. When compared to 
similar models presented in [43], our model shows comparable result 
on an expended database. After classification, our system returned the 
identified items for each food (Figure 4b).

Food weight estimation and nutrient analysis 

After correctly classify each food item, volume and weight 
estimation was performed (as descried in Methods). Here we used 
an example of a one-day diet (including breakfast, lunch and dinner, 
in Table 3 to showcase the analysis. With identification of what is on 
the plate and the corresponding weight, our system outputs the total 
nutrient and calorie intake for each logged meal, calculated based on the 
aforementioned nutrient database. Table 3 shows the identified items, 
estimated weight and calories, compared to the ground truth, which is 
within ± 5% and ± 8% variation, respectively. Such information will 
be displayed to the user and serves as input to the metabolic analysis. 

Metabolic analysis

Through metabolic network modeling, ATP production was 
calculated to help understanding the body response in presence of 
different nutrients (or metabolites) derived from the food. COPASI 
[44,45] was first used to derive the ODEs of the model and then 
MATLAB was used for simulation. Figure 5 illustrated the body’s 
response to starvation and to the intake of three meals by the user. 
In this example, the user has consumed 95 grams of banana, an apple 
weighted 140 grams, and 50 grams of cookies as the breakfast at 8am, 
180 grams of cooked rice, 150 grams of ramen, and 60 grams of French 
fries for the lunch at 12pm, and 240 grams of cooked rice, 55 grams 
of chicken breast, and 100 grams of French fries at 6pm as dinner. 

Study Method Database Classification Accuracy
Extract LBP Feature [47]

Standard LBP+ SVM
 

Chen et al., 2012
 
 

32.80%
Chen, et al. [19] 45.90%

Beijbom, et al. [11] 43.60%
Our implementation Modified LBP+SVM 48.00%

Table 1: Performance comparison on food image classification using different local binary pattern approaches.

  Traditinal Methods   
Study Approach

Database Classification accuracy
 Features Methods
 Color, HOG, traditional LBP SVM

Food-101

43.00%

Our study Color, HOG and 
modified LBP SVM 47.10%

 

Color, HOG, 
modified LBP, 

Gabor and 
SURF

SVM 51.1%*

Bossard et 
al., 2014 

[14]

SURF and 
L*a*b color 

values
RFDC 50.80%

Our study
Color, HOG, 
modified LBP 

and Gabor
SVM Expended 

database 65.50%

  Deep Learning methods   

Study  
Architecture Database Classification 

accuracy
Bossard et 
al., 2014 

[14]

 
Provided by Caffe library 

 
Food-101

 

56.40%

Our study  Inception v3 69.40%
Hassannej 
ad et al., 
2016 [44]

88.30%

Our study Inception v3 Expended 
database 87.20%

(*The indicated classification accuracy is evaluated based on the testing set (Methods) and the 10-fold cross validation using the selected features is 47.2%)

Table 2: The classification performance on food-101 and our food database.
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Here, we set 100 seconds as interval in a period of 1 hour for each small 
portion of the meal to be [44] absorbed. 

After running the simulations, the ATP and glucose concentrations 
are shown starting from 8am within a day. In Figure 5a, the glucose 
concentration is shown for the entire day in the starvation state. Once 
starvation starts, the free glucose is consumed at first; then, glycogen 
starts to be consumed for the next 8 to 10 hours to maintain the glucose 
level in normal condition. If glycogen is completely burned, the third 
phase will start by consuming the fat resources. Figure 5b and 5c show 
the trend of glucose and ATP concentration with three different meals 
during a day, respectively. In Figure 5d, an arbitrary periodic load was 
applied to the system to mimic the ATP consumption captured by the 
exercise tracker. At the end in Figure 5e, the overall ATP balance after 
applying the load has been demonstrated where the ATP concentration 
goes to the same level at 8 am of the previous day. This information is 
helpful to alert the user to adjust his/her diet and exercise to manipulate 
the energy balance. In addition, using the similar metabolic system, a 
proof of concept study on glucose monitoring and a new standalone 
tool developed by our group was presented in a recent work [45].

Intervention module

Based on the nutritional information obtained from the three 
meals above, it is possible to verify if user has consumed more calories 
than needed and if all food items are healthy. Nutritional information 
from the meals is presented on Table 3.

Data about energy intake estimated from previous step, along 
with energy consumption from the activity tracer, was further 
processed by the intervention module. For example, considering 
that a user burned 1,700 calories throughout the day but took 2,154 
calories from the diet, characterizing an overeating episode. In this 
case, the intervention module identifies that fries are unhealthy 
according to local database and suggests up to three healthy food 
items that are absent in any of the three meals, e.g., to substitute 
fries for salad, tomato or fish. Meanwhile, this module also identifies 
that ramen and rice contribute to the high calorie within the day, 
being responsible for 30.5% and 25.3% for the total calories intake. 
However, they are not unhealthy as fries; therefore, user will receive 
a suggestion to reduce quantities of these food. For example, user 
will be informed that by reducing rice to 92 grams or ramen to 204 

Figure 5: (a) Glucose concentration in starvation state, (b) Glucose concentration for a normal diet of three main meals within a day, (c) ATP concentration of the 
normal diet, (d) the load applied to mimic the activity (the ATP consumption) captured by exercise tracker and (e) the ATP concentration for one day after applying 
the given load.
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grams, he/she will obtain a healthy balance between calories intake 
and burned.

Conclusion
This paper presents a proof-of-concept study of an image based 

classification system using smartphone applications specifically 
designed for automated food recognition and dietary intervention. 
Particularly, the entire framework can be broken down into four 
major parts that involve new strategies for comprehensive food image 
databases, classifiers capable for food item recognition, food volume 
estimation, and nutrient analysis that provide information for diet 
intervention. In addition, an energy-related metabolic model was 
implemented including all the chemical reactions participating in the 
main ATP-producing metabolic pathways. The results of a meaningful 
trend for ATP concentration in presence of regular meals or a random 
load have demonstrated the feasibility of the given model. Worth 
mentioning is the increasingly growing application of Deep Learning 
methods in image-based food recognition, which outperformed 
traditional approaches using handcrafted features.

Future Work
Even though improved performance has been demonstrated, 

challenging issues still remain and novel algorithms and techniques 
in image segmentation, classification, and food weight estimation are 
highly desired. In addition, enormous food diversity around the world 
has posed extreme challenges for building a versatile food classification 
system; therefore we will continue efforts in scaling up the food 
image databases. It would be interesting to study if new 3D cameras 
embedded in devices can help in segmentation and food volume 
estimation. Furthermore, by adding more related signaling pathways 
into the metabolic model, e.g., insulin signaling, the ATP production 
and glucose level can be estimated with higher accuracy. In parallel, the 
metabolic model will be transferred into a more flexible environment 
like MATLAB, through which we will build a new standalone package 
that enable an ease and reliable application for the similar research. 
Additionally, we believe the increased application of wearable sensor 
devices, especially those can be integrated into smartphone, will 
revolutionize this line of research and as a whole the food monitoring 
system will be useful for effective health promotion and disease 
prevention. For example, eating episodes detected by several wearable 
devices, such as glasses with load cells [46], glasses connected to sensors 
on temporalis muscle and accelerometer [47], and wrist motion track 
[48], can provide more food intake information in addition to the 
image-based strategy. We believe that such information collected 

by multi-monitoring technologies [49], pertinent to users’ diet habit 
pattern, can serve as starting point for more precise food consumption 
analysis and diet interventions.
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