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Introduction
Zinc is one of the most functioning metals necessary for more than 

three hundred different enzymes [1], so plays a very vital role in a large 
number of biological processes. As it is a cofactor for the antioxidant 
enzyme superoxide dismutase (SOD) with a number of enzymatic 
reactions involved in carbohydrate and protein metabolism. Its natural 
killer cells and interleukin-2 immune-enhancing activities include 
regulation of T lymphocytes, CD4 cells, so possesses antiviral activity. 
In addition, controls the release of stored vitamin A from the liver so, 
regulates insulin activity and promote the conversion thyroid hormones 
thyroxine to triiodothyronine. Zinc plays a role in wound healing, 
especially following burns or surgical incisions, Wilson's disease, 
herpes, taste or smell disorders, diabetes, and diabetic neuropathy and 
use in the prevention of the common cold. The over dose can consider 
as toxicity which may cause severe anemia, stomach cramps, nausea, 
and vomiting, renal failure, pulmonary manifestations while deficiency 
in the diet cause slow wound healing, decreased immune function, loss 
of appetite, poorly sperm production in male organ and stimulate the 
formation of α-amyloid which causes Alzheimer's disease so it’s very 
important to determine and detect trace quantities of zinc. Several 
analytical methods has been used for the determination of zinc ion, 
as flame atomic absorption [2], spectrometry UV-Vis spectroscopy 
[3], potentiometry [4], fluorescence [5,6] and inductively coupled 
plasma atomic emission spectrometry (ICPAES) [7]. These techniques 
have some limitations due to the completely filled d-orbital of zinc 
ion, which results in an absence of suitable spectroscopic or magnetic 
signals. Beside other analytical tools, different zinc ion selective sensors 
based on many ionophores have been reported [8]. Although all ISE 
methods used for determination of Zn are acceptable but most of 

them suffer from have poor selectivity [9-18], sensitivity and stability, 
long response time and short life time [19-28]. In addition, there is no 
method in the literature for the analysis and determination of Zn by 
chemical modified carbon paste sensor (Zn-CMCPS). The advantages 
of CMCPs are short measurement time, adequate precision, wide 
analytical ranges, high accuracy, low cost, small size sensors, low 
detection limits and simple to design.

In this work, suggested new types of an octahedral structure of zinc 
(II) complexes based on thiosemicarzide and acetyl thiosemicarbazone 
as shown in Figure 1. (Zn-TSC) or (Zn-ATSC) were synthesized for
the determination of zinc in pure state, vitamin and waste water by
construction of Zn-CMCPS which were dissolved in tricresyl phthalate 
(TCP) as liquid binder mediator and the electrochemical performance
characteristics of the proposed sensors were studied.

Materials and Methods
The electrochemical system

Laboratory potential measurements were performed using Jenway 
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(3505 and 3510) digital pH/mV meters. The ruggedness and pH 
were done using the same pervious system at 25 ± 1oC. An external 
reference electrode is a saturated calomel electrode (SCE). All EMF 
measurements were carried out with the following assembly: Hg, 
Hg2Cl2(s), KCl (sat.) sample solution carbon paste sensor. A calibrated 
microcomputer conductivity meter [Jenway, 4310 digital] was used for 
conductance measurements.

Reagents and materials

All chemicals used were of analytical reagent grade. Doubly distilled 
water was used throughout all the experiments. Grade pure graphite 
powders, tricresyl phthalate (TCP), dioctyl phthalate (DOP), tributyl 
phthalate (TBP), dibutyl phthalate (DBP), as well as all metal salts such 
as chlorides, nitrates and sulphates were purchased from Aldrich. The 
metal (Alfa Inorganics) used; Zn was purchased in the form of rods (~2 
cm × 2 cm, 2-3 mm thick). Octozinc (25 mg /capsule) were provided 
by October Pharma S.A.E. - Egypt. The oxide surface was removed 
by treating the metal with conc. HNO3 for several minutes and then 
washing with distilled water. 

The organic compounds

Thiosemicarbazide is a standard material was received from Fluka 
and Acetaldehyde Thiosemicarbazone was prepared by adding an 
alcoholic solution of acetaldehyde 25% (38 ml ≈ 0.2 mol) to alcoholic 
solution of thiosemicarbazide (18.2 gm ≈ 0.2 mol). The resulting 
yellowish white crystals were collected and washed with ethanol, diethyl 
ether. Yield (20 gm ≈ 85.5%) and the melt point at 133ºC (Figure 2).

Electrochemical synthesis of thiosemicarbazide and 
acetaldehydethiosemicarbazone Zinc complexes

Thiosemicarbazide (0.46 g, 5 mM) was dissolved in at least 
amount (5 ml) of 96% Ethanol and then 55 ml of anhydrous acetone 
were added in presence of 1.5 mg Et4NClO4 dissolved in two drops 
of water. Electrolysis of Copper metal into 60 ml of the previous 
thiosemicarbazide solution (HTS) at 20 V current was started led to 

dissolution of 63.5 mg of Zn during 60 min. (Ef
 = 0.5 mol.F-1). The 

insoluble material was collected and analyzed as [Zn (TSC) (TS) 2(ac) 

2] (C2H5OH). 

[Zn (ATSC) 2(ac) (H2O)]. (H2O) was prepared by the same 
procedure. 

Elemental, spectral and thermal measurements

Carbon, hydrogen and nitrogen contents were determined using a 
Perkin-Elmer CHN 2400 at Micro analytical Center, Cairo University, 
Egypt. Infrared spectra for the samples were recorded by Perkin Elmer 
FTIR 1605 using KBr pellets. Thermo gravimetric analysis (TGA and 
DTG) were carried out in dynamic nitrogen atmosphere (30 ml/min) 
with a heating rate of 10oC/min using a Schimadzu TGA-50H thermal 
analyzer.

Preparation of modified carbon paste sensors

A modified carbon paste sensor is a Teflon holder (12 cm length) 
with a hole at one end (3.5 mm deep, 7 mm diameter) filling with 
carbon paste served as the sensor body. Chemically modified pastes of 
carbon were prepared by weighed amounts of several pastes of varying 
nature and ratios of (Zn-TSC) and/or (Zn- ATSC)/graphite/binder 
for the systematic investigation of each paste composition mixed with 
high purity graphite with acetone. Mix the mixture homogenized, left 
at room temperature to evaporate acetone, and then the impregnated 
carbon powder was added to weighed amount of tricresyl phthalate 
(TCP). The prepared paste was packed into the hole of the sensor 
holder body. The CP was smoothed onto paper until it had a shiny 
appearance and was used directly for potentiometric measurements 
without preconditioning requirements.

Calibration of sensor

Standard zinc solutions was added to 50 ml doubly distilled water 
to cover the concentration range from 1.0×10-7 to 1.0×10-2 M. Lower 
concentrations were prepared by appropriate dilutions. The new (Zn-
TSC) and/or (Zn- ATSC) CMCPEs sensor and the reference sensor 
were immersed in conjunction with the solution at 25 ± l°C and the emf 
value was recorded, after each addition, the values were plotted versus 
the negative logarithmic value of the zinc concentration (pZn) and the 
resulting graph was used for subsequent determination of unknown 
zinc concentration from the liner part of the curve (calibration curve 
method).

Effect of pH on the sensor potential

The influence of pH of the zinc solution on the potential response 
values of the paste sensor for (Zn-TSC) and/or (Zn- ATSC) was studied. 
Aliquots of the Zn solution (50 ml) were transferred to 100 ml titration 
cell and the tested Zn-CMCPS in conjunction with the glass electrode 
for measuring pH, calomel reference electrode, and a combined 
were immersed in the same solution. The pH and mV readings were 
simultaneously recorded. The pH of the solution was varied over the 
range of 1.0-10.0 by addition of very small volumes of 0.1M HNO3 and/
or (0.1-1.0M) NaOH solution. Plot the mV-readings against the pH-
values for the different concentrations.

Selectivity of the sensors

The selectivity coefficients of different interfering ions for the 
studied sensors, was determine according to the MPM [29,30], a 
reference solution (aA) is added an amount of the drug to give a 
final concentration of (a-

A), the shift in potential change (ΔΕ) is thus 

Figure 1: Suggested Octahedral Structure for Zinc(II) Complexes of  
Thiosemicarbazide and Acetyl thiosemicarbazone.
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measured. To a reference solution containing the same concentration 
(aA), a certain amount of interference ion that cause the same (ΔΕ) 
value is thus determined (Aj).
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Potentiometric determination  

The standard additions method: An increment of certain volumes 
of standard Zn solution was added to 50 ml water containing different 
volumes of the zinc in its pure state, pharmaceutical preparation 
(Octozinc capsules), and in spiked samples of wastewater with known 
volumes of the zinc. The jump in mV reading was recording for each 
increment and used to calculate the concentration of the drug in sample 
solution using the following equation [31].
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Where, Cx: the calculated concentration, 

Vx: the volume of the original sample solution, 

Vs and Cs: the volume and concentration of the standard solution 
added to the sample to be analyzed, respectively, 

ΔΕ: the change in potential after addition of certain volume of 
standard solution, and S: the slope of the calibration graph.

In the potentiometric titrations: Different weights ranged from 
1.79-17.95 mg of zinc were dissolved in 50 ml by bi-distilled water. 
Different volumes of this solution (1.0-5.0 mL) were taken and 
subjected against 0.01N EDTA using the sensor(s). Conventional 
S-shaped curves with first and second plots were used to determine the 
end points.

Analysis of octozinc capsule

20 capsules of (Octozinc 25 mg/ capsule) were powdered and 
weighed (200-250 mg) portion from each was mixed with 50 ml doubly 
distilled water, using mechanical shaker for shaken in an about 30 min, 
filtered into a 100 ml volumetric flask; then the solution was filled to 
the mark with doubly distilled water and shaken. Different known 
amounts of the solution (1.0-10 ml) were putted and subjected to the 
potentiometric determination by the standard additions method.

In spiked waste water

The concentrations of different quantities from 1.0 × 10-6 to 5.0 × 
10-4 M zinc were putted in volumetric flask 100 ml spiked with five 
ml waste water and shaking for 5 min, then completed with doubly 
bidistilled water to the mark. A small volume of 0.01M HCl (0.1- 2.0 
ml) was putted to adjust the pH from 4 to 5. The spiked waste water 
was containing zinc was determined by the standard addition method.

Content uniformity assay of octozinc capsule

Ten individual capsules were placed in separate beaker 100 ml and 
dissolved in distilled water. The different concentration of the solutions 
was determined by the standard addition method, as described above. 

Dissolution test 

The test was carried out according to the USP XXX method 
apparatus II [32]. One tablet (Octozinc capsule 25 mg) was placed 
in the vessel, and the dissolution medium (900 ml bidistilled) was 
maintained at 37 ± 0.5°C. The vessel was rotated at 50 rpm. For the 

potentiometric determination, after an appropriate time interval (1.0-
2.0 sec), the potential values were recorded, and the amount of the 
zinc was calculated from the calibration graph. For the conductimetric 
measurements, introduce the conductmetric electrode in the vessel 
every two seconds without hindering the motion and take the reading 
by µs.

Results and Discussion                                                             
Measurements of the electrochemical efficiency, Ef, defined as 

moles of metal dissolved per Faraday of electricity, for the Zn /L system 
(where L=ligand) gave Ef=0.5 ± 0.05 molF-1. The mechanism for Zinc 
anode dissolution is compatible with the following equations 1 and 2 
[32,33].

Mechanism for Zn (II) anodic dissolution:

Cathode: 2HATS + 2e → 2(ATS)- + H2 (g) (1)

 Anode: 2(ATS) - + Zn → Zn (ATS)2 + 2e   (2)

The elemental analysis of:

[Zn (TS)2(ac)2].(C2H5OH) (M.wt 407.9) (yellowish white), is: 

{%C = 28.9 (29.4), %H = 6.14 (6.42) and %N= 20.3 (20.6)} while, 
[Zn(ATS)2(H2O2)]2(H2O) (M.wt 369.8) (Buff) is: {%C = 18.67 (19.49), 
%H =4.98 (5.45) and %N= 22.37 (22.73)}. 

The complexes are air-stable, hygroscopic, with higher melting 
points, insoluble in H20 and most of organic solvents, but soluble in 
DMSO and DMF. The analytical data are in a good agreement with the 
proposed stoichiometry of the complexes. 

Characteristics of the sensor

The electrochemical characteristics of the sensors were determined 
its sensitivity, linear range, detection limit, response time and selectivity 
coefficients. The graphite (G)/ binder (B) ratio, the nature and amount 
of the complex, are reported to significantly influence the sensitivity 
and selectivity of the sensor. Firstly, the sensor was preconditioned in 
stirred water until a steady potential was obtained before measurement. 
The influence of the binder type with its concentration on the 
characteristics of the studied sensors was investigated by using four 
binders with different polarities including TCP, DOP, DBP, and TBP.
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Figure 3: Effect of different binders on the response of ZnTSC and ZnATSC 
sensor.
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that can be renewed after every use. The surface of modified sensor can 
be renewed by a little carbon paste squeezing out of the tube and a fresh 
surface is smoothed on a piece of weighing paper whenever needed. 
Accordingly, a suitable weight (~2.0 g) of paste can be used at optimum 
composition. 

The examination of the potential reading was taken for the 
repeatability of the Zn-TSC and Zn-ATSC sensors by the subsequent 
measurements in 1.0×10-3 M Zn sulphate solution then followed 
by measuring the first set of solution at 1.0×10-4 M Zn solution. The 
standard deviation values are given in Table 2 for each Zn-sensor by 
measuring five replicate measurements emf. The values obtained indicate 
the repeatability is excellent of the potential response of the sensors.

Different binder/graphite (w/w) ratios were studied as shown in 
Figure 3, among the different compositions studied, a paste containing 
1.0 wt% Zn-TSC or 1.0 wt% Zn-ATSC complexes, 55.0 wt% graphite, 
and 44.0 wt% TCP exhibited the best response characteristics also 
the lowest detection limit. Therefore, these compositions were used 
to study various operation parameters of the Zn-sensors and the 
optimum compositions for the best sensors were given in Table 1. These 
sensors were chosen in this study and its electrochemical performance 
characteristics were systematically evaluated according to IUPAC 
recommendation [34,35].

Reproducibility of the sensor

The sensor surface of the modified sensor is the main attraction 

Composition (%) Binder G% B% S C.R. LOD R(s)

Complexes
Zn-TSC  

0.5 1 (TCP) 55 44.5 29.5 ± 0.0 1.0x10-7-1.5x10-3 1.5x10-7 ≤15
1.0⃰  2 (TCP) 55 44 32.5 ± 0.5⃰ 5.0×10-8-2.0×10-3 2.5x10-8 ≤10
3 3 (TCP) 55 42 28.5 ± 0.5 1.5x10-7-1.0x10-3 3.9x10-8 ≤14

0.5 4 (DOP) 55 44.5 28.5 ± 0.5 5.5x10-7-4.0x10-3 4.2x10-7 ≤15
1 5 (DOP) 55 44 29.0 ± 0.5 4.6x10-7-2.0x10-3 2.5x10-7 ≤10
3 6 (DOP) 55 42 29.5 ± 0.5 3.5x10-7-1.0x10-3 1.0x10-7 ≤12

0.5 7 (TBP) 55 44.5 24.0 ± 0.5 7.4x10-7-2.0x10-3 6.5x10-7 ≤15
1 8 (TBP) 55 44 25.5 ± 0.5 6.3x10-7-1.5x10-3 5.0x10-7 ≤15
3 9 (TBP) 55 42 25.0 ± 0.5 5.5x10-7-1.0x10-3 3.5x10-7 ≤12

0.5 10 (DBP) 55 44.5 24.0 ± 0.5 7.9x10-7-5.0x10-3 6.3x10-7 ≤12
1 11 (DBP) 55 44 26.5 ± 0.5 6.5x10-7-2.0x10-3 4.0x10-7 ≤12
3 12 (DBP) 55 42 27.0 ± 0.5 7.2x10-7-5.0x10-3 5.5x10-7 ≤15

Zn-ATSC       
0.5 13 (TCP) 55 44.5 24.7 ± 0.5 5.0x10-7-6.3x10-3 1.5x10-7 ≤15
1.0⃰  14 (TCP) 55 44 28.5 ± 0.5⃰ 6.3×10-8-7.9×10-3 5.0x10-8 ≤10
3 15 (TCP) 55 42 28.0 ± 0.5 1.5x10-7-1.0x10-3 7.9x10-8 ≤10

0.5 16 (DOP) 55 44.5 27.0 ± 0.5 7.8x10-7-6.3x10-3 6.3x10-7 ≤15
1 17 (DOP) 55 44 25.5 ± 0.5 5.0x10-7-5.0x10-3 4.0x10-7 ≤12
3 18 (DOP) 55 42 26.5 ± 0.5 2.0x10-7-5.0x10-3 1.0x10-7 ≤15

0.5 19 (TBP) 55 44.5 23.5 ± 0.5 8.9x10-7-5.0x10-3 5.0x10-7 ≤15
1 20 (TBP) 55 44 24.5 ± 0.5 7.8x10-7-4.3x10-3 5.3x10-7 ≤15
3 21 (TBP) 55 42 24.0 ± 0.5 5.0x10-7-1.0x10-3 3.1x10-7 ≤15

0.5 22 (DBP) 55 44.5 19.0 ± 0.5 6.3x10-6-5.0x10-3 4.6x10-7 ≤15
1 23 (DBP) 55 44 20.0 ± 0.5 5.0x10-6-7.8x10-3 2.5x10-7 ≤15
3 24 (DBP) 55 42 20.0 ± 0.5 1.0x10-6-1.0x10-3 8.9x10-7 ≤20

Response characteristics of the Zn-Complexes sensors 

Parameters Sensor 1 Sensor 2
Sensors Zn-TSC Zn-ATSC

Composition 1.0% (I.P) 1.0% (I.P)
(W/W %) +55.0% G + 44.0% P +55.0% G+ 44.0% P

Slope (mV/decade) 32.5 ± 0.5 28.5 ± 0.5
Correlation  coefficient (r) 0.999 0.998

LOD (M) 2.5 x 10-8 5.0x10-8

Linear range (M) 5.0×10-8-2.0×10-3 6.3×10-8-7.9×10-3

Working pH range 3.5–8.0 3.5–8.0
Response time (s) ≤10 s ≤10 s

Recovery (%) ± S.D* 99.45 ± 0.5 98.75 ± 0.5
Robustness 99.50 ± 0.5 99.40 ± 0.5
Ruggedness 99.80 ± 0.5 99.50 ± 0.5

G: graphite, B: binder, S: slope (mV/decade); C.R.: concentration range (M); LOD: limit of detection; R(s): response time (s). * The selected sensor at 95% confidence 
intervals, average of five replicates at 25.0 ± 0.1°C

Table 1:  Effect of binders on composition and characteristics of sensors (Zn-TSC) and (Zn-ATSC).
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Effect of pH 

The potential pH profile obtained indicates that the pH covering the 
range 3.5–8.0 responses of the sensors are fairly constant where in this 
range the sensor can be safely used for Zn determination. Therefore, for 
quantitative measurements with CMCP sensors, to reach the optimum 
experimental conditions the pH range from 3.5-8.0 was assumed to be 
the working pH range of the sensors. From Figure 4, it can be seen that 
there is no need to adjust the pH or use buffer solution at that pH values 
while, the pH lower than 3.5, the readings of potential increase which 
can be related to hydronium ion interfering. In addition, at pH values 
higher than pH 8, the potential readings decrease gradually due to the 
formation of free base of zinc and decrease of the protonated species in 
the test solutions as shown in Figure 4.

Dynamic response time 

The dynamic response time [34] for the sensors was obtained by 
recording the time required to achieve a steady-state potential (within 
± 1 mV) after subsequence immersions of the sensor in a series of drug 
concentration solutions from 1.0×10-7 to 1.0×10-2 M, each having a 10-
fold increase in. The sensor was reached steady potential within less 
than ten s. This is most probably due to the fast exchange kinetics of 
association–dissociation of zinc ion with the complex at the solution–

paste interface. The potential–time plot for the response of the sensor 
Zn-CMCPs is shown in Figure 5.

Selectivity of the sensor

Table 3 is the selectivity coefficients which reflected the relative 
response of the paste sensor for the primary ion over other ions present 
in the solution and indicated highly selective and sensitive to zinc ion. 
Most of inorganic cations do not interfere due to the difference in 
their mobility and permeability as compared to zinc ion. In the case of 
amino acids and sugars the high selectivity is related to the difference 
in lipophilic nature and polarity of their molecules relative to zinc 
ion. As can be seen, the selectivity coefficients determined by MPM is 
sufficiently smaller than 1.0 indicating that the (Zn-TSC, Zn-ATSC) 
sensors are significantly selective to zinc ion over all the interfering 
ions. 

Validation of the proposed method

Linearity and detection limit (LOD): For the optimal experimental 
CMCPS conditions, exists a linear relationship between the sensor 
potential /mV and the logarithm of corresponding concentration of the 
zinc ion, the value of LOD was indicating that the proposed method 
is sensitive for detection of very small concentrations of Zn reach to 
0.25 and 0.5 nM for ZnTSC and ZnATSC respectively. The correlation 
coefficient (r) and other statistical parameters were listed in Table 1.

Accuracy: The accuracy of the proposed Zn-CMCPS method was 
investigated by the determination of Zn in its pure state and its vitamin 
form without interfering from the co formulated adjuvant as indicated 
and the mean recovery value are shown in Table 1 for the investigated 
Zn-CMCP sensors.

Precision: The precision measured as percentage relative standard 
deviation (% RDS) for the Zn-CMCPS method and was tested by 
repeating the proposed CMCPS method for analysis of the investigated 
zinc ion in intra-day (within the day) and inter-day (consecutive days) 
to five replicates. The obtained %RSD values were listed in Table 1 for 
the Zn-CMCP sensors. The% RSD values are less than 2%, indicating 
good precision.

Robustness and ruggedness: The examination of robustness 
method for Zn-CMCPS was found by changed the aqueous solution to 
acetate buffer pH 4 ± 0.5 and the percentage result of robustness as in 
Table 1. While the ruggedness or the reproducibility was examined by 
using another model of pH-meter (Jenway, 3505) the results obtained 

Sensors Standard deviation S.D
Zn- Sensors 1.0 × 10-4 1.0 ×10-3

(1) Zn-TSC 0.33 0.45
(2) Zn-ATSC 0.28 0.67

Table 2: The standard deviation values for five replicate measurements of 
measuring emf obtained for each sensor.

Interfering 
ions

MPM Interfering ions MPM
Zn-TSC Zn-ATSC Zn-TSC Zn-ATSC

Na+ 3.56 3.26 Ba2+ 3.72 3.55
K+ 3.76 3.42 Al3+ 4.32 4.21

NH4
+ 3.95 3.67 Cr3+ 3.65 3.48

Ca2+ 4.22 3.85 Cu2+ 3.43 3.27
Cd2+ 4.1 3.89 Pb2+ 4.11 3.95
Co2+ 4.3 3.94 Glucose - -
Fe2+ 2.75 2.69 Sucrose - -
Fe3+ 3.55 3.45 Fractose - -
Ni2+ 4.23 4.17 Maltose - -
Mn2+ 3.91 3.74 L-Histidine - -
Mg2+ 3.88 3.79 L-Cysteine - -
Cr3+ 3.76 3.63 Glycine - -

Table 3: Selectivity coefficient values for 
Zn,J

- log K z
pot

+  (Zn-TSC, Zn-ATSC)/
CMCPS.
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Figure 4: Effect of pH on the potential response for Zn TSC and ZnATSC 
sensors.
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Standard addition method Potentiometric titration
EDTA as titrant

Pure 
solutions

Official(1) 
method

Sensor 1 Sensor 2 Sensor 1 Sensor 1
Zn-TSC Zn-ATSC Zn-TSC Zn-ATSC

Taken (mg) R (%) R.S.D% R (%) R.S.D% Taken (mg) R (%) R.S.D% R (%) R.S.D%
1.79

98.0 ± 0.50

99.4 0.35 98.64 0.35 5.38 99.37 0.21 99.2 0.11
2.69 99.25 0.47 99 0.47 8.97 99.78 0.27 99.45 0.26
3.59 99 0.48 98.5 0.48 12.56 99.69 0.3 99.36 0.33

X ± S.E. 99.22 ± 0.05 98.43 ± 0.05 99.61 ± 0.05 99.34 ± 0.05
F value 2.35 2.25 1.73 1.59
t value 2.55 2.4 2.16 2.38

Octozinc (25 mg) 
2.69

102.5 ± 0.5

100.5 0.55 100.7 0.87 3.59 100.4 0.36 101.3 0.44
3.59 101.2 0.41 101.5 1.05 5.38 101.2 0.26 101.7 0.38
5.38 101.8 0.53 101.9 1.25 8.97 102.1 0.39 102.1 0.56

X ± S.E. 101.20 ± 0.05 101.42 ± 0.52 101.33 ± 0.05 101.7 ± 0.05
F value 2.12 1.81 1.66 1.37
t value 1.75 1.55 2.14 1.86

Spiked Waste Water

2.69

98.0 ± 0.50

98.5 0.36 98.3 0.42 - - - - -
3.59 98.3 0.27 98 0.38 - - - - -

X ± S.E. 98.40 ± 0.05 98.15 ± 0.05 -- --

F value 1.36 1.68 -- --

t value 0.68 1.74 -- --

Table 4: Determination of Zn-CMCPs applying the standard addition method, potentiometric titration in pure solution, Octozinc (25 mg), spiked waste water and its statistical 
data treatments in comparison with official methods.

S. 
no

Response range 
(M)

Slope (mV/
decade)

pH range Detection 
limit

Response References
time

1 2.9x10-7-3.2x10-7 29.9 2.0-9.0 2.7x10-7 <15 19
2 1.0x10-6-1.0x10-1 30 3.2-7.1 8.9x10-7 <10 24
3 1.3x10-7-1.0x10-1 29.2 3.5-9.2 1.0x10-8 <10 26
4 1.0x10-6-1.0x10-1 29 4.0-12.0 1.0x10-7 <20 28
5 5.0x10-8-2.0x10-3 32.5 3.5-8.0 0.25 nM <10 CMCPS
6 6.3x10-8-7.9x10-3 28.5 3.5-8.0 0.50 nM <10 CMCPS

Table 5: Comparison of response characteristic of Zn-CMCP sensor with some 
previous reported electrode.
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Figure 6: Potentiometric titration of (A) 2.69 (B) 4.49 and (C) 6.28 mg 
respectively of 1.0×10-2M ZnSO4.H2O with standard solution of 1.0×10-2M 
of EDTA.

was indicated the high robustness and ruggedness as percentage in 
Table 1.

Content uniformity assay of octozinc: The proposed Zn-CMCP 
sensors method described good validation with accuracy and precision 
for the quality control tests, the content uniformity assay showed 
accurate and reproducible results so the sensors can be employed for 
quantification of zinc and the recovery of zinc ion is almost quantitative.

Analytical applications 

The standard addition method for the determination of zinc ion 
was proved to be successfully applied in its pure solutions, Octozinc 
(25 mg/capsule) and biological waste water using its prepared Zn-
chemically modified carbon paste sensors.

Determination of octozinc (25 mg/capsule): In order to assess the 
validity of the proposed sensor, the proposed Zn-CMCP sensors were 
used successfully using the standard additions method [30] and the 
potentiometric titration method for the determination of Zn ion in its 
pure solutions, capsule and the waste water. It is clear from the results, 
given in Table 4, that there is good agreement between the results of the 

proposed sensor and those obtained from US Pharmacopeia method.

Determination of Zn in spiked waste water: The proposed of Zn-
CMCPS method was successfully applied for determination of Zn in 
spiked waste water and the results obtained with high precision and 
accuracy as summarized in Table 4. In spiked waste water samples the 
standard addition technique was applied to overcome the matrix effects 
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in these samples. In addition, the response times of the proposed sensors 
are instant (within 10 s), so the sensors are rapidly transferred forth 
and back between the samples and the bi-distilled water for washing 
between the measurements to protect the sensing component from 
adhering to the surface of some matrix components. It is concluded 
that the proposed Zn-CMCP sensors can be successfully applied in 
spiked waste water samples and this confirms that the sensitivity and 
limit of quantification (LOQ) are adequate for determination of zinc 
ion.

Potentiometric titration of zinc ion with a standard EDTA 
solution using Zn-TSC and Zn-ATSC sensors: The Zn-TSC and Zn-
ATSC sensors were successfully applied as an indicator in titration of 
(1-10) ml ZnSO4.H2O (1.0×10-2M) with a standard EDTA solution 
(1.0×10-2M). The resulting titration curve is shown in Figure 6. The 
amount of Zn ions in its solution could be accurately determined 
with the sensors Zn-TSC and Zn-ATSC very well. The end point of 
the titration is sharp and the amount of Zn ions in solution can be 
accurately determined with the sensors. The fast and sharp end point 
can be explained by the fact that these sensors contain carbon particles 
surrounded by a very thin film of TCP and acting as a conductor and 
the absence of the internal reference solution.

Statistical treatment of results

  The results of the recoveries of Zn applying the standard additions 
method and the potentiometric titration were evaluated statistically 
and compared with the values obtained with the pharmacopeia method 
by applying the F-tests [34,35]. As shown in Table 4 that the present 
methods had a precision comparable to that of the pharmacopeia 
method. However, the proposed methods were more practical regarding 
time of analysis, consumption of solvents and sample pretreatment 
requirements for ion selective electrode for the analysis of zinc ion.

Potentiometric monitoring of octozinc dissolution 

The dissolution test showed that zinc capsule released immediately 
after capsule was ruptured. More than 75% zinc was released within 15 
sec and complete dissolution was achieved in 20 sec.

The potentiometric method, the potential values were continuously 
recorded at 1-2 sec time intervals and compared with a calibration graph. 
For the conductimetric measurements, introduce the conductmetric 
electrode in the vessel every two seconds without hindering the 

motion and take the reading by µs and compared with a calibration 
graph. Figure 7 showed the dissolution profiles of zinc capsule using 
both measurement techniques. The results obtained by two methods 
are almost identical. The use of the potentiometric method sensor, 
however, has the advantage of in situ monitoring.

Comparison of the zinc selective sensors 

The comparison of the performance characteristics of the proposed 
sensors and those of some reported ISE method were presented in 
Table 5. It is clear that the proposed sensor CMCPS was the most wide 
linear range and the response time improved with respect to those the 
previously reported in zinc-selective electrodes. Its detection limit was 
lower than found for the other electrodes those in the reference.

Conclusion
The proposed potentiometric methods based on the construction 

of CMCP sensors with Zn-complexes might be useful analytical 
characteristics for the determination of zinc in its pure solutions, 
pharmaceutical dosage form and waste water. The good recoveries and 
low relative standard deviations obtained reflect the high accuracy and 
precision of the proposed method. Moreover, the CMCPS is simple in 
fabrication and construction, high sensitivity sensor, easy to operate 
in mechanism, and fast static response dynamic time, reasonable 
selectivity for variables ions, long term stability for zinc ion solution 
and applicability over a wider concentration range with minimal 
sample pretreatment and inexpensive making it an excellent tool for 
the routine determination of Zn in quality control laboratories. The 
sensor developed is superior as compared with the zinc selective sensor 
described in the literature.
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