A New Preparation Method for Ophthalmic Drug Nanoparticles

Noriaki Nagai and Yoshimasa Ito*
Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan

Abstract

The most challenging task in ophthalmic therapy has long been the formulation of suitable ocular drug delivery systems due to the unique structure of the eye that restricts entry of the drug molecule at the site of action. Recently, the use of nanotechnology in the ophthalmic field has gained much attention, since nanoparticulate drug delivery is considered to be one of the most promising technologies to overcome poor drug stability and the difficulties in delivering drugs across biological barriers (improvement of bioavailability). This review demonstrates the usefulness of ophthalmic formulations containing drug nanoparticles. Furthermore, in this review, we introduce a new method established in our laboratory for the preparation of drug solid nanoparticles. This information provides significant information that can be used to design further studies aimed at developing less toxic eye drops.

Keywords: Nanoparticle; Ophthalmic formulations; Corneal toxicity; Transcorneal penetration; Drug delivery

Design Considerations for Ocular Drug Nanomaterials

The size of a particle influences its functionality in terms of its uptake, residence in circulation, adherence, degradation, as well as clearance [20-24]. The fate of particles inside the body has been reported as follows: ≥ 200 nm, filtered in the spleen; ≥ 100 nm, escape from blood vessels through the endothelial lining. Thus, size governs the movement of nanoparticles inside tissues. In the ophthalmic field, nanoparticles in sizes ranging from 10 to 1000 nm allow for the improved topical passage of large, water insoluble molecules through the barriers of the ocular system [25]. Superficial barriers impede direct and systemic drug access to the specific site of action. Drug loaded nanoparticles show favorable biological properties including prolonged residence time for eye drops, decreased toxicity, and increased ability of the drug to penetrate into the deeper layers of the ocular structure and aqueous humor thus minimizing precorneal drug loss caused by rapid tear fluid turnover [6,26]. Techniques were planned to transform nanoparticles from lipophilic to hydrophilic and to down-regulate irritation to the eye. Preparations that include nanoparticles could be very useful for the extended delivery of ophthalmic drugs [27,28]. Preparations that include nanoparticles have been used to deliver ocular drugs to target sites in the treatment of many eye diseases as summarized in Table 1 [13,29]. An ideal ophthalmic drug delivery system should possess key properties that include: (I) a controlled and sustained release profile to maintain a therapeutic concentration of the drug over a prolonged period of time to reduce the frequency of administration; (II) specific targeting and prolonged retention in the diseased tissues to improve therapeutic efficiency and mitigate side effects; and (III) patient-friendly delivery routes that minimize or eliminate side effects resulting directly from these administration methods. At present, nanocarrier-based ocular drug delivery systems appear to be the most promising tool to meet the

*Corresponding author: Yoshimasa Ito, PhD, Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan. Tel: +81 6 4307 3640; Fax: +81 6 6730 1394; E-mail: flyooshi@phar.kindai.ac.jp

Received March 18, 2014; Accepted July 30, 2014; Published August 07, 2014


Copyright: © 2014 Nagai N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
primary requirements of an ideal ocular delivery system.

Preparation of Ocular Drug Nanomaterials

Previous research over several decades focused on two major approaches to the design of nanocarriers: bottom-up synthesis and a top-down approach. Bottom-up synthesis, which is based on self assembly and emulsion systems, has been studied extensively in the past, and a variety of potential nanocarriers have been developed using this method, for example, polymeric nanoparticles, micelles, liposomes, nanoemulsions, dendrimers, biodegradable and non-biodegradable carriers, solid lipid nanoparticles, magnetic nanoparticles etc. A majority of these carriers are colloidal systems governed by different forces such as hydrophobic interactions, Van der Waals forces, hydrogen bonding, and ionic interactions. With this approach, high polydispersities are often exhibited, and the systems developed sometimes present certain limitations. In the in vivo drug release profiles, the physicochemical characteristics and degradation kinetics of these carriers are difficult to evaluate and reproduce as they are variable. On the other hand, major advancements have been made recently in the fabrication technology by the introduction of the “top-down” approach for micro and nano-fabrication systems using electromechanical techniques. This approach exhibits the potential for designing nanoparticles with precision in terms of particle shape and size. Such an approach can provide control over particle size, functionality, and precise particle geometry. This approach may also resolve the limitations of the bottom-up approach in research.

We have also designed ophthalmic formulations containing drug nanoparticles obtained by mill methods [30,31]. Ophthalmic solutions containing indomethacin (IMC) solid nanoparticles (IMCnano) were prepared using zirconia beads and Bead Smash 12 (a bead mill, Wakenyaku Co. Ltd, Kyoto, Japan) (Figure 1). Briefly, zirconia beads (diameter: 2 mm) were added to IMC microparticles (solid) containing BAC, mannitol and methylcellulose (MC), and the mixtures were crushed with the bead mill for 30 sec (3,000 rpm, 4°C). The mixtures were dispersed in saline with or without 5% 2-Hydroxypropyl-β-cyclodextrin (HPβCD), and crushed again with the bead mill (5,500 rpm, 30 sec × 15 times, 4°C) using smaller zirconia beads (diameter: 0.1 mm). The compositions of the dispersions containing IMC are shown in Table 2. 0.5% IMC is equivalent to 14.0 mM IMC; the pH was 6.5 for both ophthalmic dispersions containing IMC micro- or nanoparticles. The IMC particle size reached the nano order by the bead mill method using IMC microparticles containing BAC, mannitol, HPβCD and MC (IMC nanoophthalmic solution, Figure 2), particle size 76 ± 59 nm, mean ± S.D.) and 0.5% BAC solution, a preservative used in the ophthalmic field.

Usefulness of Ophthalmic Formulations containing Drug Solid Nanoparticles obtained by Bead Mill Methods

It is very important to elucidate the corneal toxicity and permeability of ophthalmic solutions containing IMC solid nanoparticles (IMCnano). Therefore, we evaluated the transcorneal penetration of IMCnano and its effects on corneal damage using human corneal epithelial cells (HCE-T), and rat and rabbit corneas [30]. The corneal wounds of rat eyes instilled with commercially available IMC eye drops (INDOMELOL® eye drops, Senju Pharmaceutical Co., Ltd, Osaka, Japan) showed 21.6% healing 12 hr after instillation while those instilled with IMCnano showed 48.1% healing 12 hr after instillation with IMCnano. In addition, the viability of HCE-T cells

![Figure 1: Preparation procedures for ophthalmic drug solid nanoparticles by the mill method.](image-url)
treated with IMCnano was significantly higher than that of cells treated with commercially available IMC, pranoprofen (NIFLAN® eye drops, Senju Pharmaceutical Co., Ltd, Osaka, Japan), diclofenac (DICLOD® eye drops, WAKAMOTO Co., Ltd., Tokyo, Japan), bromfenac (BRONUK® eye drops, Senju Pharmaceutical Co., Ltd, Osaka, Japan) or nepafenac (NEVANAC® eye drops, ALCON Japan Ltd., Tokyo, Japan), and the accumulation of IMC in HCE-T cells treated with IMCnano was less than that in cells treated with commercially available IMC. On the other hand, the penetration of IMC from IMCnano was higher than from commercially available IMC eye drops in HCE-T cell monolayers. Furthermore, we have demonstrated the corneal penetration of ophthalmic solutions containing solid nanoparticles using rabbit corneas, which include corneal epithelial, stromal and endothelial cells (in vitro and in vivo transcorneal penetration experiments). In the in vitro study, the penetration coefficients through the cornea and the cornea/preparation partition coefficients were higher, and the diffusion constants within the cornea lower than those for commercially available IMC eye drops. The IMC penetration rate from IMCnano (18.9 ± 1.95 nmol/cm²/h, n=5) was significantly higher in comparison with commercially available IMC eye drops (5.43 ± 2.59 nmol/cm²/h, n=5). In the in vivo study, no IMC from commercially available IMC eye drops was detected in the aqueous humor until 50 min after administration; however, the lag time from IMCnano eye drops was ca. 25 min. The penetration rate from IMCnano was higher than those from commercially available IMC eye drops, and the penetration rate from IMCnano and the area under the IMC concentration-time curve (AUCnano) were approximately 1.7 times greater in comparison with commercially available IMC eye drops. These results show that nanoparticle formulations provide a reduction in corneal toxicity, and may make it possible to decrease the amount of drug used via an increase in bioavailability, thus resulting in a reduction in drug toxicity.

Conclusion

In this review, we introduce the applications of nanoparticles in the ophthalmic field. Future work should focus on investigating combinations of additives to enhance the favorable properties of nanoparticles. It will be interesting to observe what benefits these innovative drug preparations can provide to patients. In addition, we describe a new method for preparing drug solid nanoparticles established by us [30-32]. The particle size of our drug solid nanoparticles is of high quality (particle size, approximately 60-80 nm). Dispersions containing these drug nanoparticles are tolerated better by human and rat corneal epithelial cells than commercially available eye drops, since the accumulation of drug in nanoparticles is lower than from solutions. Furthermore, the state of the dispersions containing drug solid nanoparticles does not affect the antimicrobial activity of BAC against E. coli, and the corneal penetration of drug solid nanoparticles is significantly better than that from commercially available eye drops. The cost-effectiveness of the new preparation method is also very high, since IMCnano can be prepared in within 2 hour, and this cost for preparation is only reagent cost. It is expected that ocular drug delivery systems using drug nanoparticles may expand their usage for therapy in the ophthalmologic field.

References


