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Introduction
Consider a system of first order stiff initial value problems (IVPs) 

of the form: 

( ) [ ] ( )'
0 0y x,    x a,b    y x y= ∈ =f y               (1)

System (1) can be regarded as stiff if its exact solution contains very 
fast as well as very slow components [1]. Stiff IVPs occur in any fields 
of engineering and physical sciences. They are particularly found in 
electrical circuits, vibrations, chemical reactions, kinetics, automatic 
control and combustion, theory of fluid mechanics etc. The solution is 
characterized by the presence of transient and steady state components, 
which restrict the step size of many numerical methods except methods 
with A-stability properties (Suleiman [2, 3]). This behaviour makes 
it difficult to develop suitable methods for solving stiff problems. 
However, efforts have been made by researchers, such as Abasi [4], Alt 
[5], Alvarez [6], Cash [7], Dahlquist [1], Ibrahim [8-10], Musa [11-14], 
Suleiman [2,3], Yatim [15] and Zawawi [16] among others, to develop 
methods for stiff ODEs. The need to obtain an efficient numerical 
approximation in terms of accuracy and computational time have 
attracted some researchers such as Alexander [17] with diagonally 
implicit Runge-Kutta for stiff ODEs, Ababneh [18] with design of new 
diagonally implicit Runge-Kutta for stiff problems, Ismail [19] with 
embedded pair of diagonally implicit Runge-Kutta for solving ODEs, 
Zawawi [20] with diagonally implicit block backward differentiation 
formulas for solving ODEs. The motivation of this research is to modify 
the method developed by Zawawi [20] so as to improve its accuracy 
and stability properties. 

Derivation of the Method
This section describes the derivation of the method. Consider the 

numerical scheme developed by Zawawi [20].
1 k

j,i n j 1 k,i n k
j 0

y h f ,k i 1,2
+

+ − +
=

α = β = =∑                (2)

To improve its accuracy and stability, the term  -hβ(k,i) ρf(n+k-1) is 
added to (2) to come up with new scheme as follows

( )
1 k

j,i n j 1 k,i n k n k 1
j 0

y h f f ,k i 1,2 
+

+ − + + −
=

α = β − ρ = =∑                  (3)

Where, k=i=1 represents the first point, k=i=2 represents the 

second point and  ρ ∈ (-1, 1). In this paper, the value 
1
5

ρ=  is used. The 
formula (3) is derived from Taylor’s series expansion.

A Linear operator Li for the first and second point of the new 
method is defined by:

( ) ( ) ( )
( ) ( ) ( )( )

i n 0,i n 1,i n 2,i

n k,i n n

L y x ,h : y x h y x y

x h h f x h f x 0,      k i 1.

  α − + α + α 
+ − β + − ρ = = =

(4)

( ) ( ) ( ) ( )
( ) ( ) ( )( )

i n 0,i n 1,i n 2,i n 3,i

n k,i n n

L y x ,h : y x h y x y x h y

x 2h h f x 2h f x h 0,  k i 2 

  α − + α + +α + + α 
+ − β + − ρ + = = =

(5) 

respectively.

Expanding (4) and (5) as Taylor’s series about xn, collect like terms 
and normalized the coefficient of the first point α2, 1 and second point 
α3,2 to obtain the following implicit 2–point block formula:

1 1 1
3 10 1 5
7 7 7 7n n n n ny y y hf hf+ − += − + − +    (6)

2 1 1 1 2
11 51 93 6 30
53 53 53 53 53n n n n n ny y y y hf hf+ − + + += − + − + .

The error constant of the new method (6) is 3

11
 42

0
E

 − =   
 

 implying that 
is of order 2.

Throughout this paper, the method will be referred to New 
Diagonally Implicit Super Class of Block Backward Differentiation 
Formula (NDISBBDF).

Stability Analysis of the NDISBBDF 
This section presents the stability analysis of the method (6). It 

begins by presenting the definition of zero and A-stability taken from 
Suleiman [2].

Definition 3.1: A linear multistep method (LMM) is said to be zero 
stable if no root of the first characteristics polynomial has modulus 
greater than one and that any root with modulus one is simple.
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Definition 3.2: A linear multistep method (LMM) is said to be 
A-stable if its stability region covers the entire negative half-plane.

Formula (6) can be written in matrix form as follows

1 1 1 1

2 2

3 10 51 0 1 007 7 7  793 11 51 6 301 0 053 53 53 53 53

n n n n

n n n n

y y f f
h h

y y f f
+ − − +

+ +

   −      −             = + +          −              − −         

 (7)

Equation (7) can be rewritten in the following form:

A0Ym = A1Ym−1+h(B0Fm1+B1Fm),                   (8)

Where,

1 2 1
0 1 0 1

2 2 2

2( 1) 11 2 1
1

2( 1) 22

3 10 51 0 1 007 7 7,  ,  , ,  , 793 11 51 6 301 0 053 53 53 53 53

,

n m
m

n m

mn m
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y y
A A B B Y

y y

yy y
Y

yy y

+ +

+ +

− +− −
−

− +

   −      −          = = = = = =      −           − −         
    

= = =     
     

2( 1) 11 2 1 1 2 1
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2( 1) 22 2 2 2

  ,   .mn m n m
m m

mn m n m

ff f f f
F F

ff f f f
− +− − + +

−
− + + +

        
= = = = =        
        

 

Substituting the scalar test equation y′ = λy (λ< 0, λ is complex) into 
(8) and using h hλ =  gives

0 1 1 0 1 1( )m m m mA Y AY h B Y B Y
−

− −= + +                       (9)

The stability polynomial of (6) is obtained by evaluating: 

0 1 1 0( ) ( ) 0Det A h B t A h B
− − − − + =  

                  (10)

to get,
2 2

2 2 2475 414 150 192 43 6 11, 0
371 371 371 371 371 371 371

R t h t t h t h t t h t h h
− − − − − −  = − − + − + − + = 

 
  (11)

To show that the method (6) is zero stable, we set = 0h  in (11) to 
get the first characteristics polynomial as follows:

2 414 43 0
371 371

t t− + =                     (12)

Solving equation (12) for t gives the following roots:

t=0.1159 and t=1                   (13)

From the definition 3.1, method (6) is zero-stable.

The boundary of the stability region of (6) is determined by 
substituting it e θ=  into (11). The graph of stability region for (6) 
using maple is given in Figure 1.

The stability region covers the entire negative half plane indicating 
that the method (6) is A-stable.

Convergence of the Method
Convergence is an essential feature that every acceptable linear 

multistep method (LMM) must possess. This section discussed the 
convergence of the method (6). Consistency and zero stability are 
the necessary and sufficient conditions for the convergence of any 
numerical scheme. In section 3, it was shown that method (6) is zero 
stable. It is now remain to show that method (6) is consistent.

This discussion will be based on matrix form of (6) which can be 
written as:

n 1 n 1 n 1 n 1

n n 2 n n

3 10 1 0 1 1y y f f0 07 7 h h7 793y y f f11 51 1 0 0 0 05353 53

− + − −

+

 −        − −              + = +            −              −        

  (14)

With
0,

3
7 D  
11
53

 
 
 =
 − 
 

,

1 2 3 0 1 2 3

10 51 1 00 07 7 D , D ,  D , G ,  G ,G ,  G .793 3051 1 0 6053 5353 53

   −         −           = = = = = = =        −            −           

Definition 4.1: Method (6) is consistent if and only if the following 
conditions are satisfied:

3

0

 0 ,  j
j

D
=

=∑                      (15)

3 3

0 0

  j j
j j

jD G
= =

=∑ ∑                      (16)

Where, Dj,s and Gj,s are defined above.

Equation (15) and (16) then become
3

0 1 2 3
0

0
 . 

0j
j

D D D D D
=

 
= + + + =  

 
∑                 (17)

3 3

0 0

4
7 . 
24
53

j j
j j

jD G
= =

 
 
 = =
 
 
 

∑ ∑                  (18)

Thus, the consistency conditions in (15) and (16) are therefore met. 
Hence, method (6) is consistent.

Since the method (6) is both consistent and zero stable, it is thus 
converges.

Implementation of the Method
This section discussed the implementation of the method using 

Newton iteration and begin by defining the absolute and maximum 
error.

Definition 5.1: Let yi and y(xi) be the approximate and exact 
solution of (1) respectively. Then the absolute error is given by

(errori)t = |(yi)t − (y(xi))t |                                                                                                      (19)

The maximum error is given by



( )( )
1

1

i t
i T

i N

MAXE = max max error
≤ ≤

≤ ≤


                                                                                                (20)

Where, T is the total number of steps and N is the number of 
equations.
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Figure 1: Stability region of the method.
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Define;

1 1 1 1 
1 5
7 7n n nF y hf hf ε+ += + − −

2 1 2 1 2 2
93 6 30
53 56 53n n n nF y y hf hf ε+ + + += − + + − −  . 

Where,

1 1
3 10
7 7n ny yε −= − +  and 2 1

11 51
53 53n ny yε −= − . 

Let ( 1)
1

i
ny +
+  denote the (i+1)th iteration and 

( 1) ( 1) ( )  ,i i i
n j n j n je y y+ +
+ + += − j=1, 2.                   (22)

( 1) ( 1) ( )  ,i i i
n j n j n je y y+ +
+ + += − ( )( )i

j n jF y +
 
                        (23)

This can be written in the form:

[ ( )( ) ( ), ( 1) [ ( )]i ii
j n j n j j n jF y e F y+

+ + +
  = −  ].                   (24)

Newton’s iteration for the new method takes the form:

( )( ) ( )' ( 1)
1, 2 1, 2 1, 2[ ( )]i ii

j n n n n j n nF y e F y+
+ + + + + +

  = − 
               (25)

In addition, in matrix form, equation (25) is equivalent to

( )

( )

1
1 ( ) ( ) ( )

1 1 1 1 1
( ) ( ) (1

1 2 2 22

1 2

5 51 0 1 0 1 07 0 779393 6 30 6 301 0 01 5353 53 53 53 53

n
i i i i

n n n n n
i ii

n n n n nn

n n

fh
y e y f f

h h
f f y f feh h
y y

+
+

+ + + − +

+
+ + + ++

+ +

∂   − −       ∂    −        = + +        ∂ ∂ −         − + − −      ∂ ∂   

1
)

2
i

ε
ε

   
+   
  

 (26)

Test Problems
The following problems are used to test the performance of the 

method.

Problem 1 (Musa [13])

1 1 220 19 ,y y y′ =− −  y1 (0)=2 0≤ x ≤ 20

2 1 219 20 ,y y y′ =− −  y2 (0)=0

Exact solution: y1(x)=e −39x + e-x,

 y2 (x)=e−39x − e-x 

Eigenvalues: -1 and -39.

Problem 2 

1 1 295 ,y y y′ =− −  y1 (0)=1, 0≤ x ≤ 10

2 1 297 ,y y y′ =− −  y2 (0)=1 

Exact solution: ( ) ( )2 2
1

1 95 48
47

x xy x e e− −= − , 

( ) ( )96 2
2

1
47

x xy x 48e e− −= −  

Eigenvalues: − 2 and − 96. 

Problem 3 

1 2 ,y y′ =  y1 (0)=1, 0≤x≤10

2 1 2200 20 .y y y′ =− −  y2 (0)=−10 

Exact solution: y1(x) = e−10x cos10x,

y2(x) = −10e−10x (cos10x+sin10x)

NDISBBDF=New Diagonally Implicit Super Class of Block 
Backward Differentiation Formula

NS=Total Number of Steps

MAXE=Maximum Error

Time=Computational Time in Seconds

h=Step Size 

To give the visual impact on the performance of the new method, 
the graphs of Log10 (MAXE) against h for the problems tested are 
plotted in figures 2-4.

Discussion
From tables 1-3, it can be seen that the new method outperformed 

the existing 2-point diagonally implicit block backward differentiation 
formula in terms of accuracy. Convergence is evident by the decrease 
in error as the step length h tends to zero. Similarly, the solution at any 
fixed point improves as the step length reduce. This can be seen from 
the tables when h is reduced (from 0.01, 0.001., 0.0001, and 0.00001 
to 0.000001). The maximum error indicates that the numerical result 
becomes closer to the exact solution. Thus, the computed solution 
tends to the exact solution as the step length tends to zero. Hence, the 
new method converges faster for all the problems tested in comparison 
with DI2BBDF. 

h Method NS MAXE Time
10-2 DI2BBDF

NDISBBDF
1000
1000

6.85453e-002
7.15278e-002

2.47400e-001
1.57000e-001

10-3 DI2BBDF
NDISBBDF

1000
1000

2.60436e-002
2.32062e-003

1.58700e-001
1.609000e-001

10-4 DI2BBDF
NDISBBDF

100000
100000

2.84730e-003
2.68751e-005

3.23700e-001
9.01200e-001

10-5 DI2BBDF
NDISBBDF

1000000
1000000

2.87174e-004
2.74330e-007

1.14900e+000
5.11600e+000

10-6 DI2BBDF
NDISBBDF

10000000
10000000

2.87419e-005
2.75064e-009

9.85100e+000
5.44700e+001

Table 1: Numerical result for problem 1.

Table 2: Numerical result for problem 2.

h Method NS MAXE Time
10-2 DI2BBDF

NDISBBDF
500
500

9.37034e+005
2.22919e-002

2.51600e-001
1.75400e-001

10-3 DI2BBDF
NDISBBDF

5000
5000

5.58180e-002
1.20098e-002

2.43700e-001
1.331000e-001

10-4 DI2BBDF
NDISBBDF

50000
50000

7.04562e-003
1.61824e-004

2.61300e-001
3.05800e-001

10-5 DI2BBDF
NDISBBDF

500000
500000

7.19659e-004
1.69025e-006

7.92400e-001
2.3500e+000

10-6 DI2BBDF
NDISBBDF

5000000
5000000

7.21171e-005
1.70019e-008

5.05000e+000
2.58100e+001

Numerical Results
The numerical results for the test problems given in section 6 are 

tabulated in this section. The problems are solved using the new method 
developed and the existing 2-point diagonally implicit block backward 
differentiation formula developed by Zawawi [20]. The number of 
steps taken to complete the integration and the maximum error for 
the methods are presented and compared in Tables 1-3. In addition, 
the graph of Log10 (MAXE) against h for each problem is plotted. The 
notations used in the tables are listed below:

DI2BBDF=Diagonally Implicit 2-Point Block Backward 
Differentiation Formula
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The graphs also show that the scaled errors for the new method are 
smaller when compared with that in the existing method.

Conclusion
A new method called New Diagonally Implicit Super Class of Block 

Backward Differentiation Formula (NDISBBDF) is developed. The 
order of the method is 2 and it is suitable for solving stiff IVPs. The 
stability analysis has shown that the method is both zero and A-stable. 
A comparison between the method and existing DI2BBDF is made and 
the results show that the method outperformed the existing DI2BBDF 
method in terms of accuracy. 

References

1. Dahlquist G (1974) Problems related to the numerical treatment of stiff 
differential equations.

2. Suleiman MB, Musa H, Ismail F, Senu N, Ibrahim ZB (2014) A new super class 
of block backward differentiation formulas for stiff ODEs. Asian -European J 
Math. 

3. Suleiman MB, Musa H, Ismail F, Senu N (2013) A new variable step size block 
backward differentiation formula for solving stiff IVPs. Int J Comput Math 90: 
2391-2408.

4. Abasi N, Suleiman MB, Abbasi N, Musa H (2014) 2-point block BDF method 
with off-step points for solving stiff ODEs. Journal of Soft Computing and 
Applications 2014: 1-15.

5. Alt R (1978) A-stable one-step methods with step-size control for stiff systems 
of ordinary differential equations. J Comput Appl Math 4: 29-35.

6. Alvarez J, Rojo J (2002) An improved class of generalized Runge-Kutta 
methods for stiff problems. Part I: The scalar case. Appl Math Comput 130: 
537-560.

7. Cash JR (1980) On the integration of stiff systems of ODEs using extended 
backward differentiation formulae. Numer Math 34: 235-246.

8. Ibrahim ZB, Othman KI, Suleiman MB (2008) Fixed coefficients block backward 
differentiation formulas for the numerical solution of stiff ordinary differential 
equations. Eur J Sci Res 21: 508-520. 

9. Ibrahim ZB, Othman KI, Suleiman MB (2007) Implicit r-point block backward 
differentiation formula for first order stiff ODEs. Appl Math Comput 186: 558-565.

10. Ibrahim ZB, Isk K, Othman A, Suleiman MB (2007) Variable step block 
backward differentiation formula for first order stiff ODEs. Proceedings of the 
World Congress on Engineering 2: 2-6.

11. Musa H, Suleiman MB, Ismail F, Senu N, Ibrahim ZB (2013) An accurate block 
solver for stiff IVPs. ISRN Applied mathematics.

12. Musa H, Suleiman MB, Ismail F (2015) An implicit 2-point block extended 
backward differentiation formulas for solving stiff IVPs. Malaysian J Math Sci 
9: 33-51.

13. Musa H, Suleiman MB, Senu N (2012) A-stable 2-point block extended 
backward differentiation formulas for solving stiff ODEs. AIP Conference 
Proceedings 1450: 254-258.

14. Musa H, Suleiman MB, Ismail F, Senu N, Ibrahim ZB (2013) An improved 
2-point block backward differentiation formula for solving stiff initial value 
problems. AIP Conference Proceedings 1522: 211 -220.

15. Yatim SAM, Ibrahim ZB, Othman KI, Suleiman MB (2011) A quantitative 
comparison of numerical method for solving stiff ordinary differential equations. 
Math Probl Eng 2011: 193691.

16. Zawawi ISM, Ibrahim ZB, Othman KI (2015) Derivation of diagonally implicit 
block backward differentiation formulas for solving stiff IVPs. Math Probl Eng 
2015: 179231.

17. Alexander R (1977) Diagonally implicit Runge-Kutta for stiff ordinary differential 
equations. SIAM J Numer Anal 14: 1006-1021.

18. Ababneh OY, Ahmad R, Ismail ES (2009) Design of new diagonally implicit 
Runge-Kutta method for stiff problems. Appl Math Sci 3: 2241-2253.

19. Ismail F, Al-khasawneh AR, Suleiman MB, Malik Hassan ABU (2010) 
Embedded pair of diagonally implicit Runge-Kutta method for solving ordinary 
differential equations. Sains Malaysiana 39: 1049-1054.

10
-6

10
-5

10
-4

10
-3

10
-2

-10

-8

-6

-4

-2

0

2

h

lo
g 10

M
A

X
E

 

 

NDISBBDF

DIBBDF

Figure 4: Graph of Log10 (MAXE) against h for problem 3.

h Method NS MAXE Time
10-2 DI2BBDF

DIS2BBDF
500
500

1.61797e+000
1.63063e-001

1.17000e-001
1.19600e-001

10-3 DI2BBDF
DIS2BBDF

5000
5000

1.45914e-001
3.27724e-003

1.09700e-001
1.50200e-001

10-4 DI2BBDF
DIS2BBDF

50000
50000
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2.22200e-001
3.46700e-001

10-5 DI2BBDF
DIS2BBDF

500000
500000
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2.89700e+000

10-6 DI2BBDF
DIS2BBDF

5000000
5000000

1.44332e-004
3.61514e-009

5.54800e+000
2.559000e+001

Table 3: Numerical result for problem 3.
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Figure 2: Graph of Log10 (MAXE) against h for problem 1.
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Figure 3: Graph of Log10 (MAXE) against h for problem 2.
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