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Introduction 
Einstein’s field equations for gravity are an ‘effective’ theory at the 

classical level, relating mass-energy flux to the changes in local space-
time. At the underlying quantum level, we assume space-time is non-
commutative due to the existence of additional non-commutative 
algebraic structure at each point x of space-time, forming a quantum 
operator ‘fibre algebra’ A(x). This structure then corresponds to the 
single fibre of a fibre bundle. A gauge group acts on each fibre algebra 
locally, while a ‘section’ through this bundle is then a quantum field of 
the form 

{A(x);x∈M} with M the underlying space-time manifold. In 
addition, we assume a local algebra O(D) corresponding to the algebra 
of sections of such a principal fibre bundle with base space a finite and 
bounded subset of space-time, D. The algebraic operations of addition 
and multiplication are assumed defined fibrewise for this algebra of 
sections. The region D corresponds to the space-time constraints within 
which only that subset of {A(x);x∈M} with x∈D is of local physical 
interest or is capable of measurement. Alternatively, it can represent 
the set of sections {A(x);x∈M} with compact support in D. 

We relax the requirement of that each fibre algebra is norm 
separable and hence finite dimensional [1]. Here we assume that each 
fibre algebra has a faithful representation as a von Neumann algebra 
with trivial centre (a ‘factor’) acting on a separable Hilbert space via the 
Gelfand, Naimark, Segal (GNS) construction. This further implies that 
each fibre algebra is countably decomposable; every set of orthogonal 
projections is countable; and thus the fibre algebra has a faithful normal 
quantum state. 

We assume, for now, that background space-time is globally flat. 
The union of all the local algebras generates algebra of all observables 
defined on the subset of space-time αDα. The closure in the ultraweak 
operator topology of this set of local algebras generates the ‘quasi-local’ 
von Neumann algebra R of all observables. Choosing the ultraweak 
topology on R ensures that it contains an identity element. A key benefit 
of reformulating quantum field theory in this way as a‘local algebra’ 
formalism is the ability to consider coherently the many inequivalent 
irreducible representations, each corresponding to the Gelfand-
Naimark-Segal (GNS) construction. These essentially represent 
different ‘projections’ of the same underlying algebraic structure.

Quantum Paths in Space-Time
Wald places representation of the Weyl form of the CCR at the 

centre of his approach to quantum field theory, generating the 
‘fundamental observables’ and corresponding states [2]. We can add 
to that approach by interpreting it from the fibre bundle perspective. 
Thus we start by considering classical phase space. Given a dynamical 
system, entropy is defined through considering the phase space of the 
system. The emergent behaviour of this classical system gives rise to 
regions of phase space, each corresponding to similar macro-level 
behaviour. The number and variation in size of these regions reflects the 
overall complexity of the system. This identification is known as ‘coarse 
graining’. The entropy of such a coarse grained region is essentially 
a count of all of the different micro-configurations constituting that 
region. A system starting in a low entropy state will tend to wander into 
larger coarse grained volumes; hence thermodynamic entropy tends to 
increase over time if the system is isolated, giving rise to the second law 
of thermodynamics. The structure of classical phase space is such that 
each set of initial conditions (xµ, Pµ) generates a unique solution 
S(x, Pµ). For a Hamiltonian system it is possible to reformulate classical 
mechanics as a symplectic vector space of solutions, or equivalent 
initial conditions of location and momentum, equipped with a bilinear 
form Ω which ultimately derives from Hamilton’s equations of motion; 

With ξ=(x, p) a 6-dimensional vector we have 
H

t
ξ

ξ
∂ ∂

= Ω
∂ ∂

 where

3 3 3 3

3 3 3 3

0
0
I

I
× ×

× ×

 
Ω =  − 

.

This is of the form of a symplectic vector space V⊕V* with V a real 
finite vector space and with dual V*. The skew-symmetric rank 2 tensor 
Ω then takes the general form;

( )  ,       x x x xη η η η′ ′ ′ ′= −Ω ⊕ ⊕  

.

In our case V is the configuration space, V* the (dual) momentum 
space and V⊕V* the phase space, a product vector bundle over V with 
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all relevant Hilbert spaces are separable in application to observed real 
systems [3]. 

In summary, this example indicates that a continuous local group 
homomorphism from a neighbourhood of the identity of T to a 
neighbourhood of the identity of the set of observables in O(D) exists 
as a Weyl representation of the CCR. It can be easily extended to 4 
dimensions by replacing x by the 3-vector x=(x1, x2, x3).

Definition: A discrete path in space-time is one which consists 
of linked causally directed intervals in space-time, each of the same 
Euclidean 4-dimensional length. More formally, we define the path 
as a series of n linked increments a(j) each of the same Euclidean 
interval length |a(j)| but varying direction such that the path begins 
at x(0) and ends at x(1), with T(a(j)):x→x+a(j) elements of the 
translation subgroup T. The total path is then generated by the product 

( ) ( ) ( ) ( )
11

( )  with the final end point ( )
j n j n

jj

T j j
= =

==

= +∑∏ x 0 x xa a01 . For a 

fixed initial point x(0) we can identify this path with the finite group 

product  ( )
1

( )
j n

j

T j T
=

=

∈∏ a .

Theorem 1: Let there be given a continuous local group 
homomorphism from a neighbourhood V of the identity of T to the 
neighbourhood W of the identity of the set of observables in O(D) as 
a Weyl representation of the CCR. Then a discrete classical path CP in 
space-time can be lifted to a quantum section QP through O(D).

Proof: We construct the section iteratively, following a method 
suggested by Pontryagin [4]. Let CP be a discrete classical path 
in space-time. From the definition, the path is a series of n linked 
increments a(j) each of the same Euclidean interval length |a(j)| but 
varying direction such that the path begins at x(0) and ends at x(1), 
with T(a(j)):x → x+a(j) elements of the translation subgroup T. We can 
thus, as noted earlier, characterise CP as the product mapping Tn(a(j)) 
in the translation group T for a given x(0). We have, by assumption, 
a continuous local group homomorphism ϕ:T(a ) → UT(a) from V, 
a neighbourhood of the identity of T to W, a neighbourhood of the 
identity of (O(D)). Clearly, by redefining the number of links in CP if 
necessary, we can assume that |a(j)| is sufficiently small so that T(a(j)) 
∈ V for all j and by choosing appropriate units we can assume that CP 
consist of n links each of length 1/n. 

We also assume that for n large; 1
2 1 1 2 1

1| ( ) ( ) | ( ( )) ( ( ) ( ( )) .t t T t T t T t V
n

−− < ⇒ = ∈x x x x a

Let m be a positive integer strictly less than n, and suppose that the 
path QP has been defined such that its initial value is QP(0)=A(x(0)). 
We proceed by induction. Assume that QP has been defined for all 
values of x( t) with 0 mt

n
≤ ≤ , and satisfies, for all such t with 0 mt

n
≤ ≤ ;

(a). Fixed endpoint; QP(0)=A(x(0));

(b). Local lifting to the Weyl algebra near the 

identity; If x(s), x(t) in CP satisfy 1| ( ) ( ) |s t
n

− ≤x x  then 

( )1 1 1( )) ( ( ))  and ( ( )) ( ( ) ( )) ( ))T s T t V T s T t QP s QP t Wϕ− − −∈ = ∈x( x x x x( x(  

We now extend the path QP(x(t)) with 0 mt
n

≤ ≤ , stepping 

forward one additional link on CP so that 1mt
n n

= + , by the following 
construction;

11 1m m m mQP QP T T
n n n n

ϕ
−    + +       =                         

x x x x                 (1)

fibre V*. By choosing particular values such as (1,0,0,0,0,0) we can pull 
out particular elements; 1  ,  0    ( )  x xη η η η′ ′ ′⊕ ⊕ = =Ω  .

From this point of view the Dirac canonical quantisation of 
elements of phase space such as 1η′  is equivalent to the canonical 
quantization; ˆΩ→Ω  as a (not necessarily bounded) linear operator, 
and this form of canonical quantisation extends smoothly to countably 
infinite phase space. The approach is particularly transparent in flat 
space-time [2]. Given the canonical quantization; ˆΩ→Ω  we can form 
the Weyl unitaries ˆ ˆexpW i= Ω . Then closure of linear combinations of 
these unitaries and their adjoints in the normed operator topology is 
then a C*-algebra called the Weyl algebra. 

In classical mechanics, given a particular dynamical relationship, 
we can select out the subset of phase space consisting of initial values. 
Each initial value vector (x(0), p(0)) generates a unique solution 
S={(x(t), p(t)); t>0} propagating through phase space as a function of 
time t. In fibre bundle terms the solution space is also a product bundle 
with bundle projection π(S)=S(0)=(x(0), p(0)) onto phase space. We 
can then extend the definition of Ω to the space of solutions S as Ω(S(1), 
S(2))=Ω(π(S(1), π(S(2)). This allows us to define an inner product on S 
as ( )*(1), (2) (1) , (2)S S i S S= − Ω  where S(1)* is the complex conjugate 
solution. It turns out (Wald, 1994) that this defines an inner product 
on S relative to which a one particle Hilbert space can be defined. For a 
quantum system of bosonic harmonic oscillators we can then assemble 
a symmetric tensor product Fock space in the usual way, using creation 
and annihilation operators. 

An example of the Weyl form in a two dimensional locally flat space-
time is now given for a local algebra O(D), having a representation as 
observables acting on the Hilbert space L2(x,t) with Lebesgue measure.

For a small increment of space-time (δx,δt) we consider the 
Poincare Translation subgroup element ( ), : ( , ) ( , )T x t x t x x t tδ δ δ δ→ + +  
and define; 2

( , ) ( , ) ( , ) for ( , ) ( , )T x tU f x t f x x t t f x t L x tδ δ δ δ= − − ∈  

Then U is a local group homomorphism of the translation group T 
as observables acting on L2(x,t). Define also;

(0, ) ( ,0)

(0, ) (0, )

(0, )

;  

( , ) ( , ) ( , )

( , ) ( , )  

t T t x T x

t t T t T t

T t t t t t t t t

V U V U
V V f x t U U f x t f x t t t
U f x t V f x t V V V

δ δ δ δ

δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ′ ′

′ ′ ′ ′+ + +

= =

′⇒ = = − −

= = ⇒ =

A similar result applies for Vδx ,by symmetry. 

Now introduce a deformation of the form; 
( ),0 ( , ) exp( ) ( , )xT x Z f x t it x f x x tδδ δ δ→ = − . The mappings V and Z 

are unitary representations on L2(x,t) and so also is their product 
( ) ( ): , , t xV W x t T x t V Zδ δδ δ δ δ× → →  

Then we have;

( ) ( )
( ) ( )

( ) ( )
( )

( , ) exp ,

exp ,

, ,

exp( ( ) ) ,
exp( ) ( , )
exp( )

t x t

x t x

t x

x t t x

V Z f x t V it x f x x t

it x f x x t t

Z V f x t Z f x t t

i t t x f x x t t
i t x V Z f x t

Z V i t x V Z

δ δ δ

δ δ δ

δ δ

δ δ δ δ

δ δ

δ δ δ

δ
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= −

= − − −

= −
= −

 

Then T(δx,δt)→(Zδx,Vδt) is a local Weyl representation of the 
CCR on L2(x,t). By the Stone-von Neumann theorem, the resulting 
C*-algebra and its weak closure as a von Neumann algebra must be 
unitarily isomorphic to Wald’s equivalent ‘algebraic approach’ to 
quantum field construction and his Weyl Algebra, since we can assume 
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From eqn. (1) the extension of the path QP still satisfies (a): 
QP(0)=A(x(0)) since φ acting on the identity of the group local 
translations T is the identity operator in O(D). We need to show that 
the extension under induction still satisfies (b).

Let h be a real number with
1| |h
n

≤ . If h is positive then by 

induction h satisfies the extension shown in equation (1). Thus we have;
1m m m mQP h QP T T h

n n n n
ϕ

−           + = +                        
x x x x

If on the other hand h is negative then setting 

( )  and )m ms h t
n n

   = + =   
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x x x( x ; since s, t are both equal to or less 

than 
m
n

 by the inductive hypothesis they therefore satisfy;

( )( ) ( )1 1

1 1

1

 ( ) ( ) ) ( ) with  and m mT s T t QP s QP t t h s
n n

m m m mT T h QP QP h
n n n n

m m m mQP h QP T T h
n n n n

ϕ

ϕ

ϕ

− −

− −

−

= = + =

            ⇒ + = +                      
        ⇒ + = +                 

x x x( x

x x x x

x x x x

Thus equation (1) holds for both positive and negative values of h.

It follows that;
11 1 1

1

1 1

1

m m m m m m m mQP QP h QP T T QP T T h
n n n n n n n n

m mT T h
n n

ϕ ϕ

ϕ

−− − −

−

       +  +                  + = +                                                
 +   = +         

x x x x x x x x

x x

Thus the path extension satisfies both requirements (a) and (b) 

completing the inductive step 
1m m

n n
+

→ , provided we satisfy the 

local topological constraints, namely;

We have that if n is sufficiently large then there is a neighbourhood 
U such that;

1 1
2 1 1 2 1

1| ( ) ( ) | by continuity ( ( )) ( ( ) ( ( ))x t x t T x t T x t T a t U U V
n

− −− < ⇒ = ∈ ⊂  

and ( )1
1 2 1( ( )) ( ( ) ( ( ( ))T x t T x t T a t Wϕ ϕ− = ∈  

Setting, for small h>0;

( ) ( ) ( ) ( ) ( )

1 2 1 2

1
1 1

1 2 2 1 2 1

1

1; | ) ) |  small

1 ) ) ) ) ) )

1  as required.

m mt t h t t
n n

m mT T h T t T t T t T t T t t V
n n

m mT T h W
n n

ϕ

−
− −

−

+
= = + ⇒ −

+   ⇒ + = = = − ∈   
   

  +     + ∈          

x( x(

x x x( x( x( x( x( x(

x x

Since ϕ(identity of T)=identity of O(D) the induction hypothesis is 

true for 
10;m h

n n
= = . By induction the path QP(t) can be extended in 

O(D) for all discrete steps m less than or equal to n.

Theorem 2: The constructed quantum path QP is unique. 

Proof: The initial point of QP is unique by condition (a). If QP(x(t)) 
is unique for all

0t t≤ then let 0 0t t t ε< ≤ + . Then;

( ) ( )1 1 1 1
0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T t T t V T t T t QP t QP t QP t QP t T t T tϕ ϕ− − − −∈ ⇒ = ⇒ =x x x x x x x x x x  

Thus the path QP is uniquely determined for all points t<t0+ε. The 
result follows by induction.

Theorem 3: There is a projection π from the fibre bundle O(D) 
mapping the quantum path back to the translation subgroup T

Proof: From condition (a) this is clear for the initial point. We again 
use induction to prove the general case. If the projection π maps the 
observable QP x(t) back to Tx(t) for 0t t≤ then let 0 0t t t ε< ≤ + . 
Then as before we have;

( )( )
( )( ) ( )( )

1
0 0

1 1
0 0 0 0

( ) ( ) ( ) ( )

thus ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

QP t QP t T t T t

QP t QP t T t T t T t T t T t T t

ϕ

π π π ϕ

−

− −

=

= = =

x x x x

x x x x x x x x

The result follows by induction.

Renormalisation of Discrete Fractal Paths in Space-
Time

The principle of relativity is captured within the assumptions of 
the Riemannian geometry of 4-manifolds, where formulae equating 
a tensor expression to zero remain invariant under covariant and 
contravariant coordinate transformations. It is a natural extension of 
these ideas to additionally postulate that the scales of measurement 
inscribed on the clocks or measuring rods used by an observer should 
also not be absolute. Mathematically this can be captured by the 
additional requirement that the tensor formulae should be invariant 
under transformations of scale [5]. From this perspective a relativistic 
quantum system is a scale free system as first defined by James [6]. 

The derivation of a particular quantum relationship has to be 
inferred, in a rather ad hoc way, from the context and can be captured 
in the abstract by a function Φ linking system inputs and outputs.

Definition: A system is scale free if observers using different scales 
observe the same functional relationship Φ [6]. 

Definition: A system input variable is dimensionally independent 
if it cannot be described dimensionally by a combination of other 
inputs; otherwise it is described as dimensionally dependent [7].

Assume we have a scale free system with output value a, functional 
relationship Φ; k dimensionally independent input variables a1, 
a2,…….., ak and 2 dimensionally dependent input variables b1,b2. Given 
the mathematical relationship linking inputs to output; a=Φ(a1,…
ak,b1,b2) it is possible to vary the arguments a1,…ak using arbitrary 
positive numbers so that:

1 1 1,..., k k ka A a a A a′ ′= =

By definition, the dimensions of a,b1,b2 may be represented as 
power monomials in the dimensions a1,…ak for example:

1 1
1 1[ ] [ ] ...[ ]p r

kb a a=

2 2
2 1[ ] [ ] ...[ ]p r

kb a a=

1[ ] [ ] ...[ ]p r
ka a a=

We therefore obtain the transformations:

1 1
1 1 1...p r

kb A A b′ =
2 2

2 1 2...p r
kb A A b′ =

1 ...p r
ka A A a′ =

The above transformations form a group of continuous gauge 
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transformations with A1….Ak as the parameters. For a scale free system, 
our physical relationship can then be represented as a relationship 
between gauge transformation group invariants:

1 2( , )Π = Φ Π Π

These invariants are given by:

1 1

1
1

1 ...p r
k

b
a a

Π =

2 2

2
2

1 ...p r
k

b
a a

Π =

1 ...p r
k

a
a a

Π =

The invariants Π1 and Π2 are similarity parameters and the 
functional relationship Φ has the equivalent form;

1 1 2 2

1 2
1 1 2 1

1 1

( ,... , , ) ... ,
... ...

p r
k k p r p r

k k

b ba a b b a a
a a a a

 
′= Φ 


Φ 


Three possibilities are available for this system under 
renormalisation of one of the similarity parameters; [7]

a) Φ tends to a non-zero finite limit as Π2 → 0 This means that Φ 
can be replaced by its limiting expression, with complete separation of 
variables and the functional relationship is a product of powers whose 
values can be determined by dimensional analysis.

b) Φ has power law asymptotics of the form 1

2

1
2

2

α
α

 Π′Φ = Π Φ  
Π 

, 

as Π2 → 0. The power law form of the limiting expression still leads to 
separation of variables, but with characteristic exponents equal to the 
‘anomalous’ fractional dimensions of a form of renormalisation [8,9].

c). neither a). nor b) holds; Φ has no finite limit different from zero 
and no power-law asymptotics. 

In summary, for scale relativity, as a scale, free system, application 
of a renormalisation group is mathematically equivalent to the 
intermediate asymptotics approach. We can exploit this equivalence to 
prove the following result.

Theorem 4: Under the assumptions of scale relativity, a discrete 
closed loop in space-time; corresponding to two discrete non-oriented 
paths sharing the same end points, is renormalisable and has a finite 
limit as the step size of the curve tends to zero. 

Proof: Assume that we have a fractal closed loop L in space-time 
with Euclidean diameter d. We approximate L by a discrete closed path 
L(η) where η is the Euclidean length of each segment of L(η). Standard 
dimensional analysis shows that N(η), the number of segments in the 

path L(η), is a function of the form df
η
 
 
 

. We will establish the nature 

of this function and its renormalisation limit, following a suggestion of 
Barenblatt and Isaakovich [7].

The fractal, self-similar nature of the discrete path implies 
that if we consider a finer segmentation of segment length ξ, 

then ( ) 2( ) ( ) |
(1)

df f
N N N

f

η
η ξ

ξ η ξ η

   
   
   ∝ =  where N(ξ|) is the 

number of segments of length ξ in a segment of length η, and 
( ) ( )| (1)fd NN η η == . 

It follows that 
( ) 2  thus 
1 (1) (1)

d d df f f f f
df

f f f

η η
ξ η ξ η ξ

ξ

         
                   = = 

 

This implies that f, for the limiting case, must be of the form 
D

x xf C
y y

   
=   

   
 with C and D constants; C=f(1). Thus we have;

(1) ( )  and ( )
D D D

d d d df f N Lη η η
η η η η
       

= ⇒ = =       
       

Locally along the limiting smooth form this implies
1( | )

D
D DL ηξ η ξ η ξ

ξ
− 

= = 
 

. 

The renormalisation limit is thus finite and we identify D with 
the path fractal dimension. We end by introducing the possibility of 
a ‘push forward’ connection on the bundle O(D) of Ehresmann type. 

Definition: If π is the projection map from O(D) →D, let x be an 
element of D and p an element of the fibre π-1(x), so that π(p)=x. The 
‘push forward’ of π, denoted π* is a connection we define as follows. 
Let t → A(x(t)) be a section passing through the point p in the fibre 
π-1(x(t0)), so that p=A(x(t0)) and π(p)=x(t0), a point on the curve t → 
x(t) defined on the base space D and passing through the point x(t0) 

with velocity 
0

| .tv
t

∂
=
∂x
x

 If 
0

( ( )) | ,p t
Ax tv

t
∂

=
∂

 with vp the velocity of the 

curve t → A(x(t)) at p, then π*(vp)=vx

We now define the tangent space to O(D) 
as the linear space TO(D) generated by the set 

( ( )) ; ( ( )) is a path in ( ) and , , ,A x t t A x t O D x t x y z
x µ
µ

 ∂ → = 
∂  

 

Similarly, we define the tangent space to D, denoted TD, as the 
linear space generated by the set;

( )( ( )) ; is a path in  and , , ,t t t D x t x y z
x µ
µ

 ∂ → = 
∂  

x x

With these definitions, we see that the push forward connection π* 
maps TO(D) to TD. 

Conclusion
Through the paper we explained the series of applications of the 

translation subgroup of the Poincare group. In the end, we introduced 
the possibility of a ‘push forward’ connection on the bundle O(D) of 
Ehresmann type. 
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