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Abstract

Chiral honeycombs which exhibit auxetic behaviors (negative Poisson’s ratios) have attracted much research 
interest due to their novel mechanical properties. They are broadly used in designing new functional structures, such 
as energy absorption and noise mitigation materials. To analyze the behaviors of these materials, finite element 
models are generally adopted, which may require much time and labor to construct and implement. To simplify the 
numerical modelling, a novel Chiral Beam Element for finite element simulation is proposed in this paper. Both static 
and dynamic analyses are conducted and the numerical expense, i.e., the modelling procedures and the computational 
time, is reduced significantly when compared to traditional finite element models.

Keywords: Chiral honeycombs; Meta-materials; Negative Poisson’s
ratio; Finite element method; Elastic constants; Dynamic analysis 

Introduction
As shown in Figure 1a, the fundamental building block of chiral 

honeycombs can be constructed by attaching the circular nodes 
on different sides of the ligament. With three, four or six ligaments 
connected to the central node, the trichiral, tetrachiral or hexachiral 
honeycombs may be generated, respectively (Figures 1b-1d) [1]. Chiral 
honeycombs are found to exhibit auxetic properties and undergo 
lateral extension when stretched [2,3]. The so-called negative Poisson’s 
ratio as well as other elastic properties can be obtained by investigating 
the constitutive relations [4-7]. Aimed at different applications, these 
chiral honeycombs can also be adopted to design new structures and 
materials [8-10]. For example, incorporated with local resonators 
or discrete masses, the chiral honeycombs may be employed for the 
purpose of vibration control and wave mitigation [11-14].

To study these static and dynamic properties of chiral 
honeycombs, representative volume element (RVE) together with 
periodic boundary conditions (PBC) are usually employed in both 
theoretical and finite element (FE) models [15-19]. However, if finite 
geometric configurations, irregular loadings or disordered structures 
are considered, RVEs cannot be used and full FE models are required 
[11,12,20]. In this case, it will be tedious to build up these FE models 
and time-consuming to implement the numerical simulations.

In order to simplify the FE models of these chiral honeycombs, a 
new Chiral Beam Element (CBE) based on the fundamental building 
block (Figure 1a) is proposed in this paper. Given the properly defined 
stiffness and mass matrices, this user-defined CBE can be applied to 
static and dynamic FE simulations. As will be shown afterwards, both 
ordered and disordered chiral honeycombs can be dealt with easily 
and more significantly, the time and labor is saved to a great extent by 
adopting the CBE in FE modelling.

Chiral Beam Element (CBE)
As shown in Figure 1, arranged in different manners, the 

fundamental micro structures (Figure 1a) can be utilized to build up 
various types of chiral honeycomb structures. Following the same 
concept, if an equivalent FE for this micro structure can be established, 
the modelling procedure will become much more straightforward. In 
this section, the construction of the user-defined CBE from the micro 

structure will be presented and the stiffness and mass matrices are 
derived respectively.

Stiffness matrix of the CBE

As shown in Figure 2, the user-defined CBE is derived from the 
fundamental micro structure. The nodes may be hollow or solid in the 
real cases, but in this paper, they are assumed rigid while only the ligament 
(treated as a slender beam) is considered as deformable [1,14,16,21]. 
With this assumption, the nodes may be replaced by the material points 
(B and D in Figure 2) whose translational and rotational motions are 
related to the elastic ligament. Then, the micro structure can be directly 
represented by a CBE that geometrically shares the same points B 
and D. The CBE will possess two element nodes and three degrees of 
freedom (DoF) for each node,

{ } { },φ φ
TT

B B B D D D xB yB B xD yD Du v u v F F m F F m          (1)

Where, as shown in Figure 2, iu and iφ  are the translational
displacements while iφ  is the rotational displacement; yiF  and yiF
are the axial forces corresponding to the translational displacements; 

im  is the moment corresponding to the rational displacement. (i=B
and C, referring to the two element nodes).

The CBE defined here is similar to the general beam element in terms 
of the element configuration and DoF. However, the stiffness matrix which 
relates the nodal displacements and forces is different. In order to faithfully 
represent the fundamental micro structure, the intrinsic properties of the 
structure, such as the coupling motions between the nodes and ligament, 
must be taken into consideration when constructing this CBE. As shown 
in the following sections, this relationship can be obtained by investigating 
the kinematic and mechanical connections between the rigid nodes and 
the elastic ligament.
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The geometric relationship: From Figure 2, the radius of the 
circular node is r and the thickness of the ligament is t,

,  0.5= = −AB r BF r t                                                                              (2)

The length of the ligament is L, so EF is half of this length,

0.5=EF L                                                                                                                                            (3)

The distance between B and D is the length of the user-defined 
element, defined as LE,

= EBD L                                                                                                                                                 (4)

The trigonometric relations according to Fig. 2 are,

22sin ,  cos 1 sin
2

γ γ γ−
= = −

r t
r

                                                                  (5)

2sin ,  cosθ θ−
= =

E E

r t L
L L

                                                                                                                (6)

Since ϕ γ θ= − , applying the summation and difference rule, we 
will have,

( )cos cos cos cos sin sinϕ γ θ γ θ γ θ= − = +                                           (7)
( )sin sin sin cos cos sinϕ γ θ γ θ γ θ= − = −                                                 (8)

Due to the geometric constraints, the effective length for the elastic 

ligament should be considered [1,22]. As shown in Figure 2, AC is 
assumed to be the effective beam and the length is,

( )2 2 cosγ= = − = −l AC FE AE L r                                                             (9)

Rigid node transformation: The node is assumed to be rigid and 
as shown in Figure 3, the kinematic relation between the center point B 
and the circumferential point A is given by the following [16],

( )cos sinr ϕ ϕ+1 2OA = OB + BA = OB + i i                                                   (10)

After translation and rotation of the node,

( ) ( ) ( )( )cos sinB bu v r ϕ φ ϕ φ′ ′ ′ ′ + + + +1 2 1 2OA = OB + B A = OB + i i + i i   (11) 

Assuming small rotation of the node, we obtain the 
displacement of A,

( ) ( )( ) ( )( )
[ ]

cos cos sin sin

sin cos

ϕ φ ϕ ϕ φ ϕ

φ ϕ φ ϕ

′= −

 + + − + + − 
≈ + − +

A

1 2 1 2

B 1 2

u OA OA

= i i + i i

u i i
B bu v r

r

                    (12)

The rotation is same for point A and point B and thus we have,

( )
1 0 sin
0 1  cos
0 0           1

ϕ
ϕ ϕ

φ φ

−    
    = = =    
        

A BU T U
A B

A B

A B

u ur
v r v                                         (13)

Figure 1: Chiral honeycombs of different types: (a) fundamental building block (micro structure); (b) trichiral honeycomb (120º rotational symmetry); (c) tetrachiral 
honeycomb (90º rotational symmetry); (d) hexachiral honeycomb (60º rotational symmetry).

Figure 2: From micro structure to chiral beam element: geometric parameters and the degrees of freedom.
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Consider both nodes of this element (Figure 2), the nodal 
displacements of CBE, BU  and AU , are related to the ligament 
displacements, AU and CU , 

( )
( )

ϕ

π ϕ

    
=     

+      

A B

C D

T 0U U
U U0 T

                                                                          (14)

Global displacements to local displacements: As shown in Figure 
4, the global displacements at point A are transformed to the local 
coordinates through rotation transformation,

( )θ′ =A AU R U                                                                                                                       (15)

( )
cos sin 0
sin cos 0

0 0 1

θ θ
θ θ θ

− 
 =  
  

R                                                                                                (16)

Consider both nodes of the ligament,

( )
( )

θ

θ

 ′   
=     ′      

A A

C C

R 0U U
U U0 R

                                                                                              (17)

Force transformations: The ligament AC is treated as a slender 
beam. Given the displacements, the reaction forces can be derived. 
These forces obtained from beam theory are located at points A and C 
in local coordinates. They are firstly translated to the element nodes B 
and D (Figure 5a), and then rotated to global coordinates (Figure 5b). 
The forces shown in Figure 5b are the nodal forces of the CBE.

Firstly, translate the forces from points A, C to points B, D under 
local coordinates,

( )
1

1 0 0
0 1 0

2 cos 1

xB xA

yB yA

B A

F F
F F

r t rm mγ

′ ′    
    ′ ′ ′ ′= = =    
    − −′ ′    

B AF Q F                      (18)
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2
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0 1 0
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yD yC

D C

F F
F F

r t rm mγ

′ ′    
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D CF Q F                        (19)

Figure 3: Rigid node transformation: displacements of point A on the circumference are determined by the node B through rigid translation and rotation.

 

Figure 4: Global coordinates Oxy to local coordinates O’x’y’: the displacements of point A and C in global coordinates are transformed to the local coordinates aligned 
to the ligament.



Page 4 of 8

Citation: Lu X, Chen BY, Tan VBC, Tay TE (2017) A New Chiral Beam Element for Modelling Chiral Honeycombs. J Appl Mech Eng 6: 249. doi: 
10.4172/2168-9873.1000249

Volume 6 • Issue 1 • 1000249
J Appl Mech Eng, an open access journal
ISSN: 2168-9873

1

2

  ′′   
=      ′′      

AB

CD

FF Q 0
FF 0 Q

                                                                                                                 (20)

Then, the forces are rotated to the global coordinates,

( )
( )

θ

θ

  ′−   
=     ′−     

B B

D D

R 0F F
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                                                                                     (21)

Assembly: The relationship between the forces and displacement at 
the points A and C can be derived through Euler beam theory,

′ ′   
=   ′ ′   

A A

C C

F U
K

F U
b                                                                                                                                (22)

where, Kb is the stiffness matrix of the slender beam,

3 2 3 2

2

3 2
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12 6  0 12 6  

4 0 6 2
0 0

    12 6
4

b

EA L EA L
EI l EI l EI l EI l
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− 
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 −
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K                      (23)

With all the transformation mentioned above, Eq. (14-15, 17, 20-
21), the forces and displacements of nodes B and D can be related,

( )
( )

( )
( )

( )
( )

1

2

b
θ θ ϕ

θ θ π ϕ
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=          
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K
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   
=   

   
B B

D D

F U
K

F U
N                                                                                                                                (25)

where, NK is the stiffness matrix for the user-defined CBE.

Mass matrix of CBE

The mass matrix of the CBE is defined in this section. As shown in 
Figure 6, the total mass of the micro structure consists of the mass of 
the ligament (Mlig), the mass of hollow node (Mnode) and the local mass 
(Mmass). The ligament only belongs to the CBE itself while the node 
and the local masses are shared by the adjacent elements. As shown in 
Figure 6, the node B is shared by 4 neighboring elements while node D 
is shared by 3 elements. Let n1 and n2 denote the number of elements 
that share node B and node D respectively and we will have n1=4 and 
n2=3. As shown below, the global connectivity represented by n1 and n2 
will be considered when forming element mass matrix [22].

First of all, the mass of the ligament is considered. Since the ligament is 
treated as a slender beam, the mass matrix can be given as [23],

( ) ( )
2 2

2 2

140 0   0 70  0  0
0 156   22      0   54  13
0 22    4 0    13   3

 70 0 0 140 0 0420
 0 54 13      0 156   22
 0 13 3 0 22  4

E E

T lig E E E E
lig

E E

E E E E

L L
M L L L L

A dl

L L
L L L L

ρ

 
 − 
 −

= =  
 
 −
 

− − −  

∫M N N          (26)

Figure 5: Force transformations: (a) translation from points A and C to points B and D; (b) rotation from local coordinates to the global coordinates.

Figure 6: Mass distribution of the micro structure.
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Then, taking the mass of node and local mass into account and 
considering the connection effect, the mass matrix for the remaining 
parts, the nodes and internal masses, can be obtained as,

0 . . . 0
0 .  .
. . . .
. . . .
.   . 0
0 . . . 0

a
a

b
c

c
d

 
 
 
 ′ =  
 
 
 
 

M                                                                                                     (27)

with,

( ) ( ) ( ) ( )
1 1 2 2

, , ,
+ + + +

= = = =mass node mass node mass node mass nodeM M J J M M J J
a b c d

n n n n
  (28)

Where, Jmass and Jnode are the moments of inertia for the local masses 
and the hollow nodes.

Combining Eq. (26) and Eq. (27), the full mass matrix for the CBE 
is established,

lig
′= +M M M                                                                                                                            (29)

Eq. (25) and Eq. (29) define the stiffness and mass matrices of 
the CBE and with these matrices, the CBE can be constructed and 
employed in FE modelling

Numerical Examples
The chiral honeycombs can be represented and modeled easily with 

the CBE defined in section 2. As shown in Figure 7, the center points of 
the micro structures are consistent with the elemental nodes of CBEs. 
According to the real structure of interest, connect these center points 
with the CBEs and the equivalent CBE model is obtained.

In this section, the CBE is employed to simulate honeycombs of 
different types (ordered and disordered) for both static and dynamic 
analyses. Numerical analyses are performed using Abaqus software 
package (Version 6.14). The CBE models are constructed using the user 
element defined in Abaqus UEL subroutine while two-dimensional 
solid elements (CPS4R) are employed to build up the full FE models 
for comparison. The performance of the CBE is verified through several 
examples shown below.

Static analyses

As examples, CBE with L=100 mm, t=4 mm and r=10 mm are 
adopted. The Young’s modulus and Poisson’s ratio are set to be 1600 
Mpa and 0.36. Tetrachiral, trichiral and disordered honeycombs are 
studied. Setting the results from full FE models as the benchmarks, the 
efficiency and global accuracy of the CBE models can be obtained.

Tetrachiral Honeycomb
As shown in Figure 8, both full FE and CBE are used to simulate 

this tetrachiral honeycomb. The left edge of the structure is fixed and 
uniaxial tension is conducted by imposing axial displacements on 
the right edge (U1=10 mm and U2=0 mm, along x and y directions 
respectively). As can be seen from Figure 8b, the CBE model coincides 
with the full FE model in terms of the deformed shapes and it should 
be noted the curved and irregular shapes can be captured accurately.

As shown in Table 1, the displacements of the right edge (U1 
and U2) are prescribed while the reaction forces on the right edge, 
RF1 along x direction and RF2 along y direction, are obtained from 
numerical models. If the full FE model is regarded as a reference, the 
relative errors of the reaction forces between full FE and CBE models 
can be calculated by,

Figure 7: CBE modelling chiral honeycomb: connect the center points of the nodes in the micro structures with CBEs.

Figure 8: Tetrachiral honeycomb (a) initial and deformed configurations with full FE; (b) superposition of the deformed shapes of full FE model and CBE model.



Page 6 of 8

Citation: Lu X, Chen BY, Tan VBC, Tay TE (2017) A New Chiral Beam Element for Modelling Chiral Honeycombs. J Appl Mech Eng 6: 249. doi: 
10.4172/2168-9873.1000249

Volume 6 • Issue 1 • 1000249
J Appl Mech Eng, an open access journal
ISSN: 2168-9873

full CBE
RF

full

RF RF
error

RF
−

=                                                                        (30)

As recorded in Table 1, the errors of reaction forces for CBE model 
are less than 3%. Adopting this user-defined element simplifies the 
modelling process and the number of required elements (NOE) is 
reduced. Compared with the full FE model, the computational time is 
decreased by over three orders of magnitude from 158.7s to 0.12s. In 
such case, both accuracy and efficiency is achieved by employing the 
user-defined CBE.

Trichiral Chiral Honeycomb
In Figure 9, a trichiral honeycomb is studied. Similar to the previous 

case, the deformed shapes of two different models fit very well. The 
efficiency is improved and simplification of modelling can be expected 
as well. Although the global error increases a bit to 4.5% (Table 2), it is 
still acceptable.

Disordered Chiral Honeycomb
As shown in Figure 10, the most attractive advantage of this CBE 

is that it can model these disordered chiral honeycombs conveniently. 
It is known that RVE cannot be adopted to analyze the irregular 
structure and hence the full FE model should be utilized, which is 
tedious and time-consuming. However, adopting the CBE, significant 
simplification of the modelling can be achieved. Free end tension 
(U1=10 mm, U2 free) is imposed on the structure, as shown in Figure 
10a. It can be found from Figure 10b and Table 3 that satisfactory 
agreement and accuracy are obtained. AS can be expected, if large and 
disordered chiral honeycombs are considered, the superiority of the 
CBE model will be more dominant.

Dynamic analyses

The chiral honeycomb structures may consist of different materials 
for specific designing targets [12]. The honeycombs could be plastic 
while the local masses could be metal (Figure 6). As shown in Eq. (27-

Parameter U1 (mm) U2 (mm) RF1 (N) RF2 (N) NOE Time (s)

Full-FE 10 0 115.2506 -9.13875 287591 158.7
CBE 10 0 116.7148 -9.40 112 0.12
Error  -  - 1.27% 2.86%  -  -

Table 1: Accuracy and efficiency for tetrachiral honeycomb.

Parameter U1 (mm) U2 (mm) RF1 (N) NOE Time (s)
Full-FE 10 0 3.66 463189 167.76

CBE 10 0 3.82 165 0.14
Error - - 4.50% - -

Table 2: Accuracy and efficiency for trichiral honeycomb.

Figure 9: Trichiral honeycomb (a) initial and deformed configurations with full FE; (b) superposition of the deformed shapes of full FE model and CBE model.

Figure 10: Disordered honeycomb (a) Initial and deformed configurations with full FE; (b) superposition of the deformed shapes of full FE model and CBE model.
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29), the mass of different components can be assigned independently 
when we construct the mass matrix of the CBE. 

The same geometric and elastic properties for the CBE are adopted 
as in section 3.1. According to Figure 6, the density of honeycomb 
material (nodes and ligaments) is set to be 1500 kg/m3 while the density 
of local internal masses is 8050 kg/m3. If pure honeycombs are analyzed 
[17], local masses are not present and the density of the local masses is 
0 accordingly. In this section, the modal analysis is performed on the 
honeycomb structures and the mode shapes as well as the frequencies 
are measured.

Honeycomb without Local Masses
Setting the local mass to be zero, the pure honeycomb structure will 

be obtained. As shown in Figure 11a, two nodes at the bottom are fixed 
and the frequency analysis is conducted. Figure 11b shows the 3rd mode 
shapes obtained from both full FE and CBE model. It can be observed 
that the mode shapes and mode frequencies can be well predicted 
by the simplified CBE model. Furthermore, the computational time 
(analysis for the first 20 modes) drops to a great extent from 1732.1s to 
0.43s, as shown in Table 4.

Honeycomb with Local Masses
As shown in Figure 12a, the local masses (red shaded) are inserted 

in the hollow nodes of the honeycomb structure. This structure can 
be applied to control and mitigate the vibrations [12]. Similar analysis 
is conduct and the results are shown in Figure 12b and Table 5. The 
errors in predicting the modal frequencies for this case are quite small, 
generally below 0.5% for the first 5 modes, which is negligible.

To conclude, from all the examples shown above, it should be noted 
that if the big and complicated honeycombs are analyzed, the CBE models 
can save huge amount of computational time compared to the full FE 
models. The computational time of CBE element models is always less than 
1 second while, for the full FE models, it can go up to over one thousand 
seconds. In addition, the errors brought about by applying this CBE are 
generally below 5%, which are small and acceptable.

Conclusions
In this paper, a user-defined CBE is established in order to replace 

the traditional FE when modelling the chiral honeycombs. The detailed 
construction and modelling procedures are illustrated. By simply 
connecting the center points with CBEs, dramatic simplification is 
achieved compared with the full FE modelling. Several numerical 
examples are given over a range of configurations and satisfactory 
agreements are obtained. Applying this CBE, the computational time 
can be reduced by several orders of magnitude if honeycombs with 
large structures are analyzed. Overall, the CBE proposed in this paper 
provides a simple and effective method to model the chiral honeycombs.
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Figure 12: Hexachiral honeycomb local masses: (a) undeformed shape and boundary conditions; (b) superposition of the 8th mode shape between full FE model 
and CBE model.

Mode 1 2 3 4 5 NOE Time (s)

Full-FE (Frequency) 18.17 32.06 37.80 71.39 88.22 1112859 1841.6

CBE (Frequency) 18.09 31.92 37.70 71.61 88.61 508 0.32
Error 0.44% 0.44% 0.26% 0.31% 0.44% - -

Table 5: Frequency of different modes and the error between full FE model and CBE model for honeycomb with local masses.
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