g COmp
o8 Utag

e,
S

N
N\ e, ¢
wouyeW

-~ ynal of.
)o\“‘ Ao,

_ISSN: 2168-9679

- Applied & Computational Mathematics

Sonaglioni, J Appl Computat Math 2015, 4:6
DOI: 10.4172/2168-9679.1000267

A New Number Theory - Algebra Analysis

Sonaglioni L*
Free Professionist, Italy

Abstract

The article proposes some analytical considerations about the 3d algebra, and the possibilities of an extension
in 3d of some standard 2d analytical functions. It takes also in consideration some problems about the derivative

and the integrals.

Keywords: Quaternions; Number theory; Operator theory; Algebra;
Tensor methods
Three-Dimension

Let us consider the 3d space that can be represented by the tern
u,v,w as shown in Figure 1.

A recently publication [1] have shown that the point P (a 3d number
[X,2]) can be written as:

P=(x,y,2)=u-x+v-y+w-z
and also, using the polar notation, as P = 4. ej atk-p
where r = \[xz +y2 +z22
the definition of the sum is:

1) A+P=u-(x;+x)+V-(y+y2)+Ww-(z1+2;) [cartesian notation]
the definition of the product is:

2) Pl . PZ =711 ,ej'(%*az)*k'(ﬁl*ﬂz)

[polar notation]

The two rules of above, and the transformations between the polar
notation and the cartesian notation of the point P (and vice versa) give
a 3d algebra definition as an extension of the sum and product of the 2d
standard complex algebra.

What else can we say about this algebra?

First we have to observe that this algebra is commutative but not
distributive, in fact:

O X Tr u

Figure 1: 1,—1,17, W are unit vector in the three-dimensional space.

3) a-(b+c)#a-b+b-c, where a, b and ¢ are 3 dimensions
numbers as above.

This is because the transformations used for the definition of the
product are not linear.

We can try to define the standard functions such as e, In(s), cos(s),
sin(s)

The problem can be seen as an extension of the same 2d complex
functions.

If we extend e* byzthe series definitions:

s 5 s
=l+—+—+..
ST
Simulations show that In(s) is not a biunique function unless 2.
for the arguments. I've found two distinct s values whose e defined as

4) is the same.
Example:

et 33 = (110.87282, 20.69650, 3.333867)

but also:

eB,l53034+j<2,057245+k-0,077329045 =(-10.87282, 20.69650, 3.333867)

So we must define e as the standard extension of the 2d complex
exponential function:

5) ¢f = ¥ /VHhz 2 polar notation of: (exp(x), y, 2)
e’ =r-el’t % where r=e*

In this case In(s) is defined as the cartesian notation of: (In(r),
mod(o,21), mod(f,2m)) and it is a unique function unless 27 for the
angles arguments.

What about derivative of e (?) again, the algebra is not distributive,

the limit:

s+h _ e’
lim h is a 3d number

h—0 h

*Corresponding author: Sonaglioni L, Free Professionist, Italy, Tel: 388-0579470;
E-mail: luca.sonaglioni@hotmail.com

Received November 23, 2015; Accepted December 01, 2015; Published
December 05, 2015

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl
Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Copyright: © 2015 Sonaglioni L. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 2 of 13

does not exist, for the same reason of the derivative of s> (see below and
code sample).

We can also define cos(s) and sin(s) as an extension of the standard
2d complex definitions, even that may be not clear the significance of
these functions.

ej-x—y+k~z + e—j-ery—k-z

2

cos(s) =
And sin(s)

e Jjx—y+k-z

—e —jx+y-kz
sin(s) =

2-j
The calculus of these definitions is simple, but the derivative does
not exists, because derivative of e* does not exist.
Also, simulations have shown that (for 3d numbers):
sin(s)2 + cos(s)2 #1
So the definitions of sin(s) and cos(s) for 3d numbers seems to be
useless and meaningless.

About derivative and simple integrals we can analyze two cases:

We can calculate the derivative of s:

limﬂzl
=0 h

h is a 3d number

A consequence is:
Ids =s
The derivative of s*
2 2
. (s+h)"—s
lim L
h—0 h

But, because the algebra is not distributive (s +h)? £ +h +2.5-h

, simulations shows the limit does not exist (see code). So the integral
2

Js~ds¢s7

hisa3d number

depends on the path.
Anyway, if we have a point in the space
6) p(t)=u-x(t)+v-y(t)+w-z(t) (te®)

Where x(t), y(t), z(t) gives a real result and are continuous and
differentiable functions, we can calculate the velocity:

d _d _d _d
—(pO) = —(x(0)+7 -~ (yO) +37—(2(0))

and also the acceleration.
If we have a sum of two 3d functions such as 6):
S @) = fi()+ f2(0)
The derivative is:

7 L) =tim LEEDELEED SO LO e
dt h—0 h
And can be expressed as the sum of the two derivatives; limit 7) is:

d d d
E(f(t))=a(fl(t))+a(fz(t)) (teR)

Instead, if we have a product of two 3d functions such as 6):
JO=hH©)-f20) (1e®R)

The derivative is:

(teR)

fit+h)-f,t+h)— £,(t)- £, (1)

d
8) — =l
) dt(f(t)) lim P (t,heR)
This algebra is not distributive, so the limit can’t be expressed in the
algebraic well known form:

d d d
4 jw) [;fm)fz(t) +[Zfz<r>j-fl<t)
But, if the limit exists, can be calculated.

I suppose that if f (t) and f(t) are continuous and differentiable
functions', the limit 8) exists and can be calculated, but it is not an easy
demonstration.

'The limitation is (x(t), y(t), z(t)) must be a real term.

t can be a complex 2d variable, but the functions must be continuous
and differentiable and their result must be a real number.

Last Considerations about 4d Numbers (see[1])

T
If 7€ {_;=E} during calculations, same considerations can be

done for 4d numbers (except for sin(s) and cos(s) that in this case they
don’t to be take in consideration).

s
If during calculations happens that [7]> 5 we have a problem, the
transformations between cartesian notation and vector notation, in this
case, are not perfectly biunique.

When cos(y)<0, the 4d number, become a number that has a
negative 3d space sign: r' = r.cos(y)

#'=—y/x2 + 32 + 72 and the sign is negative because cos(y)<0

We can take into account of the sign of the 3d space so we can have
a perfectly biunique transformation.

For the product definition there is no problem, but we have
problems with the sum definition. May be a nonsense make a sum
between two 4d numbers, one with a sign of 3d space > 0 and one with
a negative sign of the 3d space.

I make a proposal:

If the 3d space signs of a and b are the same, the sum is the standard sum.

Suppose, instead that 3d space sign of a and b are different.

Let us consider a and b two 4d numbers whose ¢ value is 0, same
|r'| = \/m

We can say the sum (a+b) of this two numbers reduces to 0, just like

a difference. So, in this special case, the sum reduces to a difference, and
the resulting sign of the 3d space is set to 1.

but opposite 3d spaces.

In general we can have r' #r',. We can built up a function that take
into account that r' can be negative, then make a+b among the new
deduced (x,y,z,t) components; the resulting sum sign of the 3d space is
the a 3d space sign if r' > r'; if r' < r', the resulting sum sign of the 3d
space is the b 3d space sign.

Because:

r=1[x2+y2+22+t2

r'=r-cos(y)
t=r-sin(y)

z :‘r“~sin(ﬂ)
y= ‘r" -cos(f)sin(x)

x= ‘r"-cos(ﬂ) cos(a)

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 3 of 13

The function that take into account that r' can be negative is very
simple:

(x’y5zat)3dspace > (sign(r')-x,sign(r')- y,sign(r') - z,t)
(See appendix for the code Sum_4d for the sum definition).
Test code:

This is the test code that permit to simulate the calculus of

2_ 2
lim (s+h)—s
h—0 h
Function Test1(s As Complex3d, h As Complex3d) As Complex3d

(h is a 3d number)

Dim a As Complex3d, b As Complex3d, b_minus_a As Complex3d
b = Sum_3d(s, h) ‘s+h

a =Mul_3d(s, s) 'sA2

b = Mul_3d(b, b) '(s+h)~2

b_minus_a = Diff_3d(b, a) '(s+h)A2 - sA2

Testl = Div_3d(b_minus_a, h)

End Function

This is the test code that permit to simulate the calculus of

es+h e
lim ———— (h is a 3d number)

If‘ll;;loctionéfest 2 (s As Complex3d, h As Complex3d) As Complex3d
Dim a As Complex3d, b As Complex3d, b_minus_a As Complex3d
b = Sum_3d(s, h) 's+h

a = Exp_3d(s) ' Exp(s)

b = Exp_3d(b) ' Exp(s+h)

b_minus_a = Diff_3d(b, a) 'Exp(s+h) - Exp(s)

Test2 = Div_3d(b_minus_a, h)

End Function

Function Exp_3d(S As Complex3d) As Complex3d

Dim Es As Complex3d

Es = Init_Vector(Exp(S.X), Modulus(S.Y, 2 * Pi), Modulus(S.Z, 2 * Pi))
Exp_3d =Es

End Function

Function Log_3d(S As Complex3d) As Complex3d

Log_3d = Init_Algebric(Log(S.R), S.Alfa, S.Beta)

End Function

3D core algebra: visual basic source code

Option Compare Database

Option Explicit

' CORE 3d ALGEBRA
'V2.4g OPTIMIZED

'AVOID THE USE OF SMALL NUMBER IN SIMULATION

(OR VERY BIG NUMBERS) THE PRECISION IS LIMITED, THE
MANTISSA HAVE 15 DIGIT

Public Const MaxDigit = 12, AsZero = 10 /A -12
"We can round the results of calculus or not
Private Const Round_Results = True

"The definition of the complex3d type

Type Complex3d

X As Double

Y As Double

Z As Double

R As Double

Alfa As Double

Beta As Double

End Type

"The initialization number in cartesian notation

Function Init_Algebric(X As Double, Y As Double, Z As Double)

As Complex3d

Dim R As Complex3d

RX=X

RY=Y

RZ=7

Calc_Vector_Notation R

Init_Algebric = R

End Function

"The initialization number in vector notation

Function Init_Vector(R As Double, Alfa As Double, Beta As

Double) As Complex3d

Dim S As Complex3d
SR=R

S.Alfa = Alfa

S.Beta = Beta
To_Algebric_Notation S

Init_Vector =S

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 4 of 13
End Function Function Inverse_3d(S As Complex3d) As Complex3d
"The sum A+B Dim R As Complex3d
Function Sum_3d(a As Complex3d, b As Complex3d) As RR=1/SR
Complex3d R Alfa = Modulus(-S.Alfa, 2 * Pi)
Dim R As Complex3d R.Beta = Modulus(-S.Beta, 2 * Pi)
RX=aX+bX To_Algebric_Notation R
RY=aY+bY Inverse_3d = R
RZ=aZ+bZ

End Function
Calc_Vector_Notation R

'SAX; X real
Sum_3d =R Function S_elev_X_3d(S As Complex3d, X As Double) As
End Function Complex3d
"The difference A-B Dim R As Complex3d
Function Diff 3d(a As Complex3d, b As Complex3d) As RR=SRAX
Complex3d R Alfa = Modulus(S.Alfa * X, 2 * Pi)
Dim R As Complex3d R.Beta = Modulus(S.Beta * X, 2 * Pi)
RX=aX-bX To_Algebric_Notation R
RY=aY-bY S_elev X _3d =R
RZ=aZ-bZ

End Function
Calc_Vector_Notation R

Diff 3d=R

'Square root of S

Function Sqr_3d(S As Complex3d) As Complex3d
End Function Dim R As Complex3d
RR = Sqr(S.R)

R.Alfa = Modulus(S.Alfa / 2, 2 * Pi)

"The product A*B
Function Mul _3d(a As Complex3d, b As Complex3d) As

Complex3d
- . D
Dim R As Complex3d R.Beta = Modulus(S.Beta / 2, 2 * Pi)
RR=aR*bR To_Algebric_Notation R

R.Alfa = Modulus(a.Alfa + b.Alfa, 2 * Pi) Sqr_3d=R

R.Beta = Modulus(a.Beta + b.Beta, 2 * Pi) End Function

To_Algebric_Notation R Rotation and elongation

Mul 3d = R Function Rotation_3d(S As Complex3d, dAlfa As Double, dBeta As
- Double, Optional dr As Double = 0) As Complex3d
End Function Dim R As Complex3d

The division A/B R=S

Function Div_3d(a As Complex3d, b As Complex3d) As Complex3d If Near0(R.R) = 0 And Near0(dr) = 0 Then
Dim R As Complex3d

RR=aR/bR

R.Alfa = Modulus(a.Alfa - b.Alfa, 2 * Pi)

R.Beta = Modulus(a.Beta - b.Beta, 2 * Pi)

Rotation_3d =R

Exit Function

End If

RR=RR+dr

R.Alfa = Modulus(S.Alfa + dAlfa, 2 * Pi)
R.Beta = Modulus(S.Beta + dBeta, 2 * Pi)

To_Algebric_Notation R
Div_3d=R
End Function

'"The 1/S

To_Algebric_Notation R
Rotation_3d =R

J Appl Computat Math

ISSN: 2168-9679 JACM, an open access journal Volume 4 - Issue 6 + 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 5 of 13

End Function
'Creates ds from a vector S and dAlfa, dBeta and dr

Function Differentiate_Vector_3d(S As Complex3d, dAlfa As
Double, dBeta As Double, dr As Double) As Complex3d

Dim dx As Double, dy As Double, dz As Double, dS As Complex3d
dz = dr * Sin(S.Beta) + S.R * Cos(S.Beta) * dBeta

dy = dr * Cos(S.Beta) * Sin(S.Alfa) - S.R * Sin(S.Beta) * Sin(S.Alfa)
* dBeta + S.R * Cos(S.Beta) * Cos(S.Alfa) * dAlfa

dx = dr * Cos(S.Beta) * Cos(S.Alfa) - S.R * Sin(S.Beta) * Cos(S.Alfa)
* dBeta - S.R * Cos(S.Beta) * Sin(S.Alfa) * dAlfa

dS = Init_Algebric(dx, dy, dz)
Differentiate_ Vector_3d = dS
End Function

'Internal product

Function A_V_B_3d(a As Complex3d, b As Complex3d) As
Double

A_V_ B 3d=aX*bX+aY*bY+aZ*bZ
End Function
'External product

Function A_X B 3d(a As Complex3d, b As Complex3d) As
Complex3d

Dim X As Double, Y As Double, Z As Double, R As Complex3d
X=aY*bZ-aZ*byY

Y=aZ*bX-aX*bZ

Z=aX*bY-aY*bX

R =Init_Algebric(X, Y, Z)

A_X B 3d=R

End Function

"Versor of S

Function Versor_3d(S As Complex3d) As Complex3d
Dim R As Complex3d, RO As Double

If Near0(S.R) = 0 Then GoTo Set_To_Zero

R=S

RO=R.R

RR=1

RX=RX/R0

RY=RY/RO

R.Z=R.Z/RO

Check_Algebric_Zero R ‘may be omitted

Versor_3d =R

Exit Function

Set_To_Zero:

RX=0

RY=0

RZ=0

RR=0

RAlfa=0

R.Beta=0

Versor_3d =R

End Function

'Return vector A along components on B axes; B new real axes

Function Project_A_on_B_3d(a As Complex3d, b As Complex3d)

As Complex3d

Dim Wx As Complex3d, Wy As Complex3d, Wz As Complex3d, R

As Complex3d, RO As Double

Dim X As Double, Y As Double, Z As Double

Dim BVx As Double, BVy As Double, BVz As Double
If NearO(b.R) = 0 Then GoTo Set_To_Zero

If Near0O(a.R) = 0 Then GoTo Set_To_Zero

‘Versors Wx, Wy and Wz the new base

Wx = Versor_3d(b)

' Optimization

"Wy = Init_Algebric_3d(-Wy.Y, Wy.X, 0)

Wy X =-WxY

WyY = Wx.X

Wy.Z=0

RO = Sqr(Wy.X A 2 + Wy.Y A 2)

If NearO(R0) = 0 Then RO = 1 * this do not stop the calculation
Wy.X = Wy.X / RO

Wy.Y = Wy.Y / RO

‘consider Wz as

‘Wz = A_X_B_3d(Wx, Wy)

Wz.X =Wx.Y * Wy.Z - Wx.Z* Wy.Y
Wz.Y = Wx.Z* Wy.X - Wx.X* WyZ
Wz.Z = WxX* WyY - Wx.Y * Wy.X
"Project A on Wx, Wy, Wz, Wt
BVx=A_V_B_3d(a, Wx)

BVy = A_V_B_3d(a, Wy)
BVz=A_V_B_3d(a, Wz)

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 6 of 13

R = Init_Algebric(BVx, BVy, BVz)

Project_A_on_B_3d =R

Exit Function

Set_To_Zero:

RX=0

RY=0

RZ=0

RR=0

R.Alfa=0

R.Beta=0

Project_A_on_B_3d =R

End Function

"The Transformation from Cartesian to Vector Notation
Private Sub Calc_Vector_Notation(S As Complex3d)

Dim SinBeta As Double, CosBeta As Double, SinAlfa As Double,

CosAlfa As Double

Check_Algebric_Zero S

'Calc R
SR=Sqr(SXA2+SYA2+8ZA2)
If Near 0(S.R) = 0 Then GoTo Set_To_Zero
'Solve Beta....

SinBeta=S.Z/S.R

CosBeta =Sqr(S.XA2+SYA2)/SR
'CosBeta is always >=0

'SinBeta can be <=0

If Round(CosBeta, MaxDigit) = 0 Then
If Round (SinBeta, MaxDigit) = 0 Then GoTo Set_To_Zero
S.Beta=Pi/2* Sgn(S.Z)

S.Alfa=0

Exit Sub

End If

S.Beta = ArcSin(SinBeta)

'Solve Alfa....

SinAlfa =S.Y / S.R/ CosBeta
CosAlfa=8X/S.R/ CosBeta

'CosAlfa can be <=0 ...

If Round (CosAlfa, MaxDigit) = 0 Then
If Round (SinAlfa, MaxDigit) = 0 Then
S.Alfa=0

Else

S.Alfa =Pi/2* Sgn(S.Y)

End If
Else

S.Alfa = ArcSin(SinAlfa)

If CosAlfa < 0 Then

'If CosAlfa<0 ... -> Quadrant 2 o quadrant 4
If Near 0 (S.Alfa) <> 0 Then

S.Alfa = (Pi - Abs (S.Alfa)) * Sgn(S.Y)
Else

S.Alfa =Pi

End If

End If

End If

Exit Sub

Set_To_Zero:

SX=0

SY=0

SZ=0

SR=0

S.Alfa=0

S.Beta=0

End Sub

"The Transformation from Vector to Cartesian Notation
Private Sub To_Algebric_Notation(S as Complex3d)
Dim CosBeta as Double

If Near0(S.R) = 0 Then GoTo Set_To_Zero
‘Solve X,Y,Z

S.Z = S.R * Sin(S.Beta)

CosBeta = Cos(S.Beta)

If Near0(CosBeta) = 0 Then

SY=0

SX=0

'If CosBeta=0 Alfa is irrelevant

S.Alfa=0

Else

S.Y = S.R * CosBeta * Sin(S.Alfa)

S.X = S.R* CosBeta * Cos(S.Alfa)

End If

Calc_Vector_Notation S

Exit Sub

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 7 of 13

Set_To_Zero:

SX=0

SY=0

SZ=0

SR=0

S.Alfa=0

S.Beta=0

End Sub

Private Sub Check_Algebric_Zero(S as Complex3d)
S.Z = Near0(S.Z)

S.Y = Near0(S.Y)

S$.X = Near0(S.X)

End Sub

Function Modulus(X as Double, Y As Double) As Double
Dim Resto As Double

Resto=X/Y - Fix(X/Y)

If Round(Resto * Y, MaxDigit) = 0 Then
Modulus = 0

Else

Modulus = Resto * Y

End If

End Function

Function ArcSin(X as Double) As Double
If Round(Abs(X), MaxDigit) = 1 Then
ArcSin = Pi/ 2 * Sgn(X)

Exit Function

End If

ArcSin = Atn(X / Sqr(1 - X A 2))

End Function

Function ArcCos(X as Double) As Double
If Round(Abs(X), MaxDigit) = 1 Then

If X > 0 Then

ArcCos =0

Exit Function

Else

ArcCos = Pi

Exit Function

End If

End If

ArcCos = Atn(-X / Sqr(1 - X A 2)) + 2 * Atn(1)

End Function

Function Near0(X As Double) As Double

Dim R As Double

R=X

If Round_Results Then R = Round(R, MaxDigit)
Near0 =R

If Abs(R) <= AsZero Then

Near0 =0

End If

End Function

Function Truncate(X as Double, MaxDigit) As Double
Dim R as Double

R =X*10 A MaxDigit

"The mantissa...

R = Fix(R)

R =R/ 10 A MaxDigit

Truncate = R

End Function

4D core algebra: visual basic source code
Option Compare Database

Option Explicit

' CORE 4d ALGEBRA

'V2.8e OPTIMIZED

'AVOID THE USE OF SMALL NUMBER IN SIMULATION

(OR VERY BIG NUMBERS) THE PRECISION IS LIMITED, THE
MANTISSA HAVE 15 DIGIT

'Public Const MaxDigit = 12, AsZero = 10 A -12
"We can round the results of calculus or not
Private Const Round_Results = True

"The definition of the complex4d type

Type Complex4d

X As Double

Y As Double

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 8 of 13

Z As Double

T As Double

R As Double

Alfa As Double

Beta As Double

Gamma As Double

V3dSpace As Integer

End Type

"The initialization number in cartesian notation

Function Init_Algebric_4d(X As Double, Y As Double, Z As
Double, T As Double, V3dSpace As Integer) As Complex4d

Dim R As Complex4d

RX=X

RY=Y

RZ=7

RT=T

R.V3dSpace = V3dSpace
Calc_Vector_Notation R

Init_Algebric_4d =R

End Function

"The initialization number in vector notation

Function Init_Vector_4d(R As Double, Alfa As Double, Beta As
Double, Gamma As Double) As Complex4d

Dim S As Complex4d
SR=R

S.Alfa = Alfa

S.Beta = Beta

S.Gamma = Gamma
To_Algebric_Notation S
Init_Vector_4d =S

End Function

"The sum A+B

Function Sum_4d(a As Complex4d, b As Complex4d) As
Complex4d

Dim rla As Double, r1b As Double, R As Complex4d
'Same 3d spaces

If a.V3dSpace = b.V3dSpace Then

‘Standard sum

RX=aX+bX

RY=aY+byY

RZ=aZ+bZ

RT=aT+b.T
R.V3dSpace = a.V3dSpace
Calc_Vector_Notation R
Sum_4d =R
Exit Function
End If
'Consider rla and r1b
rla=Sqr(aX/A2+aYA2+aZA2)
rlb=Sqr(b.XA2+bYA2+bZA2)
'Make the sum:
R.X =a.V3dSpace * a.X + b.V3dSpace * b.X
R.Y = a.V3dSpace * a.Y + b.V3dSpace * b.Y
R.Z =a.V3dSpace * a.Z + b.V3dSpace * b.Z
RT=aT+b.T
If rla = r1b Then 'this is a limit case. R.V3d space is set to 1 by default
R.V3dSpace =1 'this choice may be questionable
Calc_Vector_Notation R
Sum_4d =R
Exit Function
End If
If rla > r1b Then
R.V3dSpace = a.V3dSpace
Else
R.V3dSpace = b.V3dSpace
End If
Calc_Vector_Notation R
Sum_4d =R
End Function
"The difference A-B
Function Diff 4d(a As Complex4d, b As Complex4d) As

Complex4d

Dim bl As Complex4d

‘consider the simmetric vector:

bl = Init_Algebric_4d(-b.X, -b.Y, -b.Z, -b.T, b.V3dSpace)

Diff_4d = Sum_4d(a, bl)

End Function

"The product A*B

Function Mul_4d(a As Complex4d, b As Complex4d) As

Complex4d

Dim R As Complex4d
RR=aR*bR

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 9 of 13

R.Alfa = Modulus(a.Alfa + b.Alfa, 2 * Pi)

R.Beta = Modulus(a.Beta + b.Beta, 2 * Pi)
R.Gamma = Modulus(a.Gamma + b.Gamma, 2 * Pi)
To_Algebric_Notation R

Mul_4d =R

End Function

"The division A/B

Function Div_4d(a As Complex4d, b As Complex4d) As Complex4d
Dim R As Complex4d

RR=aR/bR

R.Alfa = Modulus(a.Alfa - b.Alfa, 2 * Pi)

R.Beta = Modulus(a.Beta - b.Beta, 2 * Pi)

R.Gamma = Modulus(a.Gamma - b.Gamma, 2 * Pi)
To_Algebric_Notation R

Div_4d =R

End Function

"The 1/S

Function Inverse_4d(S As Complex4d) As Complex4d
Dim R As Complex4d, X As Double

RR=1/SR

R.Alfa = Modulus(-S.Alfa, 2 * Pi)

R.Beta = Modulus(-S.Beta, 2 * Pi)

R.Gamma = Modulus(-S.Gamma, 2 * Pi)
To_Algebric_Notation R

R.Alfa = Modulus(S.Alfa / 2, 2 * Pi)

R.Beta = Modulus(S.Beta / 2, 2 * Pi)
R.Gamma = Modulus(S.Gamma / 2, 2 * Pi)
To_Algebric_Notation R

Sqr_4d=R

End Function

'Rotation and elongation

Function Rotation_4d(S As Complex4d, dAlfa As Double, dBeta

As Double, dGamma As Double, Optional dr As Double = 0) As
Complex4d

Dim R As Complex4d

R=S§

If NearO(R.R) = 0 And Near0(dr) = 0 Then
Rotation_4d =R

Exit Function

End If

RR=RR+dr

R.Alfa = Modulus(S.Alfa + dAlfa, 2 * Pi)

R.Beta = Modulus(S.Beta + dBeta, 2 * Pi)
R.Gamma = Modulus(S.Gamma + dGamma, 2 * Pi)
To_Algebric_Notation R

Rotation_4d =R

End Function

'Creates ds from a vector S and dAlfa, dBeta, dGamma and dr

Function Differentiate_Vector_4d(S As Complex4d, dAlfa As

Inverse_4d =R Double, dBeta As Double, dGamma As Double, dr As Double) As

End Function Complex4d

'SAX; X real Dim dx As Double, dy As Double, dz As Double, dt As Double, ds
Function S_elev_X_4d(S As Complex4d, X As Double) As As Complex4d
Complex4d Dim drl As Double, R1 As Double
Dim R As Complex4d R1=Sqr(SXA2+SYA2+S.ZA2)
RR=SRAX

drl = dr * Cos(S.Gamma) - S.R * Sin(S.Gamma) * dGamma
R.Alfa = Modulus(S.Alfa * X, 2 * Pi)

R.Beta = Modulus(S.Beta * X, 2 * Pi)
R.Gamma = Modulus(S.Gamma * X, 2 * Pi)

dt = dr * Sin(S.Gamma) + S.R * Cos(S.Gamma) * dGamma
dz = drl * Sin(S.Beta) + S.R * Cos(S.Beta) * dBeta

dy = drl * Cos(S.Beta) * Sin(S.Alfa) - S.R * Sin(S.Beta) * Sin(S.Alfa)
* dBeta + S.R * Cos(S.Beta) * Cos(S.Alfa) * dAlfa

dx = drl * Cos(S.Beta) * Cos(S.Alfa) - S.R * Sin(S.Beta) * Cos(S.
Alfa) * dBeta - S.R * Cos(S.Beta) * Sin(S.Alfa) * dAlfa

To_Algebric_Notation R
S_elev_.X 4d=R

End Function

'Square root of S ds = Init_Algebric_4d(dx, dy, dz, dt, S.V3dSpace)
Function Sqr_4d(S As Complex4d) As Complex4d Differentiate_Vector_4d = ds
Dim R As Complex4d End Function

R.R =Sqr(S.R) 'Proposal function - nonsense?

J Appl Computat Math

ISSN: 2168-9679 JACM, an open access journal Volume 4 - Issue 6 + 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 10 of 13

'Internal product

Function A_V_B_4d(a As Complex4d, b As Complex4d) As

Double

A_V_B_4d =a.V3dSpace * a.X * b.V3dSpace * b.X + _
a.V3dSpace *a.Y * b.V3dSpace *b.Y + _
a.V3dSpace * a.Z * b.V3dSpace * b.Z + _
aT*b.T
End Function
"Versor of S
Function Versor_4d(S As Complex4d) As Complex4d
Dim R As Complex4d, RO As Double
If Near0(S.R) = 0 Then GoTo Set_To_Zero
R=S§

RO=R.R
RR=1
RX=RX/R0
RY=RY/RO
RZ=R.Z/R0
RT=R.T/RO
R.V3dSpace = S.V3dSpace
Check_Algebric_Zero_4d R
Versor_4d =R
Exit Function
Set_To_Zero:

RX=0

RY=0

RZ=0

RT=0

RR=0
R.Alfa=0
R.Beta=0
R.Gamma =0
R.V3dSpace =1
Versor_4d =R

End Function
'Proposal function -- may be a nonsense
'Return vector A along components on B axes; B new real axes

Function Project_A_on_B_4d(a As Complex4d, b As Complex4d)

As Complex4d

Dim Wx As Complex4d, Wy As Complex4d, Wz As Complex4d,

Dim X As Double, Y As Double, Z As Double, T As Double
Dim BVx As Double, BVy As Double, BVz As Double, BVt As

Double

If NearO(b.R) = 0 Then GoTo Set_To_Zero

If Near0O(a.R) = 0 Then GoTo Set_To_Zero

‘Versors Wx, Wy and Wz the new base

Wx = Versor_4d(b)

' Optimization

‘'Wy = Init_Algebric_4d(-Wy.Y, Wy.X, 0,0)

Wy X =-WxY

WyY = Wx.X

Wy.Z=0

Wy.T=0

Wy.V3dSpace = b.V3dSpace

"Wy = Versor_4d(Wy)

RO =Sqr(Wy.X A2+ Wy Y A2+ WyZ A2+ WyTA2)
If NearO(R0O) = 0 Then RO = 1 'this do not stop the calculation
WyX =Wy.X/R0

Wy.Y = Wy.Y / RO

‘Wy.Z =Wy.Z /RO

‘Wy.T = Wy.T /RO

‘consider Wz as

"Wz = A_X_B_3d(Wx, Wy)+ T=0
Wz.X =Wx.Y *WyZ- Wx.Z* Wy.Y
Wz.Y = Wx.Z* WyX - Wx.X* WyZ
Wz.Z = Wx.X* WyY - Wx.Y * WyX
WzT=0

Wz.V3dSpace = b.V3dSpace

"Wt: Take Wx and make it ortogonal respect to T
If NearO(Wx.T) = 0 Then

WtX=0

WtY =0

Wt.Z=0

Wt.T =0

Wt.V3dSpace = 1

Wt As Complex4d, R As Complex4d, RO As Double Else

J Appl Computat Math

ISSN: 2168-9679 JACM, an open access journal Volume 4 - Issue 6 + 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 11 of 13

WtX = Wx.X
WY = Wx.Y
Wt.Z = Wx.Z
WtT=-(WxXA2+WxY A2+ WxZA2)/WxT
Wt.V3dSpace = b.V3dSpace
End If
"Wt = Versor_4d(Wt)
RO=Sqr(WtX A2+ WtY A2+ WtZ A2+ WtTA2)
If NearO(R0) = 0 Then RO = 1 'this do not stop the calculation
Wt.X = Wt.X /RO
WtY = Wt.Y /RO
Wt.Z =Wt.Z /RO
Wt.T = Wt.T /RO
'Project A on Wx, Wy, Wz, Wt
BVx=A_V_B_4d(a, Wx)
BVy = A_V_B_4d(a, Wy)
BVz=A_V_B_4d(a, Wz)
BVt=A_V_B_4d(a, Wt)
R =Init_Algebric_4d(BVx, BVy, BVz, BVt, b.V3dSpace) ' or (?)
‘R = Init_Algebric_4d(BVx, BVy, BVz, BVt, a.V3dSpace)
Project_A_on_B_4d =R
Exit Function
Set_To_Zero:
RX=0
RY=0
RZ=0
RT=0
RR=0
R.Alfa=0
R.Beta=0
R.Gamma =0
R.V3dSpace =1
Project_A_on_B_4d =R
End Function
"The Transformation from Cartesian to Vector Notation
Private Sub Calc_Vector_Notation(S As Complex4d)
Dim S3 As Complex3d, SinGamma As Double, CosGamma As

Double, R1 As Double

Dim SinBeta As Double, CosBeta As Double, SinAlfa As Double,

CosAlfa As Double

Check_Algebric_Zero_4d S

'Calc R

SR=Sqr(SXA2+SYA2+SZA2+STA2)

If Near0(S.R) = 0 Then GoTo Set_To_Zero
RI=Sqr(SXA2+SYA2+82ZA2)

‘Solve Gamma....

SinGamma = S.T/ S.R

'SinGamma can be <=0

CosGamma = S.V3dSpace * R1/S.R

'CosGamma can be<0 depends on V3dSpace

If Round(CosGamma, MaxDigit) = 0 Then '->R1=0; considerate T
If Round(SinGamma, MaxDigit) = 0 Then GoTo Set_To_Zero 'i.e.

T=0, and R1=0

S.Gamma = Pi/ 2 * Sgn(S.T)
Else
S.Gamma = ArcSin(SinGamma)
If S.V3dSpace < 0 Then
If Near0(S.T) <> 0 Then
S.Gamma = (Pi - Abs(S.Gamma)) * Sgn(S.T)
Else
S.Gamma = Pi
End If
End If
End If
If NearO(R1) = 0 Then 'pure T vector
SX=0
SY=0
SZ=0
S.Alfa=0
S.Beta=0
S.Gamma = Pi/ 2 * Sgn(S.T)
S.V3dSpace =1
Exit Sub
End If
'Solve X,Y,Z
‘Solve Beta....
SinBeta =S.Z / R1
CosBeta =Sqr(S.XA2+S.YA2)/R1
'CosBeta is always >=0
'SinBeta can be <=0

If Round(CosBeta, MaxDigit) = 0 Then

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 12 of 13

If Round(SinBeta, MaxDigit) = 0 Then GoTo Set_To_Zero Dim R1 As Double, CosBeta As Double, CosGamma As Double

S.Beta=Pi/2* Sgn(S.Z)

S.Alfa=0

Exit Sub

End If

S.Beta = ArcSin(SinBeta)

‘Solve Alfa....

SinAlfa = S.Y / R1/ CosBeta
CosAlfa=S.X/R1/ CosBeta

'CosAlfa can be <=0 ...

If Round(CosAlfa, MaxDigit) = 0 Then
If Round(SinAlfa, MaxDigit) = 0 Then
S.Alfa=0

Else

S.Alfa=Pi/2* Sgn(S.Y)

End If

Else

S.Alfa = ArcSin(SinAlfa)

If CosAlfa < 0 Then

'If CosAlfa<0 ... -> Quadrant 2 o quadrant 4

If Near0(S.Alfa) <> 0 Then
S.Alfa = (Pi - Abs(S.Alfa)) * Sgn(S.Y)
Else

S.Alfa = Pi

End If

End If

End If

Exit Sub

Set_To_Zero:

$X=0

SY=0

SZ=0

SR=0

S.Alfa=0

S.Beta=0

S.Gamma =0

S.V3dSpace =1

End Sub

'"The Transformation from Vector to Cartesian Notation

Private Sub To_Algebric_Notation(S As Complex4d)

If Near0(S.R) = 0 Then GoTo Set_To_Zero
‘Solve X,Y,Z, T

S.T =S.R* Sin(S.Gamma)
CosGamma = Cos(S.Gamma)

If Near0(CosGamma) = 0 Then
"The Vector is a pure T vector, so
SZ=0

SY=0

S$X=0

'Alfa and Beta irrelevant, set to 0
S.Beta=0

S.Alfa=0

S.Gamma = Pi/ 2 * Sgn(S.T)
S.V3dSpace =1

Exit Sub

End If

S.V3dSpace = Sgn(CosGamma)
R1 = S.R * Abs(CosGamma)

S.Z =R1 * Sin(S.Beta)

CosBeta = Cos(S.Beta)

If Near0(CosBeta) = 0 Then
SY=0

SX=0

'If CosBeta=0 Alfa is irrelevant
S.Alfa=0

Else

S.Y = R1 * CosBeta * Sin(S.Alfa)
S.X =RI1 * CosBeta * Cos(S.Alfa)
End If

Calc Vector Notation S

Exit Sub

Set_To_Zero:

S$X=0

SY=0

SZ=0

ST=0

SR=0

S.Alfa=0

S.Beta=0

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

Citation: Sonaglioni L (2015) A New Number Theory - Algebra Analysis. J Appl Computat Math 4: 267. doi:10.4172/2168-9679.1000267

Page 13 of 13

S.Gamma =0

S.V3dSpace = 1

End Sub

Private Sub Check_Algebric_Zero_4d(S As Complex4d)
S.Z = Near0(S.Z)

S.Y = Near0(S.Y)

S$.X = Near0(S.X)

S.T = Near0(S.T)

If NearO(Sqr(S.X A2+ SY A2+ SZ A2+ ST A 2)) =0 Then
S.V3dSpace = 1

End Sub

References
1. Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212.
2. Walker MJ (1894) Quaternions as 4-Vectors. Am J Phys 24: 515.

3. Stephenson RJ (1966) Development of Vector Analysis from Quaternions. Am
J Phys 34: 194.

4. llamed Y, Salingaros N (1981) Algebras with three anticommuting elements |,
Spinors and quaternions. J Math Phys 22: 2091.

5. Silva CC, Martins AR (2002) Polar and axial vectors versus quaternions. Am J
Phys 70: 958.

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000267

http://www.omicsgroup.org/journals/a-new-number-theory-2168-9679-1000212.pdf
http://scitation.aip.org/content/aapt/journal/ajp/24/7/10.1119/1.1934292
http://scitation.aip.org/content/aapt/journal/ajp/34/3/10.1119/1.1972885
http://scitation.aip.org/content/aapt/journal/ajp/34/3/10.1119/1.1972885
http://scitation.aip.org/content/aip/journal/jmp/22/10/10.1063/1.524775
http://scitation.aip.org/content/aip/journal/jmp/22/10/10.1063/1.524775
http://www.ifsc.usp.br/~cibelle/arquivos/ram-91.pdf
http://www.ifsc.usp.br/~cibelle/arquivos/ram-91.pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Three-Dimension
	Last Considerations about 4D Numbers
	Figure 1
	References

