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Introduction
The development of numerical techniques for solving heat 

conduction equation in science and engineering subject to initial 
and boundary conditions is a subject of considerable interest. In this 
paper, we develop a new continuous numerical method which is based 
on interpolation and collocation at some point along the coordinates 
(Odekunle, 2008). To do this we let U(x,t) represents the temperature 
at any point in the slab and the tube. Heat is flowing from one end 
to another under the influence of the temperature gradient ∂U/∂x. To 
make a balance of the rate of heat flow in and out of the media, we 
consider R for thermal conductivity of the steel, C the heat capacity 
which we assume constants, and ρ the density and D the thermal 
diffusivity of alcohol [1]. Heat flow in the slab is given by

( )U U U URA RA dx C Adx
dx dx x dx dt

ρ
 ∂ ∂ ∂ ∂  ∂ − − − + =   ∂    

               (1.0)

Heat flow through the tube is also given by

( )U U U UDB DB dx C Adx
dx dx x dx dt

ρ
  ∂ ∂ ∂ ∂ ∂ − − − + =   ∂    

             (1.1)

Where A and B are the cross sections of the slab and the tube 
respectively.

The new method strives to provide solutions to the heat flow eqns. 
(1.0) and (1.1). 

Solution Method
To set up the solution method we select an integer N such that 

N>0. We subdivide the interval 0 ≤ x ≤ x into N equal subintervals

with mesh points along space axis given by 
1 1,ix ih i N
β β
 

= =  
 

, where 

Nh=X, similarly, we reverse the roles of x and t and we select another 
integer M such that M > 0. We also subdivide the interval 0 ≤ t ≤ T 
into M equal subintervals with mesh points along the time axis given 

by jt jk= , 1 1j M
α α
 =  
 

 where MK=T and h,k are the mesh sizes along 

space and time axes, respectively [2]. Here, we seek for the approximate 
solution ( ),U x t  to U(x,t) of the form 

( ) ( ) ( ) [ ]
1

1
0

, , , , , , ,
p

p r r i i h j j k
r

U x t U x t a Q x t x x x t t t
−

− + +
=

 ≈ = ∈ ∈    ∑  (2.0)

Over h > 0, k > 0 mesh sizes, such that

0 1 0 10 ... ... ,0 ... ... .N Mx x x t t t ρ= < < < = < < <  is the sum of 
interpolation points along the space and time coordinates. That 
is g bρ = + , where g is the number of interpolation points along 
the space axis and b the number of interpolation points along time 
coordinate. The basis function ( ), , 0,1,..., 1rQ x t r p= −  is the Taylor’s 
polynomials which is known, ar  are the constants to be determined. 
There will be flexibility in the choice of the basis function as may be 
desired for specific application. For this work, we consider the Taylor’s 
polynomials ( ), r r

rQ x t x t= [3-7]. 

The interpolation values , 1,,...,i j i h jU U + −  are assumed to have been 
determined from previous steps, while the method seeks to obtain 

jhiU ,+  (Odekunle, 2008). Applying the above interpolation conditions 
on eqn. (2.0) we obtain,

( ) ( ) ( ) ( )0 0 1 1 2 1, , ... , ,i h j k i h j k p p i h j k i h j ka Q x t a Q x t a Q x t U x t+ + + + − − + + + ++ + =     (2.1)

We let 
1 1 2 1h g β
β β β

    −
= − −    

    
 arbitrarily and k=0, then by 

Crammer’s rule, eqn. (2.1) becomes
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Abstract
A new continuous numerical method based on the approximation of polynomials is here proposed for solving 

the equation arising from heat transfer along a thick steel slab and a hollow tube subject to initial and boundary 
conditions. The method results from discretization of the heat equation which leads to the production of a system 
of algebraic equations. By solving the system of algebraic equations we obtain the problem approximate solutions.
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Where 2 1 1,z i g v iβ
β β

 −
= + − = − 

 
 and W-1 exists (Odekunle, 

2008]). Hence, by equation (2.2) we obtain
1,a F Wω ω −= =                 (2.3)

The vector ( )0 1,...,
T

pa a a −=    is now determined in terms of known 

parameters in Fω . If 1rω +  is the ( )1 th
r +  row of ω  then

1r ra Fω +=                    (2.4)

Eqn. (2.4) determines the values [8-17]. Let us take first and second 
derivatives of eqn. (2.0) with respect tox,

( ) ( )
1

0
, ,

p

r r
r

U x t a Q x t
−

=

′ ′ =   ∑

( ) ( )
1

0
, ,

p

r r
r

U x t a Q x t
−

=

″ ′′ =   ∑                   (2.5)

Substituting eqn. (2.4) into eqn. (2.5), we obtain

( ) ( )( )
1

1
0

, ,
p

r r
r

U x t F Q x tω
−

+
=

″ ′′ =   ∑                 (2.6)

We reverse the roles of x and t in eqn. (2.1) and we arbitrarily 

set 1 10k b α
α α

 −   = −        
 and h=0, by Crammer‘s rule eqn. (2.1) 

becomes

( )

1 , ,,
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, , ,...,
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T
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T

p
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              (2.7) 

and [18-20]
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Where 
1 1, ,j j b αη γ
α α

− = + = + −  
 

and Y-1 exists (Odekunle, 
2008). Hence, 

from eqn. (2.7) we obtain [4] 
1,a LE L Y −= =                   (2.8)

The vector ( )0 1,...,
T

pa a a −=    is now determined in terms of known 

parameters in .LE  [21-23]. If 1rL +  is the ( )1 th
r +  row of L then

1r ra L E+=                     (2.9)

Also, eqn. (2.9) determines the values of ar. Taking the first 
derivatives of eqn. (2.0) with respect to t, we obtain 

( ) ( )
1

0
, ,

p

r r
r

U x t a Q x t
−

=

′ ′ =   ∑                (2.10)

Substituting eqn. (2.9) in eqn. (2.10) we have

( ) ( )( )
1

1
0

, ,
p

r r
r

U x t L E Q x t
−

+
=

′ ′ =   ∑                 (2.11)

But by eqn. (1.0) or (1.1) it is obvious that eqn. (2.11) is equal to 
eqn. (2.6), therefore, 

( )( ) ( )( )
1 1

1 1
0 0

, , 0
p p

r r r r
r r

L E Q x t F Q x tω
− −

+ +
= =

′ ″   − =      ∑ ∑            (2.12)

Collocating eqn. (2.12) at x=xi and t=tj we obtain a new numerical 
scheme that solves eqns. (1.0) and (1.1) explicitly.

Numerical Examples
In this section we give some numerical examples to compute 

approximate solutions for equations (1.0) and (1.1) by the method 
discussed in this paper [5]. This is in order to test the numerical 
accuracy of the new method. To achieve this, we truncate the Taylor’s 
polynomial after second degree and use it as the basis function in the 
computation. The resultant scheme is used to solve the following two 
problems.

Example 1 (Eyaya, 2010)

Given a 2 cm thick steel slab, solve for the temperatures as a 
function of x and t at t=2.062 seconds if the initial temperatures are 

given by the relation [24-26]. ( ),0 100sin
2
xU x π =  

 
 where k for steel 

is 0.13 cal/sec °cm, c=0.11 cal/g°C and p=7.8 g/cm3.

Solution

By simplification eqn. (1.0) becomes
2

2

U UA c
x t

ρ∂ ∂
=

∂ ∂
. To solve 

this equation we take  ∆x=0.25 cm, then we find ∆t by the relation

( )2 2k t
cp x

∆
=

∆
, ∆t=0.825 sec.We let β=4, α=64 arbitrarily which implies 

that 1 1,
4 4

v i z i= − = +  and 1
64

iη γ= = + . Taking two interpolation 

points along space coordinates and one along time implies that 

g=2,b=1,p=3 and for 
1 1 3 1 1 3, , ..., , , ...,
4 2 4 64 32 64

i and j= =  we obtain

1 1 1,0, 0,
4 4 64

h and k= − = , then the calculated temperatures are 

tabulated as shown in Table 1 [27]. 

Example 2 (Eyaya, 2010) 

A hollow tube 25 cm long is initially filled with air containing 2% 
of ethyl alcohol vapors. At the bottom of the tube is a pool of alcohol 
which evaporates in to the stagnant gas above [6]. (Heat transfers to 
the alcohol from the surroundings to maintain a constant temperature 
of, 30°C at which temperature the vapor pressure is 0.1 atm.). At the 
upper end of the tube, the alcohol vapors dissipate to the outside air, 
so the concentration is essentially zero. Considering only the effects 
of molecular diffusion, determine the concentration of alcohol as a 
function of time and distance measured from the top of the tube.

Solution

T x=0 x=0.25 X=0.50 x=0.75 x=1.00 x=1.25
0.0 0.0 38.27 70.71 92.39 100 92.39

0.825 0.0 37.54 69.37 90.63 98.10 90.63
1.65 0.0 36.83 68.05 88.91 96.23 88.91

2.475 0.0 36.13 66.76 87.23 94.40 87.23
3.3 0.0 35.45 65.49 85.59 92.61 85.59

4.125 0.0 34.77 64.24 83.94 90.85 83.94

Table 1: Calculated temperatures.
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Molecular diffusion follows the law 
2

2

c cD
t x
∂ ∂

=
∂ ∂

   where D is the 

diffusion coefficient, with units in cm2/sec. (This is the same as for 
the ratio k/cp which is often termed thermal diffusivity). For ethyl 
alcohol D=0.111 cm2/sec at 30°c, and the vapor pressure is such 
that 10 volume percent alcohol in air is present at the surface [7]. 
The initial condition is c(x,0)=3.0 and the boundary conditions are 
given by c(0,t)=0, c(25,t)=15. Since the length of the tube is 25 cm, 
we take ∆x=5 cm  using the maximum value permitted for ∆t yields 

( )2 2

3 3, 0.111 , 21.11sec .
32 5 32

t t t s
x
∆ ∆

= = ∆ =
∆

If we take β=4 , α=3 arbitrarily then 1 1,
4 4

v i z i= − = +   and 
1
3

iη γ= = + . Taking two interpolation points along space coordinates 

and one along time implies that g=2, b=1, implies that p=3 and for 
1 1 3 1 2, , ..., , ,1,...,
4 2 4 3 3

i and j= =  we obtain 1 1 1,0, 0,
4 4 3

h and k= − = , 

then the calculated concentrations of alcohol are tabulated as shown 
in Table 2.
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