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Introduction
Many works have been done for regularization of linear ill-posed 

problems [1-5]. We are concerned with the problem of determining 
solutions †x   for the linear ill-posed problems

= , ( ( ))Ax y y R A∈ 			   (1.1)

where A   is a bounded non-negative, self-adjoint and injective op-
erator on a Hilbert space X  and ( ),y R A∈   the range of A  This problem 
is in general ill-posed in the sense that even if a unique solution for 
(1.1) exists, the solution may not depend continuously on the data .y  
This situation occurs if  ( )R A  is not closed. For each > 0,δ  let y Xδ ∈   be 
such that 

y yδ δ− ≤ 
(1.2)

and known noise level  .δ
In general, the problem of solving (1.1) is ill-posed. By ill-posed-

ness, we always mean that the solution do not depend continuously 
on the data. In the case of multiple solutions, this is understandable in 
the sense of multivalued mappings. So, it is necessary to develop some 
inverse analysis techniques for coping with this kind of ill-posedness. 
Recently, in mathematical theory, these technology problems attract 
lots of attention in the ill-posedness and regularization methods [6-9]. 
An augmented Galerkin method was suggested to solve the first kind 
Fredholm integral equations problem which is often ill-posed [10]. 
Many researchers solve these ill-posed problems using wavelet basis 
method [11-13]. However, for solving the first kind Fredholm integral 
equations problem by the conjugate gradient method, as we know, very 
few papers can be found and very limited. In fact, these inverse prob-
lems mentioned by most of papers above are ill-posed. For an ill-posed 
problem, the linear system of the first kind Fredholm integral equation 
is severely ill-conditioned.

In fact, Tikhonov regularization and iterative method are usual 
methods for the linear ill-posed problems. However, the former will 
cost lots of time to choose regularization parameter, and the conver-
gence rate of the latter is very slow. In order to avoid these problems, 
in this paper, we establish a new conjugate gradient method (MCG) for 
this problem based on the ideas of [14], and investigate the minimum 

of this minimization problem. This paper is organized as follows. In 
Section 2 we establish a new conjugate gradient method. In Section 3 
we prove that this method can obtain global convergent property. In 
Section 4, we compare the solution to the inverse problem via a forward 
solver using MCG method versus the Landweber method and common 
conjugate gradient method. We conclude this paper in Section 5.

The Establishment of New Conjugate Gradient Method
The conjugate gradient methods are very efficient tools to solve the 

optimization problems [15,16]. In this section, we will consider the fol-
lowing n   variables unstrained optimization problem

( ),min
x Rn

f x
∈

          (2.1)

where : nf R R→  is smooth and its gradient ( )g x  is available. The 
new nonlinear conjugate gradient method for (2.1) is defined by the 
iterative form

1 = , = 1,2, ,k k k kx x d kα+ + 

			   (2.2)

where kx   is the k  th iterative point, > 0kα   is a steplength, and kd   
is the search direction defined by

1

1

, 2
= , = 1,

k k k

k

g d k
d g k

β −− + ≥
 −



  (2.3)

where k Rβ +∈   is a scalar which determines the different conjugate 
gradient methods [17], and kg  is the gradient of ( )f x  at the point of   

.kx Many efforts have been exerted to the global convergence analysis 
of the conjugate gradient methods based on the different formula kβ

[18-24]. In the already existing convergence analysis and implementa-

*Corresponding author: Linjun Wang, College of Mechanical and Material 
Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China, 
E-mail:  ljwang2006@126.com

Received March 05, 2012; Accepted March 14, 2012; Published March 18, 2012

Citation: Wang L, Xie Y (2012) A New Conjugate Gradient Method for the Solution 
of Linear Ill-Posed Problem. J Appl Computat Math 1:108. doi:10.4172/2168-
9679.1000108

Copyright: © 2012 Wang L, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
A new conjugate gradient method is proposed for solving the linear ill-posed problem and the application to the 

identification of the multi-source dynamic loads on a surface of simply supported plate. The algorithm considered 
here is detailedly given and proved that the computational costs for the present method are nearly the same as the 
common conjugate gradient method, but the number of iteration steps is even less. Finally, the performances of 
numerical simulations are given, and verify the favorable theoretical properties of the present method.

A New Conjugate Gradient Method for the Solution of Linear Ill-Posed 
Problem
Linjun Wang1* and Youxiang Xie2

1College of Mechanical and Material Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
2College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, P. R. China

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679



Citation: Wang L, Xie Y (2012) A New Conjugate Gradient Method for the Solution of Linear Ill-Posed Problem. J Appl Computat Math 1:108. 
doi:10.4172/2168-9679.1000108

Page 2 of 6

Volume 1 • Issue 3 • 1000108
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

tions of the conjugate gradient method, it is normally required that the 
strong Wolfe conditions holds, namely,

( ) ( ) ,T
k k k k k k kf x d f x g dα δα+ − ≤  			             (2.4)

| ( ) | ,T T
k k k k k kg x d d g dα σ+ ≤ − 			             (2.5)

where 0 < < < 1.δ σ  
In this paper, we will establish a new valid nonlinear conjugate gra-

dient method under the following modified condition:

2( ) > ,T T
k k k k k k kg x d d d g dα σ+  

			             (2.6)

which is weaker than the usual one.

In fact, it is crucial to design a descent direction for implementing 
a conjugate gradient method. Let the current search direction kd  is a 
descent direction. Now we should find a kβ  such that the search direc-
tion  1kd +  is a descent direction, i.e. 

2
1 1 1 1= < 0.T T

k k k k k kd g g g dβ+ + + +− +   			             (2.7)

Let 2
1= ,k k kc g β+    then (2.7) can be substituted by 

1> .T
k k kc g d+

Setting 
2

1= ( ) ,T
k k k k kc g d g d+ − 

then we can obtain our new formula

2 2
1 1= ( ) .T

k k k k k kg g d g dβ + + −   

                                                      (2.8)

	  Noting that the inequality 2
1( ) > 0T

k k k kd g d g+ −   holds due to the line 
search condition (2.6), so the formula (2.8) is validly defined. It means 
that this formula (2.8) correspondingly generates a conjugate gradient 
method. Now we can define the new conjugate gradient method: 

Algorithm (MCG method)

Step 0: Given 1 ,nx R∈   set 1 1= , = 1.d g k−  If  1 = 0,g  then stop.

Step 1: Find a > 0kα   satisfying (2.4) and (2.6).

Step 2: Let 1 =k k k kx x dα+ +   and 1 1= ( ).k kg g x+ +  If  1 = 0,kg +  then stop.

Step 3: Compute 1kβ +  by the formula (2.8) and generate 1kd +  by 
       (2.3).

Step 4: Set  := 1,k k +  go to Step 1.

Using the equality (2.3) and (2.8), we obtain

2 2 2
1 1 1 1 1 1

2

= ( )
= .

T T T
k k k k k k k k k k

T
k k k k

g d g g d g g d g d
d g d β

+ + + + + +− + −     

 

           
(2.4)

 

General Convergence Results
In the following, we will investigate the convergence behavior of 

Algorithm 2.1 under the following two assumptions, which are often 
used in the literature to study the global convergence of conjugate gra-
dient methods with inexact line search.

Assumption H1 

 f  is bounded below in  nR . Moreover,  f  is continuously dif-
ferentiable in a neighborhood of level set

1= { : ( ) ( )}.nx R f x f xΨ ∈ ≤
	  

Assumption H2

 There exists a constant  L  such that for any   , , ,x y Rγ +∈Ψ ∈

	
2( ) ( ) .g x y g x y L yγ γ− + ≤     

 

Lemma 

Suppose that Assumption H1 and H2 hold. Consider any iterative 
method of the form (2.2) and (2.3), and  kα  satisfies the conditions 
(2.4) and (2.6). Then 

2 2

=1
( ) < .(3.1)T

k k k
k

g d d
∞

∞∑  

	  

Proof 

Noting the inequality (2.6), we have 

2 2
1( ) ( 1) ,T T

k k k k k k kg d g d d g dσ+ − ≥ −   

	  

which together with the result of Assumption H2, we can obtain

21 .T
k k k kLg d dα σ≥ −  

	  

Due to (2.4), we have 
2 2

1 ( 1) ( ) .T
k k k k kf f L g d dδ σ+ − ≤ −  

                          (3.2)

	  
Summing the above inequality, and due to the bounded below 

property of  f  we immediately obtain the assertion. 

Theorem 

Suppose that { , = 1,2, }kx k    be generated by Algorithm 2.1. As-
sume further that Assumption H1 and H2 hold. In [25], there exists 
some constant > 0c   such that for all  ,k N∈

2 .T
k k kg d c g≤ −  

                                                                   (3.3)
	  
Then, the Algorithm either terminates a stationary point or con-

verges in the sense that 

inf = 0.lim k
k

g
→∞

 

	                                                                (3.4) 

 Proof. In fact, we can prove that all search directions are descent, 
namely 

< 0, 1T
k kg d k ≥   				              (3.5)

	  

It is easy to check that the inequality (3.5) holds for  = 1.k
Now we let  < 0,T

k kg d  and prove that 1 1 < 0T
k kg d+ +   is true, too. 

Using line search conditions we can obtain 

2 2
1( ) ( 1) > 0T T

k k k k k k kg d g d d g dσ+ − ≥ −   

           (3.6)
	  

Noting the equality (2.9) and (3.6), then we have that (3.5) holds for   
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1.k + This implies that (3.5) is true for all  1.k ≥

Exploiting the equality (2.3), we can obtain

2 2 2 2 2 2
1 1 1 1 1 1 1 1

2 2 2
1

( ) = 1 ( ) 2 ( )
1 1 ( )

T T T T
k k k k k k k k k k k

T
k k k k

d g d d g d g d g g d
g d g d

+ + + + + + + +

+

− −
≤ +

     

     
(3.7)

	 

Therefore, by using (3.4), we can derive 

2 2 2 4 6
1 1 1 1( ) 1 1T

k k k k kd g d g c g+ + + +≤ +     

                   (3.8)
	  

Assume that the result of Theorem is not true, then there exists a 
constant  > 0ε  such that

, 1kg kε≥ ≥ 

                                                                           (3.9)

By the above inequality, we have

2 2 4 6 4 4
1 1 1( ) 1T

k k kg d d c cε ε+ + + ≥ + 

	  

Then, we have 

2 2

=1
( ) = ,T

k k k
k

g d d
∞

∞∑  

	  

which obviously contradicts the inequality (3.1). Then the proof is 
complete.

Numerical Examples and Discussion
Benchmark Test

In this section, we will valid the numerical consequences of the new 
conjugate gradient method. We first consider the first kind of Fred-
holm integral equation

1 1

0
( ) = 1 1, [0,1]ts te x s ds e t t+ − + ∈∫

		             
(4.1)

	  

It is easy to check that the true solution of Eq.(4.1) is ( ) = .sx s e  In 
general terms, we consider the perturbed equation

1

0
( ) = ( ), [0,1]tse x s ds y t tδ ∈∫

    			              (4.2)
	  

Discretizing Eq. (4.2), we can obtain

=1
1 ( ) = , , = 1,2, ,

N t si j
j i

j
N e x s y i j Nδ∑ 

                                     
 (4.3)	 

where

= 1 , = 1 , = ( ) ,i j i i it i N s j N y y tδ θ δ− − +

 iθ  is a random number and satisfies  | | 1.iθ ≤

To analyze the convergence performances of the present method, 
we denote = 50N   as the number of grid and choose different noisy 
level .δ  The termination condition is ( ) 0.0001.kg x ≤   Applying PC-
MATLAB environment, we obtain the following results.

The comparison of the true solution with the numerical results 

by the MCG method, the CG method in which the formula for kβ   is 
2 2

1= ,k k kg gβ +      and Landweber method is illustrated in Figures 1-3. 
It is clearly shown that the computational results of the new conju-
gate gradient method are better than those of Landweber method and 
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CG method. In fact, more detailed results about them are indicated in 
Table 1. From this table, we can know that at the noisy level   the itera-
tive number of CG method and Landweber are 7 and 376, respectively, 
both larger than the present method. In addition, the iteration error of 
the MCG method is smaller than that of CG method and Landweber 
method. When the noisy level   becomes larger and larger, the itera-
tive number of these methods mentioned above increases. From the 
performances of Table 1, we can assure that the proposed method is 
more precise and effective than CG method and Landweber method. In 
a word, the present method is superior to the Landweber method and 
CG method. Meanwhile, the numerically optimal convergence rate of 
the regularized solutions roughly coincides with the theoretical analy-
sis.

Application 

To illustrate the present methodology for use in determining the 
unknown time-dependent multi-source dynamic loads acting on sim-
ply supported plate, we need to know the following knowledge for a 
linear elastic structure.

Here we consider the multi-source dynamic load identification 
problem for a linear and time-invariant dynamic system. The response 
at an arbitrary receiving point in a structure can be expressed as a con-
volution integral of the forcing time-history and the corresponding 
Green’s kernel in time domain [26,27] : 

	
0

( ) = ( ) ( )
t

y t G t p dτ τ τ−∫  			              (4.4)

where ( )y t   is the response which can be displacement, velocity, 
acceleration, strain, etc. ( )G t   is the corresponding Green’s function, 
which is the kernel of impulse response. ( )p t   is the desired unknown 
dynamic load acting on the structure.

By discretizing this convolution integral, the whole concerned time 
period is separated into equally spaced intervals, and the equation (4.4) 
is transformed into the following system of algebraic equation: 

	  ( ) = ( ) ( )Y t G t P t
or equivalently, 

	  
1 1 1

2 2 1 2

1 1

= ,

m m m m

y g p
y g g p

t
y g g g p−

    
    
    
    ∆
    
    
    
    

    



where , ,i iy g  and ip  are response, Green’s function matrix and 
input force at time = ,t i t∆   respectively. t∆   is the discrete time in-
terval. Since the structure without applied force is static before force 
is applied, 0y  and  0g  are equal to zero. All the elements in the upper 
triangular part of  G  are zeros and are not shown. The special form of 
the Green’s function matrix reflects the characteristic of the convolu-
tion integral.

To recover the time history ( ),P t  the knowledge of  ( )y t  and  ( )G t  
are required. In fact, the response at a receiving point and the numeri-
cal Green’s function of a structure can be obtained by finite element 
method. However, the problem of identifying the dynamic load ( )P t   
by ( )y t  and ( )G t   is usually ill-posed, and cannot be solved by inverse 
matrix method. In the following, our method will be suggested to solve 
this problem.

A practical engineering problem is to determine the vertical forces 
acting on simply supported plate as shown in Figure 4. Its material 
properties are as:  9 3 5= 7.8 10 / , = 2.0 10 , = 0.3.kg m E MPaρ ν−× ×

The vertical concentrated load is applied to the outside surface 
and the measured response is the vertical displacement. Three straight 

MCG method Landweber method CG method
Noisy 
level

Iterative
number

Average
Error (%)

Iterative
number

Average
Error (%)

Iterative
number

Average
Error (%)

0.001 2 0.2404 376 0.5342 7 0. 2492
0.01 7 0.2682 400 0.7019 11 0. 3822
0.1 12 0.3141 426 0.7843 16 0. 5373

Table 1: Numerical results of equation (4.1).

CG method MCG method
Time
point

Real
force

Identified
force

Error (%) Identified
force

Error (%)

Sine 0.001 1000 987. 03 1.30 976.79 2.32
Triangle 0.0006 480 458.02 2.75 486.23 0.78

Sine 0.003 -1000 -951.62 4.84 -966.67 3.33
Triangle 0.001 800 760.68 4.91 699.69 12.54

Sine 0.0045 707.11 680.35 2.68 699.6 0.75
Triangle 0.0016 320 325.86 0.73 306.4 1.70

Sine 0.0063 -453.99 -447.06 0.69 -453.9 0.01
Triangle 0.0033 -560 -567.8 0.97 -567.42 0.93

Sine 0.0073 -891.01 -906.74 1.57 -886.61 0.44
Triangle 0.0038 -160 -156.7 0.41 -130.11 3.74

Error (%) Maximum Average Maximum Average
Sine 8.71 2.89 8.55 1.38

Triangle 7.93 2.53 12.54 1.43

Table 2: The identified force at five time points at noise level .

Figure 4: The finite element model of simply supported plate.
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Figure 5: The vertical concentrated sine load acting on the outside sur-
face.
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members of simply supported plate are fixed, and the others are free. 
We establish its finite element model as shown in Figure 4. The arrow 
in Figure 4 denotes the action point of dynamic force.

The concentrated loads are defined as follows: 

	  
1

1

2

2 2
2

2 2

sin(2 ), 0 2
( ) = 0, < 0 > 2

4 / , 0 / 4
2 4 / , / 4 < 3 / 4

( ) =
4 / 4 , 3 / 4 <
0, >

d d

d

d d

d d d

d d d

d

q tt t t
F t t and t t

q t t t t
q q t t t t t

F t
q t t q t t t

t t

π ≤ ≤





≤ ≤
 − ≤
 − ≤


where dt   is the time cycle of sine force, and ( = 1,2)iq i   is a con-
stant amplitude of the force. When 1= 0.004 , = 1000 ,dt s q N and   

2 = 800 ,q N the sine force and triangle force are shown in Figure 5 and 
Figure 6.

Herein, the experimental data of response is simulated by the com-

puted numerical solution, and the corresponding vertical displacement 
response can be obtained by finite element method as shown in Figure 
7and Figure 8. Furthermore, a noise is directly added to the computer-
generated response to simulate the noise-contaminated measurement, 
and the noisy response is defined as follows: 

	  = ( ) ( 1,1),err cal noise calY Y l std Y rand+ ⋅ ⋅ −

where calY  is the computer-generated response; ( )calstd Y  is the 
standard deviation of  ;calY   ( 1,1)rand −  denotes the random number 
between 1−  and +1; 

noisel   is a parameter which controls the level of the 
noise contamination.

In order to investigate the effect of measurement error on the accu-
racy of the estimated values, we consider the case of noise level namely 
5%,  and the present method is adopted to determine the dynamic 
forces. By using a similar argument in Benchmark test, so the optimal 
solution obtained by the present method will be compared to those by 
CG method. The comparison will be made quantitatively by way of the 
relative estimation error: 
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Figure 6: The vertical concentrated triangle load acting on the outside sur-
face.
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Figure 7: The corresponding vertical displacement response at one point.
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Figure 8: The corresponding vertical displacement response at the other 
point.
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	  =| |Real Identified RealF F F F−

	                               (4.6)

To evaluate the effectiveness of these methods mentioned above, 
five time points are selected, and for each point the identified force will 
be compared with the corresponding actual force.

The results of numerical simulations are as follows:

From Figure 9 and Figure 10, it can be shown that CG method and 
MCG method can both stably and effectively identify the multi-source 
dynamic loads by the measured noisy responses. Moreover, the more 
detailed results by them at five time points are listed in Table 2. It can be 
found that at these five time points for noise level 5%,±  the most de-
viations of the identified loads by the present method are smaller than 
CG method, which dues to better efficient identification. It can be also 
found that the most deviations by CG method and the present method 
concentrate in the range of  9%,13%,  respectively. In addition, for the 
identification of sine force, the maximal deviation and average devia-
tion by the present method are 8.55%,1.38%,  respectively, obviously 
smaller than the former. Furthermore, we can find that the maximal 
deviation and average deviation of the identification of triangle force by 
the present method are 12.54%,1.43%,   respectively, which shows that 
MCG is better than CG method. Meanwhile, the number of iterations 
by the present method is 16, smaller than the CG method. In a word, 
the present algorithm achieves an excellent estimation, and also gives 
satisfactory results when recovering the loading time function.

Conclusion
In this paper, a new conjugate gradient method is presented and 

considered as an alternative to approximate the true solution of the ill-
posed problem of Fredholm integral equations of the first kind. Finally 
the present method is applied to the identification of the multi-source 
dynamic loads on simply supported plate. It has been found that we 
can establish the global convergence and linear convergence rate for 
convex functions. Meanwhile, numerical simulations have shown that 
the present method reduces the number of iterations and quickens the 
speed of convergence of the regularized solution, and demonstrate that 
the present method is stable and effective.
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Figure 10: The identified triangle force at noise level 5% .
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