Keywords: Quaternions; Number theory; Operator theory; Algebra; Tensor methods

Three-Dimension

Let us consider the 3d space that can be represented by the tern \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) as shown in Figure 1.

A recently publication [1] have shown that the point \(P \) (a 3d number \([x,y,z] \)) can be written as:

\[P = \mathbf{u} \cdot x + \mathbf{v} \cdot y + \mathbf{w} \cdot z \]

and also, using the polar notation, as \(P = r \cdot e^{j \alpha + k \beta} \)

where \(r = \sqrt{x^2 + y^2 + z^2} \)

the definition of the sum is:

1) \(P_1 + P_2 = \mathbf{u} \cdot (x_1 + x_2) + \mathbf{v} \cdot (y_1 + y_2) + \mathbf{w} \cdot (z_1 + z_2) \) [cartesian notation]

the definition of the product is:

2) \(P_1 \cdot P_2 = r_1 \cdot r_2 \cdot e^{j(\alpha_1 + \alpha_2) + k(\beta_1 + \beta_2)} \) [polar notation]

The two rules of above, and the transformations between the polar notation and the cartesian notation of the point \(P \) (and vice versa) give a 3d algebra definition as an extension of the sum and product of the 2d standard complex algebra.

What else can we say about this algebra?

First we have to observe that this algebra is commutative but not distributive, in fact:

3) \(a \cdot (b + c) \neq a \cdot b + b \cdot c \), where \(a, b \) and \(c \) are 3 dimensions numbers as above.

This is because the transformations used for the definition of the product are not linear.

We can try to define the standard functions such as \(e^s, \ln(s), \cos(s), \sin(s) \)

The problem can be seen as an extension of the same 2d complex functions.

If we extend \(e^s \) by the series definitions:

4) \(e^s = 1 + \frac{s}{1!} + \frac{s^2}{2!} + ... \)

Simulations show that \(\ln(s) \) is not a biunique function unless \(2\pi \) for the arguments. I’ve found two distinct \(s \) values whose \(e^s \) defined as 4) is the same.

Example:

\[e^{1+j+3k} = (-10.87282, 20.69650, 3.333867) \]

but also:

\[e^{3,153034+j+2.057245k+4.077329045} = (-10.87282, 20.69650, 3.333867) \]

So we must define \(e^s \) as the standard extension of the 2d complex exponential function:

5) \(e^s = \exp(x) \cdot \exp(jy) \cdot \exp(kz) \) polar notation of: \((\exp(x), y, z) \)

\(e^s = r \cdot e^{jy+zk} \) where \(r=e^x \)

In this case \(\ln(s) \) is defined as the cartesian notation of: \((\ln(r), \mod(\alpha,2\pi), \mod(\beta,2\pi)) \) and it is a unique function unless \(2\pi \) for the angles arguments.

What about derivative of \(e^s \) (?) again, the algebra is not distributive, the limit:

\[\lim_{h \to 0} \frac{e^{s+h} - e^s}{h} \]

\(h \) is a 3d number

*Corresponding author: Sonaglioni L, Free Professional, Italy, Tel: 388-0579470; E-mail: luca.sonaglioni@hotmail.com

Received November 23, 2015; Accepted December 01, 2015; Published December 05, 2015

Copyright: © 2015 Sonaglioni L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
does not exist, for the same reason of the derivative of \(s^2 \) (see below and code sample).

We can also define \(\cos(s) \) and \(\sin(s) \) as an extension of the standard 2d complex definitions, even that may be not clear the significance of these functions.

\[
\cos(s) = e^{jx+y+kz} + e^{-jx+y-kz}
\]

\[
\sin(s) = \frac{e^{jx+y+kz} - e^{-jx+y-kz}}{2j}
\]

The calculus of these definitions is simple, but the derivative does not exist, because derivative of \(e^z \) does not exist.

Also, simulations have shown that (for 3d numbers):

\[
\sin(s)^2 + \cos(s)^2 \neq 1
\]

So the definitions of \(\sin(s) \) and \(\cos(s) \) for 3d numbers seems to be useless and meaningless.

About derivative and simple integrals we can analyze two cases:

We can calculate the derivative of \(s \):

\[
\lim_{h \to 0} \frac{s + h - s}{h} = 1
\]

\(h \) is a 3d number

A consequence is:

\[
\int ds = s
\]

The derivative of \(s^2 \):

\[
\lim_{h \to 0} \frac{(s + h)^2 - s^2}{h} = 2s
\]

\(h \) is a 3d number

But, because the algebra is not distributive \((s+h)^2 \neq s^2 + h^2 + 2\cdot s\cdot h\) , simulations shows the limit does not exist (see code). So the integral

\[
\int s \cdot ds = \frac{s^2}{2}
\]

depends on the path.

Anyway, if we have a point in the space

\[
p(t) = u\cdot x(t) + v\cdot y(t) + w\cdot z(t) \quad (t \in \mathbb{R})
\]

Where \(x(t), y(t), z(t) \) gives a real result and are continuous and differentiable functions, we can calculate the velocity:

\[
\frac{d}{dt}(p(t)) = \frac{d}{dt}(x(t)) + v\cdot \frac{d}{dt}(y(t)) + w\cdot \frac{d}{dt}(z(t))
\]

and also the acceleration.

If we have a sum of two 3d functions such as 6):

\[
f(t) = f_1(t) + f_2(t) \quad (t \in \mathbb{R})
\]

The derivative is:

\[
7) \quad \frac{d}{dt}(f(t)) = \lim_{h \to 0} \frac{f(t+h) + f_2(t+h) - f_1(t) - f_2(t)}{h} \quad (t, h \in \mathbb{R})
\]

And can be expressed as the sum of the two derivatives; limit 7) is:

\[
\frac{d}{dt}(f(t)) = \frac{d}{dt}(f_1(t)) + \frac{d}{dt}(f_2(t)) \quad (t \in \mathbb{R})
\]

Instead, if we have a product of two 3d functions such as 6):

\[
f(t) = f_1(t) \cdot f_2(t) \quad (t \in \mathbb{R})
\]

The derivative is:

\[
8) \quad \frac{d}{dt}(f(t)) = \lim_{h \to 0} \frac{f(t+h)\cdot f_2(t+h) - f_1(t)\cdot f_2(t)}{h} \quad (t, h \in \mathbb{R})
\]

This algebra is not distributive, so the limit can’t be expressed in the algebraic well known form:

\[
\frac{d}{dt}(f(t)) = \left(\frac{d}{dt}f_1(t) \cdot f_2(t) + \frac{d}{dt}f_2(t) \cdot f_1(t) \right)
\]

But, if the limit exists, can be calculated.

I suppose that if \(f_1(t) \) and \(f_2(t) \) are continuous and differentiable functions; the limit 8) exists and can be calculated, but it isn’t not an easy demonstration.

The limitation is \((x(t), y(t), z(t))\) must be a real term.

t can be a complex 2d variable, but the functions must be continuous and differentiable and their result must be a real number.

Last Considerations about 4d Numbers (see[1])

If \(\gamma \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \) during calculations, same considerations can be done for 4d numbers (except for \(\sin(s) \) and \(\cos(s) \) that in this case they don’t have to be taken in consideration).

If during calculations happens that \(\gamma > \frac{\pi}{2} \) we have a problem, the transformations between cartesian notation and vector notation, in this case, are not perfectly biunique.

When \(\cos(\gamma) < 0 \), the 4d number, become a number that has a negative 3d space sign.

We can say the sum \((a+b)\) of this two numbers reduces to 0, just like two 4d numbers whose \(a \) and \(b \) are different.

We can take into account of the sign of the 3d space so we can have a perfectly biunique transformation.

For the product definition there is no problem, but we have problems with the sum definition. May be a nonsense make a sum between two 4d numbers, one with a sign of 3d space \(> 0 \) and one with a negative sign of the 3d space.

I make a proposal:

If the 3d space signs of \(a \) and \(b \) are the same, the sum is the standard sum.

Suppose, instead that 3d space sign of \(a \) and \(b \) are different.

Let us consider \(a \) and \(b \) two 4d numbers whose \(t \) value is 0, same

\[
|t| = \sqrt{x^2 + y^2 + z^2}
\]

but opposite 3d spaces.

We can say the sum \((a+b)\) of this two numbers reduces to 0, just like a difference. So, in this special case, the sum reduces to a difference, and the resulting sign of the 3d space is set to 1.

In general we can have \(r'_x \neq r'_y \). We can build up a function that take into account that \(r'_x \) can be negative, then make \(a+b \) among the new deduced \((x,y,z,t)\) components; the resulting sum sign of the 3d space is the a 3d space sign if \(r'_x > r'_y \); if \(r'_x < r'_y \), the resulting sum sign of the 3d space is the b 3d space sign.

Because:

\[
r = \sqrt{x^2 + y^2 + z^2 + t^2}
\]

\[
r' = r \cdot \cos(\gamma)
\]

\[
t = r \cdot \sin(\gamma)
\]

\[
z = |t| \cdot \sin(\beta)
\]

\[
y = |t| \cdot \cos(\beta) \cdot \sin(\alpha)
\]

\[
x = |t| \cdot \cos(\beta) \cdot \cos(\alpha)
\]
The function that take into account that r' can be negative is very simple:

$$(x, y, z, t)_{dpace} > (\text{sign}(r') \cdot x, \text{sign}(r') \cdot y, \text{sign}(r') \cdot z, t)$$

(See appendix for the code Sum_4d for the sum definition).

Test code:

This is the test code that permit to simulate the calculus of

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

(h is a 3d number)

Function Test1(s As Complex3d, h As Complex3d) As Complex3d

Dim a As Complex3d, b As Complex3d, b_minus_a As Complex3d

b = Sum_3d(s, h) \ 's+h

a = Mul_3d(s, s) \ 's^2

b_minus_a = Diff_3d(b, a) \ '(s+h)^2 - s^2

Test1 = Div_3d(b_minus_a, h)

End Function

This is the test code that permit to simulate the calculus of

$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

(h is a 3d number)

Function Test 2 (s As Complex3d, h As Complex3d) As Complex3d

Dim a As Complex3d, b As Complex3d, b_minus_a As Complex3d

b = Sum_3d(s, h) \ 's+h

a = Exp_3d(s) \ 'Exp(s)

b_minus_a = Diff_3d(b, a) \ 'Exp(s+h) - Exp(s)

Test2 = Div_3d(b_minus_a, h)

End Function

'e' and ln(s) code functions:

Function Exp_3d(S As Complex3d) As Complex3d

Dim Es As Complex3d

Es = Init_Vector(Exp(S.X), Modulus(S.Y, 2 * Pi), Modulus(S.Z, 2 * Pi))

Exp_3d = Es

End Function

Function Log_3d(S As Complex3d) As Complex3d

Log_3d = Init_Algebric(Log(S.R), S.Alfa, S.Beta)

End Function

3D core algebra: visual basic source code

Option Compare Database

Option Explicit

' CORE 3d ALGEBRA
' V2.4g OPTIMIZED
'--

Public Const Pi = 3.14159265358979

' Avoid the use of small number in simulation (or very big numbers) the precision is limited, the mantissa have 15 digit.

Public Const MaxDigit = 12, AsZero = 10 ^ -12

'We can round the results of calculus or not.

Private Const Round_Results = True

'--

'The definition of the complex3d type

Type Complex3d

X As Double

Y As Double

Z As Double

End Type

'The initialization number in cartesian notation

Function Init_Algebric(X As Double, Y As Double, Z As Double) As Complex3d

Dim R As Complex3d

R.X = X

R.Y = Y

R.Z = Z

Calc_Vector_Notation R

Init_Algebric = R

End Function

'The initialization number in vector notation

Function Init_Vector(R As Double, Alfa As Double, Beta As Double) As Complex3d

Dim S As Complex3d

S.R = R

S.Alfa = Alfa

S.Beta = Beta

To_Algebric_Notation S

Init_Vector = S
End Function

' The sum A+B
Function Sum_3d(a As Complex3d, b As Complex3d) As Complex3d
Dim R As Complex3d
R.X = a.X + b.X
R.Y = a.Y + b.Y
R.Z = a.Z + b.Z
Calc_Vector_Notation R
Sum_3d = R
End Function

' The difference A-B
Function Diff_3d(a As Complex3d, b As Complex3d) As Complex3d
Dim R As Complex3d
R.X = a.X - b.X
Calc_Vector_Notation R
Diff_3d = R
End Function

' The product A*B
Function Mul_3d(a As Complex3d, b As Complex3d) As Complex3d
Dim R As Complex3d
R.R = a.R * b.R
R.Alfa = Modulus(a.Alfa + b.Alfa, 2 * Pi)
R.Beta = Modulus(a.Beta + b.Beta, 2 * Pi)
To_Algebric_Notation R
Mul_3d = R
End Function

' The division A/B
Function Div_3d(a As Complex3d, b As Complex3d) As Complex3d
Dim R As Complex3d
R.R = a.R / b.R
R.Alfa = Modulus(a.Alfa / b.Alfa, 2 * Pi)
R.Beta = Modulus(a.Beta / b.Beta, 2 * Pi)
To_Algebric_Notation R
Div_3d = R
End Function

' The 1/S
Function Inverse_3d(S As Complex3d) As Complex3d
Dim R As Complex3d
R.R = 1 / S.R
R.Alfa = Modulus(-S.Alfa, 2 * Pi)
R.Beta = Modulus(-S.Beta, 2 * Pi)
To_Algebric_Notation R
Inverse_3d = R
End Function

' S^X; X real
Function S_elev_X_3d(S As Complex3d, X As Double) As Complex3d
Dim R As Complex3d
R.R = S.R ^ X
R.Alfa = Modulus(S.Alfa * X, 2 * Pi)
R.Beta = Modulus(S.Beta * X, 2 * Pi)
To_Algebric_Notation R
S_elev_X_3d = R
End Function

' Square root of S
Function Sqr_3d(S As Complex3d) As Complex3d
Dim R As Complex3d
R.R = Sqr(S.R)
R.Alfa = Modulus(S.Alfa / 2, 2 * Pi)
R.Beta = Modulus(S.Beta / 2, 2 * Pi)
To_Algebric_Notation R
Sqr_3d = R
End Function

' Rotation and elongation
Function Rotation_3d(S As Complex3d, dAlfa As Double, dBeta As Double, Optional dr As Double = 0) As Complex3d
Dim R As Complex3d
R = S
If Near0(R.R) = 0 AndNear0(dr) = 0 Then
Rotation_3d = R
Exit Function
End If
R.R = R.R + dr
R.Alfa = Modulus(S.Alfa + dAlfa, 2 * Pi)
R.Beta = Modulus(S.Beta + dBeta, 2 * Pi)
To_Algebric_Notation R
Rotation_3d = R
End Function

'Creates ds from a vector S and dAlfa, dBeta and dr
Function Differentiate_Vector_3d(S As Complex3d, dAlfa As Double, dBeta As Double, dr As Double) As Complex3d
 Dim dx As Double, dy As Double, dz As Double, dS As Complex3d
 dz = dr * Sin(S.Beta) + S.R * Cos(S.Beta) * dBeta
 dy = dr * Cos(S.Beta) * Sin(S.Alfa) - S.R * Sin(S.Beta) * Sin(S.Alfa)
 * dBeta + S.R * Cos(S.Alfa) * Cos(S.Beta) * dAlfa
 dx = dr * Cos(S.Beta) * Cos(S.Alfa) * dBeta - S.R * Cos(S.Beta) * Sin(S.Alfa)
 * dAlfa
 dS = Init_Algebric(dx, dy, dz)
 Differentiate_Vector_3d = dS
End Function

'Internal product
Function A_V_B_3d(a As Complex3d, b As Complex3d) As Double
End Function

'External product
Function A_X_B_3d(a As Complex3d, b As Complex3d) As Complex3d
 Dim X As Double, Y As Double, Z As Double, R As Complex3d
 R = Init_Algebric(X, Y, Z)
 A_X_B_3d = R
End Function

'Versor of S
Function Versor_3d(S As Complex3d) As Complex3d
 Dim R As Complex3d, R0 As Double
 If Near0(S.R) = 0 Then GoTo Set_To_Zero
 R = S
 R0 = Sqr(R.R ^ 2 + R.Y ^ 2 + R.Z ^ 2)
 If Near0(R0) = 0 Then R0 = 1 ' this do not stop the calculation
 R.R = R.R / R0
 R.X = R.X / R0
 R.Y = R.Y / R0
 R.Z = R.Z / R0
 Check_Algebric_Zero 'may be omitted
 Versor_3d = R
End Function

'Project A on Wx, Wy and Wz the new base
Wx = Versor_3d(b)

'..

'Optimization
'Wy = Init_Algebric_3d(-Wy.Y, Wy.X, 0)
Wy.X = -Wx.Y
Wy.Y = Wx.X
Wy.Z = 0
R0 = Sqr(Wy.X ^ 2 + Wy.Y ^ 2)
If Near0(R0) = 0 Then R0 = 1 ' this do not stop the calculation
Wy.X = Wy.X / R0
Wy.Y = Wy.Y / R0

'..

'consider Wz as
'Wz = A_X_B_3d(Wx, Wy)

'..

'Project A on Wx, Wy, Wz, Wt
BVx = A_V_B_3d(a, Wx)
BVy = A_V_B_3d(a, Wy)
BVz = A_V_B_3d(a, Wz)
R = Init_Algebric(BVx, BVy, BVz)
Project_A_on_B_3d = R
Exit Function
Set_To_Zero:
R.X = 0
R.Y = 0
R.Z = 0
R.R = 0
R.Alfa = 0
R.Beta = 0
Project_A_on_B_3d = R
End Function

'The Transformation from Cartesian to Vector Notation
Private Sub Calc_Vector_Notation(S As Complex3d)
Dim SinBeta As Double, CosBeta As Double, SinAlfa As Double, CosAlfa As Double
Check_Algebric_Zero S
'Calc R
S.R = Sqr(S.X ^ 2 + S.Y ^ 2 + S.Z ^ 2)
If Near 0(S.R) = 0 Then GoTo Set_To_Zero
'Solve Beta....
SinBeta = S.Z / S.R
CosBeta = Sqr(S.X ^ 2 + S.Y ^ 2) / S.R
'CosBeta is always >=0
'SinBeta can be <=0
If Round(CosBeta, MaxDigit) = 0 Then
If Round (SinBeta, MaxDigit) = 0 Then GoTo Set_To_Zero
S.Beta = Pi / 2 * Sgn(S.Y)
S.Alfa = 0
Exit Sub
End If
S.Beta = ArcSin(SinBeta)
'Solve Alfa....
SinAlfa = S.Y / S.R / CosBeta
CosAlfa = S.X / S.R / CosBeta
'CosAlfa can be <=0...
If Round (CosAlfa, MaxDigit) = 0 Then
If Round (SinAlfa, MaxDigit) = 0 Then
S.Alfa = 0
Else
S.Alfa = Pi / 2 * Sgn(S.Y)
End If
End If
End If
End If
End Sub

'The Transformation from Vector to Cartesian Notation
Private Sub To_Algebric_Notation(S as Complex3d)
Dim CosBeta as Double
If Near0(S.R) = 0 Then GoTo Set_To_Zero
'Solve X,Y,Z
S.Z = S.R * Sin(S.Beta)
CosBeta = Cos(S.Beta)
If Near0(CosBeta) = 0 Then
S.Y = 0
S.X = 0
'If CosBeta=0 Alfa is irrelevant
S.Alfa = 0
Else
S.Y = S.R * CosBeta * Sin(S.Alfa)
CosAlfa = Cos(S.Alfa)
If Near0(CosAlfa) = 0 Then
S.Y = S.R * CosBeta * Sin(S.Alfa)
S.X = S.R * CosBeta * Cos(S.Alfa)
End If
Calc_Vector_Notation S
Exit Sub
Set_To_Zero:
 S.X = 0
 S.Y = 0
 S.Z = 0
 S.R = 0
 S.Alfa = 0
 S.Beta = 0
End Sub

Private Sub Check_Algebric_Zero(S as Complex3d)
 S.Z = Near0(S.Z)
 S.Y = Near0(S.Y)
 S.X = Near0(S.X)
End Sub

Function Modulus(X as Double, Y As Double) As Double
 Dim Resto As Double
 Resto = X / Y - Fix(X / Y)
 If Round(Resto * Y, MaxDigit) = 0 Then
 Modulus = 0
 Else
 Modulus = Resto * Y
 End If
End Function

Function ArcSin(X as Double) As Double
 If Round(Abs(X), MaxDigit) = 1 Then
 ArcSin = Pi / 2 * Sgn(X)
 Exit Function
 End If
 ArcSin = Atn(X / Sqr(1 - X ^ 2))
End Function

Function ArcCos(X as Double) As Double
 If Round(Abs(X), MaxDigit) = 1 Then
 If X > 0 Then
 ArcCos = 0
 Else
 ArcCos = Pi
 End If
 Else
 ArcCos = Atn(-X / Sqr(1 - X ^ 2)) + 2 * Atn(1)
 End If
End Function

Function Near0(X As Double) As Double
 Dim R As Double
 R = X
 If Round_Results Then R = Round(R, MaxDigit)
 Near0 = R
 If Abs(R) <= AsZero Then
 Near0 = 0
 End If
End Function

Function Truncate(X as Double, MaxDigit) As Double
 Dim R as Double
 R = X * 10 ^ MaxDigit
 'The mantissa...
 R = Fix(R)
 R = R / 10 ^ MaxDigit
 Truncate = R
End Function

'-----------------------------------
'END CORE 3d ALGEBRA
'-----------------------------------

4D core algebra: visual basic source code

Option Compare Database
Option Explicit

'-----------------------------------
' CORE 4d ALGEBRA
' V2.8e OPTIMIZED
'-----------------------------------

'Public Const Pi = 3.14159265358979
'--
'AVOID THE USE OF SMALL NUMBER IN SIMULATION (OR VERY BIG NUMBERS) THE PRECISION IS LIMITED, THE MANTISSA HAVE 15 DIGIT
'Public Const MaxDigit = 12, AsZero = 10 ^ -12
'We can round the results of calculus or not
Private Const Round_Results = True
'--
'The definition of the complex4d type
Type Complex4d
 X As Double
 Y As Double
Z As Double
T As Double
R As Double
Alfa As Double
Beta As Double
Gamma As Double
V3dSpace As Integer
End Type
'
The initialization number in cartesian notation
Function Init_Algebric_4d(X As Double, Y As Double, Z As Double, T As Double, V3dSpace As Integer) As Complex4d
Dim R As Complex4d
R.X = X
R.Y = Y
R.Z = Z
R.T = T
R.V3dSpace = V3dSpace
Calc_Vector_Notation R
Init_Algebric_4d = R
End Function
'
The initialization number in vector notation
Function Init_Vector_4d(R As Double, Alfa As Double, Beta As Double, Gamma As Double) As Complex4d
Dim S As Complex4d
S.R = R
S.Alfa = Alfa
S.Beta = Beta
S.Gamma = Gamma
To_Algebric_Notation S
Init_Vector_4d = S
End Function
'
The sum A+B
Function Sum_4d(a As Complex4d, b As Complex4d) As Complex4d
Dim r1a As Double, r1b As Double, R As Complex4d
'
Same 3d spaces
If a.V3dSpace = b.V3dSpace Then
' Standard sum
R.X = a.X + b.X
R.Y = a.Y + b.Y
R.Z = a.Z + b.Z
End If
End Function
'
The difference A-B
Function Diff_4d(a As Complex4d, b As Complex4d) As Complex4d
Dim b1 As Complex4d
' Consider the symmetric vector:
Diff_4d = Sum_4d(a, b1)
End Function
'
The product A*B
Function Mul_4d(a As Complex4d, b As Complex4d) As Complex4d
Dim R As Complex4d
R.R = a.R * b.R
R.Alfa = Modulus(a.Alfa + b.Alfa, 2 * Pi)
R.Beta = Modulus(a.Beta + b.Beta, 2 * Pi)
R.Gamma = Modulus(a.Gamma + b.Gamma, 2 * Pi)
To_Algebraic_Notation R
Mul_4d = R
End Function

'The division A/B
Function Div_4d(a As Complex4d, b As Complex4d) As Complex4d
Dim R As Complex4d
R.R = a.R / b.R
R.Alfa = Modulus(a.Alfa - b.Alfa, 2 * Pi)
R.Beta = Modulus(a.Beta - b.Beta, 2 * Pi)
R.Gamma = Modulus(a.Gamma - b.Gamma, 2 * Pi)
To_Algebraic_Notation R
Div_4d = R
End Function

'The 1/S
Function Inverse_4d(S As Complex4d) As Complex4d
Dim R As Complex4d, X As Double
R.R = 1 / S.R
R.Alfa = Modulus(-S.Alfa, 2 * Pi)
R.Beta = Modulus(-S.Beta, 2 * Pi)
R.Gamma = Modulus(-S.Gamma, 2 * Pi)
To_Algebraic_Notation R
Inverse_4d = R
End Function

'S^X; X real
Function S_elev_X_4d(S As Complex4d, X As Double) As Complex4d
Dim R As Complex4d
R.R = S.R ^ X
R.Alfa = Modulus(S.Alfa * X, 2 * Pi)
R.Beta = Modulus(S.Beta * X, 2 * Pi)
R.Gamma = Modulus(S.Gamma * X, 2 * Pi)
To_Algebraic_Notation R
S_elev_X_4d = R
End Function

'Square root of S
Function Sqr_4d(S As Complex4d) As Complex4d
Dim R As Complex4d
R.R = Sqr(S.R)
R.Alfa = Modulus(S.Alfa / 2, 2 * Pi)
R.Beta = Modulus(S.Beta / 2, 2 * Pi)
R.Gamma = Modulus(S.Gamma / 2, 2 * Pi)
To_Algebraic_Notation R
Sqr_4d = R
End Function

'Rotation and elongation
Function Rotation_4d(S As Complex4d, dAlfa As Double, dBeta As Double, dGamma As Double, Optional dr As Double = 0) As Complex4d
Dim R As Complex4d
R = S
If Near0(R.R) = 0 And Near0(dr) = 0 Then
Rotation_4d = R
Exit Function
End If
R.R = R.R + dr
R.Alfa = Modulus(S.Alfa + dAlfa, 2 * Pi)
R.Beta = Modulus(S.Beta + dBeta, 2 * Pi)
R.Gamma = Modulus(S.Gamma + dGamma, 2 * Pi)
To_Algebraic_Notation R
Rotation_4d = R
End Function

'Creates ds from a vector S and dAlfa, dBeta, dGamma and dr
Function Differentiate_Vector_4d(S As Complex4d, dAlfa As Double, dBeta As Double, dGamma As Double, dr As Double) As Complex4d
Dim dx As Double, dy As Double, dz As Double, dt As Double, ds As Complex4d
Dim dr1 As Double, R1 As Double
R1 = Sqr(S.X ^ 2 + S.Y ^ 2 + S.Z ^ 2)
dr1 = dr * Cos(S.Gamma) - S.R * Sin(S.Gamma) * dGamma
dt = dr * Sin(S.Gamma) + S.R * Cos(S.Gamma) * dGamma
dz = dr1 * Sin(S.Beta) + S.R * Cos(S.Beta) * dBeta
dy = dr1 * Cos(S.Beta) * Sin(S.Alfa) - S.R * Sin(S.Beta) * Sin(S.Alfa) * dBeta + S.R * Cos(S.Beta) * Cos(S.Alfa) * dAlfa
dx = dr1 * Cos(S.Beta) * Cos(S.Alfa) - S.R * Sin(S.Beta) * Cos(S.Alfa) * dAlfa - S.R * Sin(S.Beta) * Cos(S.Alfa) * dAlfa
ds = Init_Algebraic_4d(dx, dy, dz, dt, S.V3dSpace)
Differentiate_Vector_4d = ds
End Function

'Proposal function - nonsense?
'Internal product
Function A_V_B_4d(a As Complex4d, b As Complex4d) As Double
 a.T * b.T
End Function

'Versor of S
Function Versor_4d(S As Complex4d) As Complex4d
 Dim R As Complex4d, R0 As Double
 If Near0(S.R) = 0 Then GoTo Set_To_Zero
 R = S
 R0 = R.R
 R.R = 1
 R.X = R.X / R0
 R.Y = R.Y / R0
 R.Z = R.Z / R0
 R.T = R.T / R0
 R.V3dSpace = S.V3dSpace
 Check_Algebric_Zero_4d R
 Versor_4d = R
 Exit Function
Set_To_Zero:
 R.X = 0
 R.Y = 0
 R.Z = 0
 R.T = 0
 R.R = 0
 R.Alfa = 0
 R.Beta = 0
 R.Gamma = 0
 R.V3dSpace = 1
 Versor_4d = R
End Function

'Proposal function -- may be a nonsense
'Return vector A along components on B axes; B new real axes
Function Project_A_on_B_4d(a As Complex4d, b As Complex4d) As Complex4d
 Dim Wx As Complex4d, Wy As Complex4d, Wz As Complex4d, Wt As Complex4d, R As Complex4d, R0 As Double
 Dim X As Double, Y As Double, Z As Double, T As Double
 Dim BVx As Double, BVy As Double, BVz As Double, BVt As Double
 Dim Wx, Wy, Wz, Wt
 If Near0(b.R) = 0 Then GoTo Set_To_Zero_GoTo Set_To_Zero
 If Near0(a.R) = 0 Then GoTo Set_To_Zero
 'Versors Wx, Wy and Wz the new base
 Wx = Versor_4d(b)
 ' Optimization
 'Wy = Init_Algebric_4d(-Wy.X, Wy.Y, Wy.Z, 0)
 Wy.X = -Wx.Y
 Wy.Y = Wx.X
 Wy.Z = 0
 Wy.T = 0
 Wy.V3dSpace = b.V3dSpace
 'Wy = Versor_4d(Wy)
 R0 = Sqr(Wy.X ^ 2 + Wy.Y ^ 2 + Wy.Z ^ 2 + Wy.T ^ 2)
 If Near0(R0) = 0 Then R0 = 1 'this do not stop the calculation
 Wy.X = Wy.X / R0
 Wy.Y = Wy.Y / R0
 'Wy.Z = Wy.Z / R0
 'Wy.T = Wy.T / R0
 '--
 'Wz: Take Wx and make it orthogonal respect to T
 If Near0(Wx.T) = 0 Then
 Wt.X = 0
 Wt.Y = 0
 Wt.Z = 0
 Wt.T = 0
 Wt.V3dSpace = 1
 Else
 'Wz = A_X_B_3d(Wx, Wy) + T=0
 Wz.T = 0
 Wz.V3dSpace = b.V3dSpace
 '--
 'Wt: Take Wx and make it orthogonal respect to T
 If Near0(Wx.T) = 0 Then
 Wt.X = 0
 Wt.Y = 0
 Wt.Z = 0
 Wt.T = 0
 Wt.V3dSpace = 1
 Else
 '--
 End If
 End If
End Function
Wt.X = Wx.X
Wt.Y = Wx.Y
Wt.Z = Wx.Z
Wt.T = -(Wx.X^2 + Wx.Y^2 + Wx.Z^2) / Wx.T
Wt.V3dSpace = b.V3dSpace
End If

'Wt = Versor_4d(Wt)
R0 = Sqr(Wt.X^2 + Wt.Y^2 + Wt.Z^2 + Wt.T^2)
If Near0(R0) = 0 Then R0 = 1 'this do not stop the calculation
Wt.X = Wt.X / R0
Wt.Y = Wt.Y / R0
Wt.Z = Wt.Z / R0
Wt.T = Wt.T / R0

'Project A on Wx, Wy, Wz, Wt
BVx = A_V_B_4d(a, Wx)
BVy = A_V_B_4d(a, Wy)
BVz = A_V_B_4d(a, Wz)
BVt = A_V_B_4d(a, Wt)
R = Init_Algebric_4d(BVx, BVy, BVz, BVt, b.V3dSpace) ' or (?)
'Calc R
S.R = Sqr(S.X^2 + S.Y^2 + S.Z^2 + S.T^2)
If Near0(S.R) = 0 Then GoTo Set_To_Zero
R1 = Sqr(S.X^2 + S.Y^2 + S.Z^2)
'Solve Gamma....
SinGamma = S.T / S.R
'SinGamma can be <=0
CosGamma = S.V3dSpace * R1 / S.R
'CosGamma can be<0 depends on V3dSpace
If Round(CosGamma, MaxDigit) = 0 Then '->R1=0; considerate T
 If Round(SinGamma, MaxDigit) = 0 Then GoTo Set_To_Zero 'i.e.
 T=0, and R1=0
 S.Gamma = Pi / 2 * Sgn(S.T)
 Else
 S.Gamma = ArcSin(SinGamma)
 If S.V3dSpace < 0 Then
 If Near0(S.T) <> 0 Then
 S.Gamma = (Pi - Abs(S.Gamma)) * Sgn(S.T)
 Else
 S.Gamma = Pi
 End If
 Else
 S.Gamma = Pi
 End If
 End If
End If

Set_To_Zero:
R.X = 0
R.Y = 0
R.Z = 0
R.T = 0
R.R = 0
R.AAlfa = 0
R.Beta = 0
R.Gamma = 0
R.V3dSpace = 1
Project_A_on_B_4d = R

End Function

'The Transformation from Cartesian to Vector Notation
Private Sub Calc_Vector_Notation(S As Complex4d)
Dim S3 As Complex3d, SinGamma As Double, CosGamma As Double, R1 As Double
Dim SinBeta As Double, CosBeta As Double, SinAlfa As Double, CosAlfa As Double
Check_Algebric_Zero_4d S

 'Calc R
 S.R = Sqr(S.X^2 + S.Y^2 + S.Z^2 + S.T^2)
 If Near0(S.R) = 0 Then GoTo Set_To_Zero
 R1 = Sqr(S.X^2 + S.Y^2 + S.Z^2)

 'Solve Gamma....
 SinGamma = S.T / S.R
 'SinGamma can be <=0
 CosGamma = S.V3dSpace * R1 / S.R
 'CosGamma can be<0 depends on V3dSpace
 If Round(CosGamma, MaxDigit) = 0 Then '->R1=0; considerate T
 If Round(SinGamma, MaxDigit) = 0 Then GoTo Set_To_Zero 'i.e.
 T=0, and R1=0
 S.Gamma = Pi / 2 * Sgn(S.T)
 Else
 S.Gamma = ArcSin(SinGamma)
 If S.V3dSpace < 0 Then
 If Near0(S.T) <> 0 Then
 S.Gamma = (Pi - Abs(S.Gamma)) * Sgn(S.T)
 Else
 S.Gamma = Pi
 End If
 Else
 S.Gamma = Pi
 End If
 End If
 End If
End If

If Near0(R1) = 0 Then 'pure T vector
 S.X = 0
 S.Y = 0
 S.Z = 0
 S.Alfa = 0
 S.Beta = 0
 S.Gamma = Pi / 2 * Sgn(S.T)
 S.V3dSpace = 1
 Exit Sub
End If

'Solve X,Y,Z
'Solve Beta....
SinBeta = S.Z / R1
CosBeta = Sqr(S.X^2 + S.Y^2) / R1
'CosBeta is always >=0
'SinBeta can be <=0
If Round(CosBeta, MaxDigit) = 0 Then
If Round(SinBeta, MaxDigit) = 0 Then GoTo Set_To_Zero
S.Beta = Pi / 2 * Sgn(S.Z)
S.Alfa = 0
Exit Sub
End If
S.Beta = ArcSin(SinBeta)
'Solve Alfa....
SinAlfa = S.Y / R1 / CosBeta
CosAlfa = S.X / R1 / CosBeta
'CosAlfa can be <=0 ...
If Round(CosAlfa, MaxDigit) = 0 Then
If Round(SinAlfa, MaxDigit) = 0 Then
S.Alfa = 0
Else
S.Alfa = Pi / 2 * Sgn(S.Y)
End If
Else
S.Alfa = ArcSin(SinAlfa)
If CosAlfa < 0 Then
'If CosAlfa<0 ... -> Quadrant 2 o quadrant 4
If Near0(S.Alfa) <> 0 Then
S.Alfa = (Pi - Abs(S.Alfa)) * Sgn(S.Y)
Else
S.Alfa = Pi
End If
End If
Else
S.Alfa = Pi
End If
End If
Exit Sub
Set_To_Zero:
S.X = 0
S.Y = 0
S.Z = 0
S.R = 0
S.Alfa = 0
S.Beta = 0
S.Gamma = 0
S.V3dSpace = 1
End Sub

The Transformation from Vector to Cartesian Notation
Private Sub To_Algebric_Notation(S As Complex4d)

Dim R1 As Double, CosBeta As Double, CosGamma As Double
If Near0(S.R) = 0 Then GoTo Set_To_Zero
'Solve X,Y,Z, T
S.T = S.R * Sin(S.Gamma)
CosGamma = Cos(S.Gamma)
If Near0(CosGamma) = 0 Then
'If CosGamma = 0 Alfa is irrelevant
Else
S.V3dSpace = Sgn(CosGamma)
R1 = S.R * Abs(CosGamma)
S.Z = R1 * Sin(S.Beta)
CosBeta = Cos(S.Beta)
If Near0(CosBeta) = 0 Then
S.Y = 0
Else
S.Y = R1 * CosBeta * Sin(S.Alfa)
S.X = R1 * CosBeta * Cos(S.Alfa)
End If
Calc Vector Notation S
Exit Sub
Set_To_Zero:
S.X = 0
S.Y = 0
S.Z = 0
End Sub
S.Gamma = 0
S.V3dSpace = 1

End Sub

Private Sub Check_Algebraic_Zero_4d(S As Complex4d)
S.Z = Near0(S.Z)
S.Y = Near0(S.Y)
S.X = Near0(S.X)
S.T = Near0(S.T)
If Near0(Sqr(S.X ^ 2 + S.Y ^ 2 + S.Z ^ 2 + S.T ^ 2)) = 0 Then
S.V3dSpace = 1
End Sub

'-----------------------------------
'END CORE 4d ALGEBRA
'-----------------------------------

References

OMICS International: Publication Benefits & Features
Unique features:
• Increased global visibility of articles through worldwide distribution and indexing
• Showcasing recent research output in a timely and updated manner
• Special issues on the current trends of scientific research

Special features:
• 700 Open Access Journals
• 50,000 editorial team
• Rapid review process
• Quality and quick editorial, review and publication processing
• Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
• Sharing Option: Social Networking Enabled
• Authors, Reviewers and Editors rewarded with online Scientific Credits
• Better discount for your subsequent articles

Submit your manuscript at: www.omicsonline.org/submission