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Introduction
With the completion of sequencing the genome from several 

eukaryotes [1], discovering the location and structure of genes (often 
referred to as gene prediction or gene finding) is an increasingly 
important task [2]. Eukaryotic genes are composed of two types of 
segments: exons and introns; while the exons are regions of the genetic 
material that are encoded proteins, on the other hand the introns are 
non-coding regions that are removed from the primary transcript [3]. 
The intron-exon boundary is referred to as acceptor splice site and the 
exon-intron boundary as donor splice site [4]. The donor and acceptor 
splice sites are the most critical signals for gene prediction [5]. 

In the past few decades, numerous methods have been proposed 
to detect the splice sites, such as hidden Markov model [5,6], Bayesian 
networks [7,8], artificial neural network (ANN) [9,10], support vector 
machine [11,12] and decision-trees [13]. However, due to complex 
dependencies existing among the bases around splice sites [7,14], the 
splice site prediction is still a difficult problem, i.e., splice site prediction 
is still a major bottleneck in gene finding [15]. Thus, development of 
new methods to accurately predict the splice sites is continuing to be 
expected.

Recently, the ANN has attracted wide spread attention [16-18], 
and it can be constructed without detailed domain knowledge [19]. 
However, defining the architecture of ANN is difficult. We propose 
a novel ANN (we call it NANN, hereafter) that incorporates into the 
model the codon, which is consecutive three bases that encode an 
amino acid. 

Although ANN model has capability for extracting nonlinear 
relationships through training, the training process is difficult. 
Traditional training methods such as back propagation are very 
slow and possibly stuck at local minimum [20,21]. Recently, several 
researchers applied the PSO algorithm in training the neural network 
[22]. However, studies showed that similar to other population based 
methods, such as genetic algorithm, PSO may be trapped in local 
optimum and the convergence rate is slow in the later iterations [23-
26]. Thus, mimicking the activities of wolves circle, we propose an 

IPSO, which aims to speed up the convergence and avoid getting into 
the local optimum, to train the NANN. Intensive experiments were 
presented in this paper, and the results showed that our algorithm was 
significantly better than some current methods. 

Methods 
A novel ensemble ANN

NANN: Studies showed that ANN with enough hidden layers 
(include number of nodes per layer) can achieve any function very well 
through an appropriate training. The NANN consists of four layers: 
an input layer, two hidden layers and an output layer. On the basis of 
fact that every three-base (codon) in exons stands for an amino acid 
(e.g. CAChistidine), the connection between the input layer and the 
first hidden layer is defined as follows: every three-base in the region of 
exons is connected to one node in the first hidden layer, and other bases 
are one-to-one connected with the node in that layer. The other layers’ 
nodes are full-connected (Figure 1).

The input is a segment of nucleotide sequences with an uneven 
window size. The output of the networks comes from just one unit 
giving a value of 0 or 1, which is used to represent the category (splice 
site or non-splice site). The number of nodes in the first hidden layer 
for donor and acceptor splice sites prediction problem are defined in 
(1) and (2), respectively.
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Abstract
The amount of DNA sequence data produced by several genomic projects had increased dramatically in recent 

years. One of the main goals of bioinformatics was to identify genes. A crucial part of the gene identification was to 
precisely detect the exon intron boundaries, i.e. the splice sites. This paper introduced a new type of artificial neural 
network (called NANN), which was designed specifically to solve the splice sites prediction problem. Moreover, 
the network connection weights of NANN were determined by an improved particle swarm optimization which was 
inspired by the wolves' activities circle. In addition, three types of encoding approaches were applied to generate the 
input for the NANN. Intensive experiments were presented in this paper, and the results showed that our algorithm 
was better than some current methods, that is, the NANN_IPSO was applicable to splice site prediction problem. 
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where luN  is the number of inputs in upstream, ldN  is the number of 
inputs in downstream.

Ensemble NANN: The theoretical and experimental results 
showed that combing multiple neural networks (training several 
individual ANNs and combining their outputs) can effectively improve 
the performance of ANN [27,28]. Therefore, in this paper, several 
individual NANNs are used as the component of the ensemble one 
(Figure 2). The main steps of the ensemble NANN are given as follows: 

1)	 Several NANNs are trained with various window size (input) 
and second hidden layer's nodes.

N of the better model is selected.

Create an ensemble NANN consisting of N individual NANNs 
according to the step 2.

The final decision is made by combining ensemble of NANN with 
unweighted majority voting.

IPSO

Particle swarm optimization: PSO is an iterative optimization 
algorithm inspired by the observation of collective behaviors in 
animals (e.g., bird flocking) [29,30]. In PSO, each candidate solution to 
an optimization problem is represented by one particle. Each particle 
i  is described by its position ix  and velocity iv . The algorithm starts 

with random initialization of the particles. Then, the particles change 
their positions according to their velocities, which are updated in each 
iteration. Given that ip  is the best position found by particle i  in all 
the preceding iterations and gp  is the best position found so far by the 
entire swarm, the velocity and position of particle i  in bit j  will be 
updated according to the following formulae:

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))ij ij ij ij gj ijv t v t c r p t x t c r p t x t+ = + − + −   (3)

( 1) ( ) ( 1)ij ij ijx t x t v t+ = + +
			                

(4)

where 1r  and 2r  are random numbers between 0 and 1, and 1c  
and 2c  define the degree of influence of ip  and gp  on the particle’s 
velocity. The velocity ijv  is bounded within a range of max max[ , ]V V−  
to prevent the particle from flying out of the solution space.

IPSO: Biologists studied on wolves and found that each pack 
of wolves has a 15 km radius of activities circle. Miniaturizing three 
wolves' activities circles to the drawings, they found that the circles are 
crossing, neither isolated nor completely blending. The intersection 
provides the possibility of hybrid, and the other sections make them 
retain some of personality. When the activities circle overlap, wolves 
are killing; conversely, complete isolation will bring degradation [31]. 
Inspired by the above phenomenon, we propose an improved PSO 
named IPSO.

In IPSO, the swarm consists of three sub-swarms A, B and C. 
At each iteration, n  particles are randomly selected from each sub-

swarm to constitute the set D , where , { , , }i
i

T
n T A B C

k
= ∈ , •  is 

the number of particles in • . D  represents the intersection of A , 
B  and C  which ensures the information sharing. In addition, three 

enhancing strategies are used in this paper including time-varying 
acceleration coefficients strategy, crossover and mutation.

a) Time-varying acceleration coefficients strategy

The coefficients change with iteration so as to speed up the 
convergence during the earlier iterations and keep the diversity during 
the later iterations. The social coefficient 2c  is linearly decreased 
during the iterations; inversely, the cognitive coefficient 1c  is increased 
linearly. 
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where cruiter  and maxiter  are the current and maximal iteration, 
respectively, and maxc  is the upper bound, and minc  is the lower 
bound. In this paper, the values of maxc  and minc  are set to 2.2 and 
1.8, respectively. 

b) Crossover

In PSO, the particle swarm has “memory” of past successes, and 
tends to converge upon the regions of search space that have afforded 
success previously. However, there is no mechanism for leaps from one 
region to another, and crossover allows that leaps [32]. Therefore, the 
following mechanism is used in this paper to prevent the algorithm 
from trapping in local optimization. If the () crand p< , the following 
operation is executed.
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Figure 1: The schema of the NANN architecture. 
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Figure 2:  The schema of the ensemble NANN.



Citation: Bin W, Jing Z (2014) A Novel Artificial Neural Network and an Improved Particle Swarm Optimization used in Splice Site Prediction. J Appl 
Computat Math 3: 166 doi:10.4172/2168-9679.1000166

Page 3 of 8

Volume 3 • Issue 4 • 1000166
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

1

1

2

( ),   
( 1)

( ),  
i j randnew

i j
i j

x t if j j
x t

x t otherwise

≤+ = 


		               (6)

2

2

1

( ),   
( 1)

( ),  
i j randnew

i j
i j

x t if j j
x t

x t otherwise

≤+ = 


		              (7)

where cp  is the crossover probability, randj  is randomly chosen 
between 1 to M with equal probabilities.

c) Mutation

Lack of the diversity, particularly during the later stages of the 
optimization, is the dominant factor of the convergence to local 
optimum [33]. Hence, the concept of “mutation” is adopted to enhance 
the global search capability.

min max( , ), ()
( 1)

( 1),

m

ij

ij

rand x x if rand p
x t

x t otherwise

<
+ = 
 +

	                (8)

where mp  is the mutation probability. 

Based on the above analysis, the main steps of the IPSO are given 
as follows:

Step 1: Initializing. Generate three independent swarms A, B and C 
(each one include M  particles) randomly.

Step 2: Calculating. Calculate the fitness value of each particle. 

Step 3: Updating. A, B and C are updated independently according 
to the equations (3), (4) and (5) 

Step 4: Selecting. n  particles are randomly selected from A and C 
to constitute the set D .

Step 4.1: Crossover. The particles in D  are crossed according to 
(6) and (7). 

Step 4.2: Mutating. If () mrand p< , (8) is executed.

Step 5: Checking. If the termination criteria are satisfied, stop. 
Otherwise, go to Step 2.

Hybrid NANN and IPSO

Although the NANN model has been reported in the previous 
section, the problem of training the network connection weight is not 
a trivial problem. It is a nonlinear and dynamic process in that any 
change of one weight requires adjustment of many others. In this 
paper, the IPSO is applied to optimize the weights (Figure 3). The 
fitness function is defined as the rate of misclassification.

Encoding Method
In most of the previous studies, the nucleotide encoding was 

often ignored. In this paper, three encoding methods are used: single-
nucleotide (SN) encoding, SN with frequency difference between 
the true and false sets (SN_FD) [34], and SN_FD with distribution 
information (SN_FD _DI).

SN encoding

Each nucleotide is given an integer number: A (-1), T (1), G (-2) 
and C (2).

SN with FD encoding 

A position weight matrix is derived from the true set by counting 
the frequency which each nucleotide occurs at each position.

1

1 ( ), 2, 1,1, 2; 1,2, ,
n

ij i tj
t

M O N i j l
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= = − − =∑   	               (9)
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where n  is the number of samples in the true set, l  is the number of 
nucleotide in each sample and { 2, 1,1,2}tjN ∈ − − . In the same way, a 
position weight matrix can be obtained for the false set. The SN with 
FD encoding is obtained by subtracting the true coding matrix from 
the false one [34].

SN_FD with distribution information encoding

However, SN_FD method has its limits. For example, A’s frequency 
is 0.8 in true set and 0.7 in false set. C’s frequency is 0.2 in true set and 
0.1 in false set. When the SN_FD is used, the two features have the same 
value. However, the contribution of the two bases may be different. 
Therefore, we propose a novel encoding method that the distribution 
information (DI) is added to (9).

*

1

1log( ( | )) ( )
n

ij j tj t i tj
t

M p N c O N
n =

= × ∑  		             (10)

where ( | )j tj tp N c  is the frequency of tjN  in the class tc , 
{ , }tc true false∈ .

Experimental Results
In this section, we tested IPSO on four benchmark functions, 

traveling salesman problem and bin packing problem. Then, NANN_
IPSO was tested on the Homo Sapiens Splice Sites Dataset (HS3D), 
and the results were compared with those of several current known 
algorithms. 

Tested the effect of IPSO

Experiment for benchmark testing: Four well-known benchmark 
functions were used to evaluate the effectiveness of IPSO, and the 
results were compared with PSO, EGPSO and MPSO_SCSS [31,35,36]. 
All the functions used in this paper are defined in Table 1.

Start 

Initialize Evaluate the fitness value  Stop Update 

End  

output

in
pu

t

Figure 3: The hybrid of IPSO and NANN.
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Each experiment was conducted 30 times, and the average results 
and the standard deviation were presented. Based on the parameter 
sensitive analysis (see 4.2.4), we set the parameters of IPSO as follows: 

mp =0.01, cp =0.8 and k =5. Table 2 shows the results of the four 
algorithms. In the table, “F” indicates the function, and “D” indicates 
the dimension of function. 

It can be seen from the table that all the methods performed well on 
functions 2 and 4. However, for the 1 and 3, IPSO improved the average 
solutions significantly compared with those of others. Therefore, 
we can reach the conclusion that IPSO outperforms the other three 
algorithms.

Experiment for bin packing problem testing: The bin packing 
problem (BPP) is a NP-hard combinatorial optimization problem 
where the aim is to pack a finite number of items using the least bins 
possible [37]. The problem can be stated as follows: given a finite set 
of numbers (the items) and a constant C (the bin’s capacity), find the 
packing pattern that requires the minimum number of bins. The m 
items were randomly drawn from the range (0,1) to be packed into 
bins of capacity 1. In this paper, three sets of parameters were used: (1) 
m=100; (2)m=500; (3)m=1000. Table 3 shows the results of the four 
algorithms (PSO, IBPSO [38], MPSO [39] and IPSO). According to 
Table 3, the IBPSO was a very poor method for the BPP. On the other 
hand, the IPSO considerably outperformed others, finding the better 
packing even for the difficult instance where m=1000. The results on 
the three datasets confirm the superiority of the IPSO in comparison 
with others. 

Experiment for traveling salesman problem testing: Traveling 
salesman problem (TSP) is one of most widely studied combinational 

optimization problems in which a salesman has to visit every city in the 
shortest way [40]. The TSP instances were derived from the TSPLIB 
[41]. The three versions of PSO (PSO, PSO_c3dyn [42] and IPSO) were 
tested on four instances. According to Table 4, it can be seen that IPSO 
obtained the best results in all instances. From the table, even the worst 
results obtained by our algorithm were better than the mean results 
obtained by others in some of cases. According to standard deviations, 
the IPSO is more stable. 

Experiment for splice site prediction 

Dataset: The dataset was extracted from GenBank Rel.123. HS3D 
contains 2796 donor sites and 2880 acceptor sites. In addition, there are 
271937 false donor sites and 329374 false acceptor splice sites, which 
were selected by searching GT and AG dinucleotides in non-splicing 
positions [43]. 

Evaluation criteria: The evaluation criteria used in this paper are 
sensitivity (Sn), specificity (Sp), accuracy (Acc) and 9Q . 
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True negative (TN): number of false splice sites that were correctly 
classified as false.
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Table 1: Details of benchmark functions.

F D Average/(Standard Deviation)
PSO EGPSO MPSO_SCSS IPSO

F1 5 2.6177*10-115

(2.8075*10-115)
2.1337*10-68

(3.7709*10-68)
2.4057*10-30

(4.4985*10-30)
1.8713*10-169

(0)
10 5.6843*10-15

(1.1874*10-14)
7.1827*10-11

(1.5699*10-10)
1.4352*10-18

(1.3143*10-18)
6.9166*10-35

(1.6381*10-34)
F2 2 0

(0)
0

(0)
0

(0)
0

(0)
F3 5 2.7501*10-4

(1.7581*10-4)
5.3997*10-4

(3.0793*10-4)
5.0818*10-4

(2.5073*10-4)
2.9644*10-323

(0)
10 1.3445*10-2

(8.0537*10-3)
2.1525*10-2

(1.1245*10-2)
4.0352*10-3

(1.8352*10-3)
1.1449*10-61

(3.5054*10-61)
F4 2 0

(0)
6.5451*10-3

(4.7254*10-3)
0

(0)
0

(0)

Table 2: Average and the standard deviation of the optimal values obtained by 
PSO, EGPSO, MPSO_SCSS and IPSO.

Dataset Average/(Standard Deviation)
PSO IBPSO MPSO IPSO

VR100 36
(0)

36.6
(0.5040)

36
(0)

35.1
(0.1568)

VR500 178.8
(0.6644)

180.0
(1.1592)

178.8
(0.6477)

176.2
(0.3488)

VR1000 406
(126.2)

416
(74.3)

409
(62.1)

397
(36.8)

Table 3: The results of the bin packing problem for 30 trials.

Dataset 
(best known)

Average/(Standard Deviation)      
PSO PSO_c3dyn IPSO

Eil51
(426)

441.5
(3.62)

457.9
(4.17)

434.4
(2.68)

Berlin52
(7542)

7657.4
(144.84)

8062.2
(68.37)

7548.4
(13.58)

St70
(675)

685.8
(6.94)

700.6
(5.09)

674.8
(6.05)

Pr76
(108159)

117390.6
(1251.30)

119550.3
(933.02)

108852.0
(232.21)

Table 4: The results of the Traveling Salesman Problem for 30 trials.
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True positive (TP): number of true splice sites that were correctly 
classified as true.

False negative (FN): number of true splice sites that were wrongly 
classified as false.

False positive (FP): number of false splice sites that were wrongly 
classified as true.

In addition, the k-fold method was employed in the experiments, 
with the value of k set to five. For five-fold cross-validation, the whole 
dataset was divided into five subsets with approximately equal size. 
Then, the classifier was trained five times-each time, one subset was 
used as the testing data to validate the classifier.

Results 
Firstly, an individual NANN with different encoding methods 

and different inputs were used to analyze the effects of three encoding 
methods, and the results are showed in Figure 4 and Figure 5, where LU 
is the length of upstream sequences of splice sites and LD is the length 
of downstream sequences of splice sites. From the figures we can see 
that the SN obtained the worst Acc for both the donor and acceptor 
datasets. On the other hand, the SN_FD_DI obtained the best results 
compared with other two encoding methods. Therefore, it can be 
concluded that the SN_FD_DI encoding method can more accurately 
reflect the difference between true and false sites. 

Secondly, the effects of the number of individual ( N ) NANN(s) 
used in the ensemble one were analyzed (Tables 5 and 6). It is clear that 

the results were greatly influenced by the value of N, and the best results 
were obtained when 5N = . Figures 6 and 7 shows the frequency of 
nucleotides which used as the inputs of NANN_IPSO. Y-axis indicates 
the frequency of nucleotides composition bias. From figure we can 
see that: a) the adjacent sequences of splice sites have remarkable 
conservativeness; (b) introns show more remarkable conservativeness 
than exons.

Finally, our method was compared with MM1-SVM [11], SVM-B 
[44] and HMM [5]. The results are showed in Table 7. We can see that 
all the algorithms generated better results for the donor dataset than the 
acceptor one, and the reason is that the donor set is more conservative 
than the acceptor one. Moreover, our method outperformed the other 
algorithms in the evaluation criteria 9Q on all the datasets, and it can 
be explained by the effectiveness (the information used to construct 
NANN were usefulness) of the algorithm proposed in this paper. 

Sensitivity in relation to parameters

To study the effects of parameters, we solved the splice site 
prediction problem by NANN_IPSO with variousk, pc and pm.

•	 Sensitivity in relation to the k

The k is an important parameter for our algorithm. Tables 8 and 9 
show the effects of k on the solutions where the mutation probability 
and crossover probability were 0.01 and 0.8, respectively. From the 
table we can see that our algorithm achieved the best results when the 
k equaled 5. This can be explained as follows: the small value leads to 
overlaps among the three groups, and then the particles become over-
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competitive, and the swarms degrade in the end. In contrast, the large 
value makes it cannot communicate with others.

•	 Sensitivity in relation to crossover probability 

Then, the effects of crossover probability on the results were 
investigated. Crossover probability plays a key role in the method. For 
small values, the algorithm will converge slowly. However, large values 
will lead the particles to a random walk in the search space. Therefore, 
a proper value is vital for the method. The effects of the crossover 

probability on the results are shown in Tables 10 and 11 where k and 
mutation probability were set to 5 and 0.01, respectively. From the 
tables we can see that the algorithm achieved the best results when the 
crossover probability was 0.8.

Sensitivity in relation to mutation probability 

Tables 12 and 13 show the effects of the mutation probability on 
the solutions where the k and the crossover probability were 5 and 
0.8, respectively. Variations of results were observed with different 
mutation probabilities. From the tables we can see that our method 
achieved the best results when the mutation probability equaled 0.01.

In summary, the computational results confirmed that the method 
used in this paper works well. Its performance was fairly robust, and 
this is a very appealing feature, as most real world applications involve 
analyzing huge volumes of genome sequence data. Moreover, the five-
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Figure 6: The frequency of nucleotides composition bias of donor site: (a) true donor, (b) false donor.

N Sn Sp Acc Q9

1 76.18% 98.28% 87.23% 83.11%
3 86.91% 98.93% 92.92% 90.71%
5 90.77% 98.93% 94.85% 93.43%
7 85.62% 99.14% 92.38% 89.82%
9 84.12% 98.71% 91.42% 88.73%

Table 5: Donor sites prediction with different N NANN(s).

N Sn Sp Acc Q9

1 57.50% 97.08% 77.29% 69.88%
3 77.92% 97.71% 87.81% 84.30%
5 85.63% 97.62% 91.77% 89.73%
7 75.42% 98.13% 86.77% 82.57%
9 74.17% 97.50% 58.83% 81.65%

Table 6: Acceptor sites prediction with different N NANN(s).

Method donor acceptor
Sn Sp Q9 Sn Sp Q9

MM1-SVM 93.06% 91.31% 92.10% 90.24% 87.57% 88.79%
SVM-B 94.31% 90.99% 92.38% 90.90% 88.16% 89.37%
HMM 94.24% 92.42% 93.23% 88.23% 90.11% 89.40%
Our method 90.77% 98.93% 93.43% 85.63% 97.62% 89.73%

Table 7: Prediction accuracies obtained by three algorithms.

k Sn Sp Acc Q9

20 85.41% 98.93% 92.17% 89.65%
10 87.34% 99.79% 93.56% 91.05%
5 90.77% 98.93% 94.85% 93.43%
2 87.55% 98.50% 93.03% 91.14%

Table 8: Variation of the results obtained by NANN_IPSO with different k  (donor 
site).

k Sn Sp Acc Q9

20 83.33% 97.56% 90.63% 88.12%
10 84.17% 97.92% 91.04% 88.71%
5 85.63% 97.62% 91.77% 89.73%
2 83.75% 97.92% 90.83% 88.42%

Table 9: Variation of the results obtained by NANN_IPSO with different k  
(acceptor site).
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fold cross-validation experiment was reliable and appropriate for splice 
site prediction. 

Conclusions
Predicting splice sites is an important part of gene prediction. Due 

to complex dependencies existing among bases around splice sites, 
splice site prediction remains a major bottleneck in gene prediction. 
A novel neural network model (NANN) was introduced, which was 
based on the fact that three-base code words (codons) in mRNA stand 
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cp Sn Sp Acc Q9

0.2 86.70% 98.50% 92.60% 90.53%
0.4 88.41% 98.71% 93.56% 91.76%
0.6 88.20% 99.36% 93.78% 91.64%
0.8 90.77% 98.93% 94.85% 93.43%

Table 10: Variation of the results obtained by NANN_IPSO with different crossover 
probability (donor site).

cp Sn Sp Acc Q9

0.2 82.50% 97.92% 90.21% 87.54%
0.4 84.79% 98.33% 91.56% 89.18%
0.6 85.00% 98.13% 91.56% 89.31%
0.8 85.63% 97.62% 91.77% 89.73%

Table 11: Variation of the results obtained by NANN_IPSO with different crossover 
probability (acceptor site).

for amino acids in proteins, to predict the splice sites. In addition, the 
IPSO mimicking the activities of wolves circle was used as a training 
phase of NANN to determine the weights of network. Moreover, 
three encoding methods were applied and showed how the predicting 
performance was benefited from the use of the SN_FD_DI encoding 
approach. The experimental results demonstrated that the proposed 
algorithm was able to discriminate between the true and false splice 
sites and had better prediction accuracy than others.
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