A Novel Perspective on Dopaminergic Processing of Human Addiction

Rajendra D Badgaiyan*
Department of Psychiatry, State University of New York at Buffalo, USA
Department of Psychiatry, VA Medical Center, Buffalo, NY, USA

Abstract

Converging evidence from clinical, animal, and neuroimaging experiments suggests that the addictive behavior is associated with dysregulated dopamine neurotransmission. The precise role of dopamine in establishment and maintenance of addiction however is unclear. In this context animal studies on the brain reward system and the associative memory processing provide a novel insight. It was shown that both processing involve dopamine neurotransmission and both are disrupted in addiction. These findings indicate that dysregulated dopamine neurotransmission alters the brain processing of not only the reward system but also that of the memory of association between an addictive substance and reward. These alterations lead to maladaptive motivational behavior leading to chemical dependency. This concept however is based mostly on the data obtained in laboratory animals because of the paucity of human data. Due to lack of a reliable technique to study neurotransmission in the live human brain, it has been a problem to study the role of dopamine in human volunteers. A recently developed dynamic molecular imaging technique however, provides an opportunity to study these concepts in human volunteers because the technique allows detection, mapping and measurement of dopamine released in the live human brain during task performance.

It is known for the past several years that dopamine is involved in addictive process. Its precise role however, remains uncertain because of the lack of clarity on neurocognition of addiction. Two of the influential models of addiction appear to have divergent views on the role of dopamine neurotransmission. The hedonic homeostasis hypothesis assumes that addicts need higher levels of dopamine to feel rewarded [1]. It suggests that increased mesolimbic activation caused by initial drug use hyper-activates the reward system and up-regulates set point of hedonic homeostasis. Because of the up regulation the brain needs to maintain a higher level of dopamine, forcing individuals to seek drugs that raise dopamine levels. An alternate model, the associative memory model, suggests that addiction is primarily a cognitive disorder in which associative memory is pathologically subverted [2]. Because of this subversion, the reward associated with an addictive substance acquires motivational value and initiates drug-seeking behavior. Even though both models suggest that the dopamine system is dysregulated in addiction, it appears that the two models have different views on how altered dopamine neurotransmission leads to addiction. The hedonic homeostasis hypothesis assumes that addicts need higher levels of dopamine to activate the reward system and associative memory hypothesis suggests that the altered levels of dopamine impairs processing of associative memory. The two assumptions however may be complementary because as discussed in the following paragraphs, processing of both, associative memory and reward is dependent on dopamine neurotransmission. Thus, a dysregulated dopamine system is expected to impair both of these functions.

The role of dopamine in reward processing has been extensively studied in laboratory animals [3,4]. These studies have found that the reward system is regulated by dopamine released in the mesocortical pathway. It has been shown that delivery of award is associated with short phasic bursts of dopamine. These bursts disappear when the reward is predictable, and reappear if it is better than expected. If reward is withheld, the tonic release is suppressed at the expected time of delivery. Thus, changes in the phasic and tonic release of dopamine signal the nature of reward and allow the brain to make decisions based on the reward quality. Some of the findings of animal experiments are consistent with observation of molecular imaging experiments on healthy volunteers. In these experiments the binding potentials (BP) of dopamine receptor ligands measured under the baseline condition were compared with those measured during performance of a reward task. The comparison revealed that the BP is reduced (suggesting increased dopamine release) in the striatum in a number of task conditions involving reward [5]. However, these results need to be verified because using a more sensitive single scan dynamic molecular imaging technique; we observed dopamine release in the same striatal areas in an unrewarded task [6]. Additionally, while these experiments found activation both in the dorsal and ventral striatum, in animals reward is processed primarily in the ventral striatum [3]. Thus, if molecular imaging data are verified, a major difference in dopaminergic processing of human and animal reward systems could be revealed. It will have implications on neurocognitive models of addiction because these models are based on animal data.

Associative memory has also been studied both in animals and in human volunteers. These studies have found that repeated paired delivery of a stimulus and reward sensitizes the neural system [7]. Because of this sensitization behavioral response to a previously exposed drug increases significantly when it is administered in the same cage where the drug was previously delivered. It appears that the animal makes an association between the environment (cage) and drug. It was also shown that this associative context acquires motivational significance after repeated pairing of the drug and environment [8]. Due to this motivation rats develop conditioned place preference and spend more time in the location where they received drug. The place preference therefore suggests establishment of an association between the drug and place of delivery. The brain area where this association

*Corresponding author: Rajendra Badgaiyan, Department of Psychiatry, State University of New York at Buffalo, USA, Tel: 716-580-3063; E-mail: rbadgaiyan@buffalo.edu

Received October 25, 2012; Accepted October 26, 2012; Published October 29, 2012


Copyright: © 2013 Badgaiyan RD. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
is processed is not known but the nucleus accumbens (NAc) appears
to be one of the possible locations. Experiments have shown that
both, psychostimulants and non-stimulant addictive drugs increase
dopaminergic activity in the NAc in rats [9]. Since increased dopamine
concentration in this area (along with prefrontal cortex) is observed
also during conditioned learning, it appears that the drug-induced
dopamine release in the NAc represents learning of the association
between drug and drug related cues. Because of this association,
cues are known to trigger dopaminergic response similar to the one
triggered by reward itself. Thus in rats, after a smell is repetitively
and predicatively paired with food, increased concentration of dopamine
is observed in the core of the NAc and in the frontal cortex even when
these stimuli are presented without food reward [10]. The NAc however
does not appears to have this role in primates. In monkeys its activities
are more closely associated with the reward prediction error [3] and
in healthy volunteers tasks that require association activate dorsal striatal
structures [6,11-13]. In another experiment dopamine release in this
area was observed in cocaine addicts when they were shown videos
portraying people smoking cocaine [14]. These observations indicate
that in the human brain dopamine of dorsal striatum is involved in
the processing of association between a cue and a reward [15]. Further
evidence of dopaminergic involvement in associative process comes
from pharmacological studies. These studies have demonstrated that
blockade of D1 receptors prevents formation of an association between
drug and its environment and its agonists enhance acquisition of conditioned response [16].

Thus, dopamine influences addictive process at multiple levels. It
was suggested that in the ventral striatum it facilitates acquisition of
drug seeking behavior and in the dorsal striatum, dopamine helps
transition of this behavior to addiction [8]. Evidence suggests that the
motivational aspect of addiction is processed in the NAc. Therefore,
when its dopamine receptors are blocked, the motivation is reduced
in animals [17]. The agonists on the other hand, enhance motivation
[18]. Interestingly, lesion of the NAc blocks motivation for drugs
but do not affect motivation for food reward. It therefore appears
that the NAc regulates processing of only secondary motivational stimuli - the stimuli that acquire motivational values by associative
learning [19]. This function is partly controlled by input from the
amygdala where emotional and motivational significance of stimuli is
processed. The dorsal striatal structures are also involved in processing of
dopamine-dependent associative memory. In these structures,
dopamine modulates activity of the tonically active neurons, which
regulate mnemonic functions of the striatum. Enhanced dopamine
activity in the dorsal striatum therefore improves memory. As a result,
animals perform better in conditioning experiments if they receive
amphetamine in the caudate after the training [20].

The data acquired in animal experiments however do not fully
explain human addiction because of specific social, cultural and
psychological issues that are associated with addictive behavior.
However human studies also suggest deregulated dopamine
neurotransmission in addiction. These studies have found that in
chemical dependent individuals the striatal and prefrontal activities
are altered both at the baseline and during exposure to drug or drug-
related cues [14]. The orbitofrontal cortex in particular shows strong
abnormal activity in addicts, probably because of its involvement in
the processing of psychosocial cues, which are known to modify addictive
behavior and considered important trigger for relapse. Irrespective of
the trigger however, relapse is dependent on the level of dopaminergic
activity. Modeling experiments suggest that a low level of phasic
activity (indicated by increased frequency and duration of pauses
between phasic dopamine release) reinitiates suppressed memories of
association between the cue and drug reward leading to relapse [21].

Further, the observation suggesting dopaminergic processing of
associative learning in animals, discussed above, is consistent with
the findings of our molecular imaging experiments. In these experiments
we found dopamine release in the striatum of healthy volunteers during
performance of tasks that require establishment of an association
between a stimulus and motor response [6,12,13].

Future Perspective

It is clear from the above discussion that dopamine influences
addictive behavior by altering cognitive processing associated with
memory and reward. However most of the data discussed were obtained
in laboratory animals. The data on the role of dopamine on human
addiction is extremely limited because of the lack of a reliable technique
to study neurotransmission in the live human brain. However, recent
advances in dynamic molecular imaging technique implemented in
our laboratory [6,11-13,22-26] and elsewhere [27] has allowed use of
these techniques for detection, mapping and measurement of acutely
released dopamine. Using this technique we detected, mapped, and
measured dopamine released during processing of cognitive, emotional,
and behavioral tasks [6,11-13,22-26]. There is therefore a need to use
dynamic molecular imaging technique to acquire data on human
addiction and to examine the role of dopamine neurotransmission.

Acknowledgements

This work was partially supported by the National Institutes of Health grants
1R01NS073884 and 1R21MH073624; and the VA Merit Review Awards CX000479
and CX000780.

References

Neuron 16: 893-896.
Rev Psychol 57: 87-115.
transmission in healthy humans during a passive monetary reward task.
Neuroimage 39: 2058-2065.
during unrewarded motor task in human volunteers. Neuroreport 14: 1421-
1424.
repeated morphine on locomotion, place preference and dopamine in
heterozygous glial cell line-derived neurotrophic factor knockout mice. Genes
Brain Behav 6: 287-298.
phencyclidine and nomifensine increase extracellular dopamine concentrations
preferentially in the nucleus accumbens of freely moving rats. Neuroscience
28: 653-661.
Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell


