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Background
Nonlinear regression is one of the most popular and widely used 

models in analyzing the effect of explanatory variables on a response 
variable and it has many applications in biomedical research. With the 
presence of outliers or influential observations in the data, the ordinary 
least squares method can result in misleading values for the parameters 
of the nonlinear regression and the hypothesis testing, and predictions 
may no longer be reliable. The main purpose of robust nonlinear 
regression is to fit a model to the data that gives resilient results in the 
presence of influential observations, leverage points and/or outliers. 
Rousseeuw and Leroy [1] defined vertical outliers as those data 
points with outlying values in the direction of the response variable, 
while leverage points are outliers in the direction of covariates. An 
observation may be influential if its removal would significantly alter 
the parameter estimates. Edgeworth [2] proposed the Least Absolute 
Deviation as a robust method. Huber [3] introduced the method of 
M-estimation. Rousseeuw [4] introduced the Least Trimmed Squares-
estimates. The S-estimator was introduced by Rousseeuw and Yohai [5]. 
Yohai and Zammar [6] introduced the τ-estimator of linear regression
coefficients. It is a high efficiency estimator and has a high breakdown
point. Tabatabai and Argyros [7] extended the τ-estimates to the
nonlinear regression models. Stromberg [8] introduced algorithms
for Yohai’s MM estimator of nonlinear regression and Rousseeuw’s
least median estimators of nonlinear regression. Tabatabai et al. [9]
introduced the TELBS robust linear regression method.

In Medical, biological and pharmaceutical research and 
development nonlinear regression analysis has been a major tool for 
investigating the effect of multiple explanatory variables on a response 
variable when the data follows a nonlinear pattern. When outliers and 
influential observations are present, nonlinear least squares performs 
poorly. In this paper we introduce a new robust nonlinear regression 
method capable of handling such cases. Minn et al. [10] showed that 

lung tumor size can lead to metastasis. Also, aggressive tumor growth 
is a marker for cells destined to metastasize. They validated their 
statement by analyzing the lung metastasis gene-expression signature 
using a nonlinear model. Arisio et al. [11] study of breast cancer 
confirmed that the size of tumor is an important predictor of axillary 
lymph node metastases. Ramaswamy, et al. [12]) found that gene-
expression signature is a significant factor associated with metastasis in 
solid tumors carrying such gene expressions. Maffuz et al. [13] showed 
that pure ductal carcinoma in situ is not associated with lymphatic 
metastasis independently of tumor size. Hense et al. [14] found that the 
occurrence and primary metastases in Ewing tumors is related to tumor 
size, pelvic site and malignant peripheral neuroectodermal tumors. 
Umbreit et al. [15] studied a group of patients who had undergone 
surgical resection for a unilateral, sporadic renal tumor. They concluded 
that tumor size is significantly associated with metastasis in patients 
suffering from renal masses. Wu et al. [16] retrospectively analyzed 666 
patients with nasopharyngeal carcinoma and concluded that the tumor 
volume was correlated with cervical lymph node metastasis as well as 
distant metastasis after radiation therapy. In computer vision, robust 
regression methods have been used extensively to estimate surface 
model parameters in small image regions and imaging geometry 
of multiple cameras. Coras et al. [17] used nonlinear regression and 
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Abstract
Background: When outliers are present, the least squares method of nonlinear regression performs poorly. 

The main purpose of this paper is to provide a robust alternative technique to the Ordinary Least Squares nonlinear 
regression method. This new robust nonlinear regression method can provide accurate parameter estimates when 
outliers and/or influential observations are present.

Method: Real and simulated data for drug concentration and tumor size-metastasis are used to assess the 
performance of this new estimator. Monte Carlo simulations are performed to evaluate the robustness of our new 
method in comparison with the Ordinary Least Squares method.

Results: In simulated data with outliers, this new estimator of regression parameters seems to outperform the 
Ordinary Least Squares with respect to bias, mean squared errors, and mean estimated parameters. Two algorithms 
have been proposed. Additionally and for the sake of computational ease and illustration, a Mathematica program has 
been provided in the Appendix.

Conclusion: The accuracy of our robust technique is superior to that of the Ordinary Least Squares. The robustness 
and simplicity of computations make this new technique more appropriate and useful tool for the analysis of nonlinear 
regressions.
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showed that micromolar doses of peroxisome prolefector-activated 
receptor γ reduce glioma cell proliferation.

Roth [18] applied nonlinear sigmoidal curves to monitor the 
accumulation of polymerase chain reaction products at the end of each 
cycle by fluorescence. In human blood samples, Kropf et al. [19] found 
a nonlinear binding association between transforming growth factor 
beta1 (TGF -β1) and α2-Macroglobulin as well as TGF-β1 and latency-
associated peptide (LAP). Yang and Richmond [20] used nonlinear 
least squares to estimate the effective concentration of unlabeled human 
interferon-inducible protein 10 that yields 50% maximal binding of 
iodinated protein 10 to chemokine receptor CXCR3. Hao et al. [21] 
examined the significance of Nav1.5 protein in cellular processes by 
applying a nonlinear regression which relates the gene expression of 
Nav 1.5 protein and TGF-β1 as well as Nav 1.5 protein and vimentin. 
TGF–β families are important factors in regulation of tumor initiation, 
progression, and metastatic activities, Bierie, et al. [22]. Coras et al. 
[17] applied nonlinear regression models to show that traglitazone 
concentration has a tendency to inhibit 1 TGF-β1 release in glioma cell 
culture.

This paper introduces a new robust nonlinear regression estimator. 
This new method for robust nonlinear regression has a bounded 
influence and high breakdown point and asymptotic efficiency 
under normal distribution and is able to estimate the parameters 
of nonlinear regression in such a way that is close to the parameter 
estimates we would have estimated with the absence of outliers in 
the data. In addition, this new robust nonlinear regression method is 
computationally simple enough to be used by practitioners.

Methods and Models
We begin with the introduction of our new robust nonlinear 

regression model. The introduction of the model is followed by two 
algorithms describing its implementation. We then apply this new 
model to a real data set with an outlier present. In addition, we will 
analyze a problem involving tumor size and metastases with and 
without outliers. Monte Carlo simulations are also performed to 
evaluate the robustness of our method, in comparison with the ordinary 
least squares method.

Robust nonlinear regression model

Consider the general nonlinear model of the form

( ; ) , 1, 2,...,i iiy g x i nθ ε= + =

Where y1, y2,..., yn is a sample of n observations with k predictor 
variables in the model and the parameter vector θ=(θ1, θ2,..., θp ). The 
errors εi

’s are random variables. In a designed experiment, xij
’s are 

fixed but when xij
’s are observational, they are random variables. The 

predictor can be fixed, random, or mixed. The ordinary least squares 
estimate of the parameter vector θ is given by

2
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where the function ( )xωρ is defined as

( ) 1 Sech( ),x xωρ ω= −

and the positive real number ω is called the tuning constant. The 
function Sech(⋅) is the hyperbolic secant function and ti ’s are defined by
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where σ is the error standard deviation and hii’s are the diagonal 
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If σ is unknown, one may use one of the following two estimators of 

σ which were proposed by Rousseeuw and Croux [23].

^
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 is the binomial coefficient 

and ( ){.} l is the l th order statistic.

The above estimators of σ have high breakdown points. Under the 
normality assumption for error terms, the estimators given in (3) and 
(4) have higher efficiency than median absolute deviation (MAD). In 
this paper all of our computations are performed using formula (3).

The function ρω: R→R is a differentiable function satisfying the 
following properties:

i. ρω(0)=0,

ii. ρω is bounded,

iii. ∀x∈R, ρω(x) ≥ 0,
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Taking the partial derivatives of (1) with respect to parameters and 
setting them equal to zero results in the following system of equations

1

( ) 0, 1, 2,..., ,
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= =

∂∑                                                     (5)

where ψω is the derivative of ρω which is equal to

ψω(x)= ωSech(ωx)Tanh(ωx)
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Then for j =1, 2,..., p, the equation (5) can be written as
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The matrix of weights, W is a diagonal matrix whose elements on 

the main diagonals are w1,w2,...,wn, and the estimator of the parameter 
vector θ is given by
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If g(θ;xi) is linear function of parameters, then the above model 
would be identical to TELBS robust linear regression model. 
Asymptotically, θ̂  has a normal distribution with mean θ and variance-
covariance matrix of the form
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Under the assumption of normality for the underlying distribution, 
the asymptotic efficiency, Aeff, is defined as
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The tuning constant ω can be calculated by solving equation (7) 
for ω.

An estimate for the variance-covariance matrix is derived and 
given as follows

2 2 2
i

11

' 2
i

1

ˆ (t )
ˆ ( ) .

( )( (t ))

n

ti
n

i

n
V G G

n p

ω

ω

σ ψ

ψ

−=

=

=
−

∑

∑

The robust deviance is defined as
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The deviance plays a major role in model fitting. A smaller value 
of deviance is preferred over larger values. Following Akaike Criterion 
[24] and Ronchetti [25], the robust equivalence of AIC is denoted by 
AICR, and is given by
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and the Robust Schwarz Information Criterion BICR is given by
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For more details, see Rosseeuw and Leroy [1].

There are numerous variable selection techniques available in the 
literature. One may use the stepwise procedure that may involve in 
forward selection or backward elimination. For each set S ⊆{x1, x2..., xp} 
of explanatory variables, the robust final predicted error of Maronna et 
al. [26] is denoted by RFPE(S) and is defined as

2

1 1

'

1

( ) #( ) ( )
( ) ,

( )

n n

i i
i i

n

i
i

t s t
REPE s

n n t

ω ω

ω

ρ ψ

ψ

= =

=

= +
∑ ∑

∑
where #(S) is the number of elements in the set S. In the forward 
selection or backward elimination, choose the one whose inclusion or 
deletion results in the smallest value of RFPE. To perform hypothesis 
testing, we let Ω⊆ Rp be the parameter space and 
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Then a robust likelihood ratio type test statistic for testing the null 
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0

2 2 ( ( ) ( ))/nS Sup f Sup f q
θ θ

θ θ
∈Ω ∈Ω

= −

For more information, the reader is referred to Hampel et al. 

[27]. Asymptotically under the null hypothesis 
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test statistic is defined as 
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asymptotically a chi-square distribution with q degrees of freedom.

Any of the following two robust algorithms can be used to estimate 
the parameter vector θ and standard deviation σ of a nonlinear 
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Table 1 shows their actual and predicted concentrations as well 
as our results for fitted Hyperbolastic model of type III (H3). For this 
example, the new robust technique is an effective regression tool in 
estimating model parameters in the presence of outliers. Figure 1 shows 
the fitted curve using hyperbolastic model of type III (H3). Figure 2 
uses formula (8) and the least squares fitted curve for the concentration 
data.

Tumor metastasis

The data in Table 2 consist of 12 observations. The response 
variable is the fraction of breast cancer patients with metastases and 
the predictor variable is the tumor size. Table 2 is from Michaleson et 
al. [29]. This data was originally collected by Tabar et al. [30-32] and 
Tubiana et al. [33,34]. To assess the robustness of our new method 
with regard to a special class of nonlinear growth models, we utilize 
this tumor metastasis data that is free of outliers. We first fit a model 
to the data using the robust method as well as least squares when there 
is no outlier present. Then we plant outliers in X direction, Y direction 
and both X and Y direction. In the X direction we change the X value in 
observation 12 from 90 to 2. In the Y direction, we change the y value 
in observation 6 from .55 to 3 and in both X and Y direction we change 
observation 12 in X direction from 90 to 2 and observation 7 in Y from 
.56 to 3.

For illustrative purposes, we have fitted hyperbolastic of type II, 
Gompertz and logistic models. In the past, these models have been used 
to monitor cancer progression and regression. Each model has three 
parameters θ1, θ2, and θ3 with θ1 and θ2 being positive and εi are random 
errors. The response yi is the fraction metastasized and xi is the tumor 
size for individual i. The left graphs in Figures 3-5 are fitted curves using 
our proposed robust nonlinear regression technique and the graphs 
on the right sides of Figures 3-5 have been drawn using the nonlinear 
least square regression technique by planting outliers in X direction, 
Y direction and both X and Y direction. As you can see, when there is 
no outlier in the data all models perform well regardless of using the 
robust method or Least Squares. But when we plant outliers in the X, 
Y, and/or XY directions the fits become unacceptable for Least Squares 
whereas the robust method performs well for all models.

The hyperbolastic model of type II or simply H2 has the form 

1

2 3

.
1 sinh [exp[ ]]i i

i

y
Arc x

θ
θ θ

= +∈
+ −

The Gompertz model is of the form: 1 2 3exp[ exp( )] .i i iy xθ θ θ= − − +∈

The logistic model is of the form 1
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Simulation

We perform simulation experiments to evaluate the robustness of 
our new nonlinear regression method compared to the least squares 

regression model:

Algorithm I: 

1. Set j=0 and (0)ˆ 1.σ = Calculate the initial estimate (0)θ̂  of 

parameter vector θ by minimizing 
1
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n
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4. If convergence occurs, stop. Otherwise go to step 2 and continue 
the process.
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Algorithm II:

1. Set j=0 and (0)ˆ 1.σ = Calculate the initial estimate (0)θ̂ of 

parameter vector θ by minimizing 
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them to calculate the weights matrix ( )jw .

3. Use information from step 2 to calculate. 
( ) ( )( ) ( ) ( ) ( ) 1 ( ) ( )ˆ t tj j j j j jG W G G W yθ −=

4.  If convergence occurs, stop. Otherwise go to step 2 and continue 
the process.

The convergence occurs when (j) (j 1)ˆ ˆ 0.θ θ −− ≅
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θ

−
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ε=0.00001.

Drug concentration data

Kenakin [28] used a set of responses to the concentration of an 
agonist in a functional assay. They fit the following model to their data. 
In this data, observation 5 has an outlier in the response direction,

50(log( log( ))Response=Basel
1 10n EC A

Max Basel
−

−
+

+
                                  (8)

OBS Concentration Response Least 
Square

Calculating 
using 1

Hyperbolastic 
H3

1 0.01 2 2 0.8 2
2 0.03 8 8.7 5.2 8
3 0.1 28 27.8 28 27.9
4 0.3 59 59.0 62.6 61.4
5 1 95 84.3 77.9 78.1
6 3 78 84.3 80.4 78.4
7 10 80 84.3 80.8 78.4

Table 1: Parameter Estimates for the Concentration Data.
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Figure 1: Fitted curve using hyperbolastic model of type III (H3).

2 4 6 8 10
Concentration
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Figure 2: The least squares fitted curve for the concentration data.

Tumor size x 12 17 17 25 30 39 40 50 60 70 80 90
Fraction Metastasized y 0.13 0.20 0.27 0.45 0.42 0.55 0.56 0.66 0.78 0.83 0.81 0.92

Table 2: Tumor Size Versus Fraction Metastasized Data.

n=20 0% 10% 20% 30% 40%

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Least-Squares Bias 0.0375 0.1083 25343 47179 8583 6953 2407 5185 1604 4015
MSE 0.0479 0.4842 5.5E+9 1.5E+10 4.6E+9 2.1E+9 3.2E+8 2.2E+9 1.0E+8 1.4E+9
MEP 5.0375 1.1083 25348 45180 9324 7329 3456 7733 1934 5234

Robust Method Bias 0.0901 0.1525 0.0056 0.2242 0.034 0.2421 0.0199 0.2265 0.0176 0.3269
MSE 0.0534 0.5646 0.2111 0.9423 0.2502 1.2292 0.2578 0.8812 0.2767 1.6324
MEP 5.0701 1.1327 5.0056 1.2201 5.0134 1.2440 5.0199 1.2263 4.9824 1.3269

n=50 0% 10% 20% 30% 40%

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Least-Squares Bias 0.0131 0.1430 5214 4108 7326 5423 2113 4927 1476 3104
MSE 0.0396 0.2566 6.1E+9 1.7E+9 3.2E+9 1.8E+9 2.5E+8 1.8E+9 7.9E+7 1.2E+9
MEP 5.0131 1.0414 30123 58972 8589 6954 2412 6186 1609 4016

Robust Method Bias 0.0701 0.1625 0.0328 0.0914 0.02925 0.1285 0.0494 0.1843 0.0050 0.2876
MSE 0.2167 0.5221 0.2333 0.6257 0.2718 0.7224 0.3150 0.8543 0.2937 0.9745
MEP 5.0701 1.1131 5.0328 1.0914 5.0292 1.1285 5.0494 1.1843 4.9734 1.1567

Table 3: Bias, Mean Square Errors (MSE) and Mean Estimated Parameter (MEP) with Percentage Contamination in the X Direction.
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Figure 3: Hyperbolastic model of type II.
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Figure 4: The Gompertz mode.
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Figure 5: The logistic model.
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method. We have simulated the biochemistry model known as 
Michaelis-Menten kinetics. In biochemistry this model expresses the 
reaction velocity V as a function of concentration of substrate C as

,CV
C

α
β

=
+

where the parameter α denotes the maximum reaction velocity and β 
is the substrate concentration at which the initial velocity V0 is 50% of 
the maximum reaction velocity. The larger the parameter β, the lower 
is the efficiency between the substrate and enzyme. This model has also 
been used in many biological systems such as gene regulatory system. 
In order to investigate the robustness of our new method relative to 
the method of least squares, we considered the nonlinear Michaelis-
Menten equation of the form

1

2

, 1, 2,...,i
i i

i

xy i n
x

θ ε
θ

= + =
+

Where the response variable is yi and xi is fixed. In our simulations 
we set xi=i and εi as the standard normal distribution with mean 0 
and standard deviation 1. We performed 1000 repetitions using two 
sample sizes n=20 and n=50. The outliers were randomly chosen in the 
direction of X, Y and both X and Y. We used contamination levels of 
0%, 10%, 20%, 30%, and 40%. In this simulation the parameter values 
are θ1=5 and θ2 =1. The software Mathematica is used in the simulation 

process. To evaluate the robustness of these estimators, we randomly 
choose 10%, 20%, 30% and 40% of the simulated observations and 
contaminate the selected data by magnifying their size by a factor of 
100 in the direction of explanatory variable X, response variable Y, and 
both response Y and explanatory X variables. Finally, we estimate both 
bias and mean squared errors using the following equations

1

ˆ
m

l
lbias
m

θ
θ== −

∑

Where m is the number of iterations in the simulation. The mean 
squared error is estimated by

2

1

ˆ( )
.

m

l
lMSE

m

θ θ
=

−
=
∑

Tables 3-5 give the summary of our simulation outcome for both 
small and large sample sizes. The asymptotic efficiency for our simulation 
studies has been set to 95% level. By examining the simulation tables, 
we find out that in the absence of contamination in the simulated data, 
both the least square and the proposed robust method perform well 
with respect to bias, mean square error and mean estimated parameter 

n=20 0% 10% 20% 30% 40%
θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Least-Squares Bias 0.0375 0.1083 68395 12511 115870 12323 115212 9858 136703 8915
MSE 0.0479 0.4842 1.50E+10 1.50E+8 1.2E+11 1.2E+9 1.4E+11 9.9E+8 2.4E+11 1.0E+9
MEP 5.0375 1.1083 68400 12512 115875 12324 115217 9859 136708 8916

Robust Method Bias 0.0901 0.1525 0.0358 0.0523 0.0362 0.0250 0.0899 0.1605 0.2034 0.3292
MSE 0.0534 0.5646 0.2296 0.5710 0.2555 0.6212 0.3534 0.8233 0.3928 1.095
MEP 5.0701 1.1327 4.9641 1.0523 4.9638 0.9751 5.0899 1.1601 5.2034 1.3292

n=50 0% 10% 20% 30% 40%
θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Least-Squares Bias 0.0131 0.1430 23650 11692 18843 5605 25855 5462 33790 5170
MSE 0.0396 0.2566 4.6E+9 1.1E+9 7.6E+9 6.3E+9 1.2E+10 5.1E+08 3.1E+10 7.1E+08
MEP 5.0131 1.0414 23655 11693 18848 5606 25860 5463 33795 5171

Robust Method Bias 0.0701 0.1625 0.0365 0.0646 0.0262 0.0143 0.0504 0.0640 0.0022 0.0510
MSE 0.2167 0.5221 0.0555 0.2067 0.0660 0.3303 0.0673 0.3861 0.0710 0.6139
MEP 5.0701 1.1131 5.0365 1.0646 4.974 0.9857 5.0505 1.0650 5.0022 1.0510

Table 4: Bias, Mean Square Errors (MSE) and Mean Estimated Parameter (MEP) with Percentage Contamination in the Y Direction.

n=20 0% 10% 20% 30% 40%
θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Least-Squares Bias 0.0375 0.1083 25342.0 45178 8582 6952 2406 5184 1603 4015
MSE 0.0479 0.4842 5.5E+9 1.5E+10 4.6E+9 2.1E+9 3.2E+8 2.2E+9 1.0E+8 1.4E+9
MEP 5.0375 1.1083 25347 45179 8587 6953 2411 5185 1608 4016

Robust Method Bias 0.0901 0.1525 0.0762 0.0895 0.0081 0.0599 0.1191 0.1685 0.0176 0.0417
MSE 0.0534 0.5646 0.1676 0.3112 0.1484 0.6847 0.2901 0.7813 0.2539 0.7448
MEP 5.0701 1.1327 5.0762 1.0895 4.9919 1.0599 5.1191 1.1685 5.0176 0.0417

n=50 0% 10% 20% 30% 40%
θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Least-Squares Bias 0.0131 0.1430 660 892 583 582 566 478 559 404
MSE 0.0396 0.2566 455959 1.0E+6 345138 437874 323227 252951 314270 176481
MEP 5.0131 1.0414 665 893 588 583 571 479 564 405

Robust Method Bias 0.0701 0.1625 0.0173 0.0736 0.0892 0.1767 0.0399 0.0059 0.01445 0.0256
MSE 0.2167 0.5221 0.0526 0.3141 0.0746 0.4530 0.0474 0.2435 0.0857 0.4877
MEP 5.0701 1.1131 4.9827 1.0736 5.0892 1.1767 4.9601 1.0060 4.9856 1.0256

Table 5: Bias, Mean Square Errors (MSE) and Mean Estimated Parameter (MEP) with Percentage Contamination in the X-Y-Direction.
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values. However, when contamination enters into our simulated data in 
the direction of explanatory variable X, or response variable Y, or both 
X and Y, then the new method outperforms the least squares method 
for both small and large samples. We also observe that the estimated 
values of parameters θ1 and θ2 are in close proximity of the true values 
of the parameters θ1 and θ2. The simulation results clearly indicate the 
robustness of our new nonlinear regression technique relative to least 
squares method when outliers or influential observations are present.

Conclusion
In this paper we introduced a new robust estimator of nonlinear 

regression parameters. In addition, robust testing for hypothesis 
about model parameters was introduced. Moreover, two algorithms 
were developed to perform the robust nonlinear estimation of model 
parameters. The computer simulation revealed the robustness of our 
new estimator. This robust method provides a powerful alternative 
to least squares method. The robust method presented in this paper 
has influence functions bounded in both the response and the 
explanatory variable direction. It has high asymptotic breakdown point 
and efficiency. A Mathematica program is also provided to ease in 
computations. This program does the necessary calculations to perform 
the robust nonlinear regression analysis of the drug concentration 
example given in this paper.
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