A Rare Case of Gorham’s Disease of the Third Finger Managed by Surgical Reconstruction

Mrutyunjaya M, Supreeth Nekkanti*, Ravi Kiran, Pramod, Naveen N, Ganesh A, Arjun Markanday
Department of Orthopaedics, JSS Medical College and Hospital, Mysore, Karnataka, India

Abstract

A 35 year old male presented with pain in right middle finger since 5 y associated with shortening of right middle finger since 3 y. He had dull aching pain and blackish discoloration of the finger since 5 y. Examination revealed painful, restricted movements at inter-phalangeal joint and shortening of the finger of about 4 cm. After a thorough work up of the patient, he was diagnosed to have Gorham’s disease of the third metacarpal which was confirmed by histopathology reports. The patient was managed by surgical reconstruction to provide a functional and cosmetically acceptable hand.

Keywords: Gorham’s disease; Hand; Metacarpal; Proximal phalanx; Surgical reconstruction

Introduction

Gorham-Stout disease (vanishing or disappearing bone disease, phantom bone) is a rare disease of unknown aetiology that is characterized by massive osteolysis and excessive intra-osseous proliferation of small blood or lymphatic vessels, resulting in progressive resorption of bone [1]. The disease is often seen in children and young adults of either gender, and mainly affects bones that develop by intramembranous ossification (shoulder girdle, pelvis, jaw, ribs, and spine). Approximately 200 cases of vanishing bone disease have been reported in the literature (Table 1). Numerous names have been used in the literature to describe this condition such as phantom bone disease, massive osteolysis, disappearing or vanishing bone disease and acute spontaneous absorption of bone.

Gorham and Stout presented the first overview of vanishing bone disease in 1955 and reported 24 cases [2]. They concluded progressive osteolysis in those cases was associated with angiomatosis of blood or lymphatic vessels. This is now known as Gorham disease. The aetiology remains speculative, the prognosis is unpredictable.

Case Report

A 35 year old male presented with pain in right middle finger since 5 y and shortening of middle finger since 3 yrs. He had dull aching pain and blackish discoloration of the finger since 5 y. Examination revealed painful, restricted movements at inter-phalangeal joint and shortening of the finger of about 4 cm (Figure 1).

Investigations

X-ray right hand

Showed absence of middle phalanx of middle finger and hazy borders of head of proximal phalanx.

Table 1: Sites of involvement of vanishing bone disease reported in the literature.

<table>
<thead>
<tr>
<th>Location</th>
<th>No of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>8</td>
</tr>
<tr>
<td>Maxillofacial</td>
<td>42</td>
</tr>
<tr>
<td>Spine</td>
<td>18</td>
</tr>
<tr>
<td>Pelvis</td>
<td>14</td>
</tr>
<tr>
<td>Trunk (including clavicle and ribs)</td>
<td>35</td>
</tr>
<tr>
<td>Upper extremity (including scapula)</td>
<td>41</td>
</tr>
<tr>
<td>Lower extremity</td>
<td>22</td>
</tr>
<tr>
<td>Multicentric</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>191</td>
</tr>
</tbody>
</table>

Table 1: Sites of involvement of vanishing bone disease reported in the literature.

*C Corresponding author: Supreeth Nekkanti, Senior Resident, Department of Orthopaedics, JSS Medical College and Hospital, Mysore, Karnataka, India, Tel: 91-9742551646; E-mail: drsupreethn@gmail.com

Received June 27, 2015; Accepted July 17, 2015; Published July 24, 2015

Citation: Mrutyunjaya M, Supreeth Nekkanti, Ravi Kiran, Pramod, Naveen N, et al. (2015) A Rare Case of Gorham’s Disease of the Third Finger Managed by Surgical Reconstruction. J Integr Oncol 4: 140. doi:10.4172/2329-6771.1000140

Copyright: © 2015 Supreeth N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
MRI right hand
Suggestive of vascular malformation of the middle finger of the right hand with non-visualization of the middle phalanx, anterior subluxation of the distal phalanx with flexion deformity of the digit, acro-osteolysis and soft tissue thickening (Figure 2).

Histopathology
Showed multiple sections of spicules of lamellar bone displaying many blood vessels in the bone marrow, stroma is loose with few occasional plasma cells and lymphocytes, which are suggestive of angiomatous hyperplasia (Gorham’s disease).

Diagnosis Gorham’s Disease of Right Middle Phalanx

Surgical reconstruction
Ray amputation of right middle finger, 3rd metacarpal with stump closure and reconstruction of the hand.

Incision: 1. A ‘Y’ shape incision was made over dorsum aspect of the right hand from 2nd and 3rd web space extending proximally, 2. ‘V’ shape incision given over the palmar aspect at the base of the 3rd metacarpal.

Soft tissue dissection: Soft tissue released, phalanx explored and periosteum elevated till base of the 3rd metacarpal and excised extensor tendon at the same level, ‘V’ shape osteotomy done at base of the 3rd metacarpal and released distal part. Half of the interossei are excised on either side of the 3rd metacarpal and flexor digitorum profundus tendon was excised.

Fixation: The retained halves of the interossei were approximated and sutured. A 2 mm K-wire passed from head of 5th metacarpal to the 2nd head of metacarpal in a transverse manner (Figure 3).

Immobilization: Immobilised with below elbow slab.

Post-operative rehabilitation
3 weeks: K-wire removal
6 weeks: achieved full range of movements
3 months: 80% hand grip
6 months: 100% hand grip achieved (Figure 4).

Discussion
Vanishing bone disease is a rare idiopathic disease leading to extensive loss of bony matrix, which is replaced by proliferating thin-walled vascular channels and fibrous tissue [3]. Although the disease can be monostotic or polyostotic, multicentric involvement is unusual [4]. The patients whom we present had monostotic pattern of the disease.

Gorham’s disease may be associated with history of trivial trauma, although as many as half of the patients have no history of trauma. As with many other diseases, the role of trauma in vanishing bone disease may be to signal the presence of a pre-existing abnormality. Our patient also did not present with any history of trauma.
Most cases occur in children or in adults less than 40 years. The bones of the upper extremity and the maxillofacial region are the predominant osseous sites of the disease. Leriche’s hypothesis that post-traumatic arterial hyperaemia was responsible for bone resorption was rejected first by Mouchet, and later by Gorham et al. [5]. The same authors postulated that an angioma might act as a shunt increasing local oxygen tension [5]. The process may affect the appendicular or the axial skeleton. The shoulder and the pelvis are the most common sites of involvement. Gorham's disease affecting the hand is rare and we are presenting this case for its rarity.

Our search in English and international literature revealed only five cases of Gorham’s disease affecting the hand and wrist [2,6-9]. In all the described cases, the disease was unifocal and the phalanges were minimally affected (Table 2).

The diagnosis of vanishing bone disease is based on clinical examination, radiologic imaging studies and histo-pathological study of the affected bone. Vanishing bone disease is not accompanied by general symptoms. Dull aching, weakness in the affected extremity, swelling and skeletal deformities are the usual presenting symptoms [10]. The chief complaints presented by our patient were discolouration, shortening and dull aching pain of the third finger of the right hand since five years.

Radiographs are the best tools for detecting vanishing bone disease [11]. The radiographic appearance becomes diagnostic of vanishing bone disease when unilateral partial or total disappearance of contiguous bones, tapering of bony remnants, and absence of a sclerosing or osteoblastic reaction are observed. In our case, radiography revealed partial disappearance of the third metacarpal with absence of corresponding middle phalanx.

Histologically, the appearance depends on the phase in which the disease is diagnosed. In 1983, Heffez et al. [12] described two phases. The first phase represents increased vascular concentration in the bone-displacing fibrous tissue part; in the second phase, only fibrous tissue is found. The presence and number of osteoclasts vary significantly in vanishing bone disease. In most cases, osteoclastic activity is minimal or nonexistent, whereas in other cases, osteoclasts are easily identifiable [13]. If present, osteoclastic activity is concentrated in the interface between the vascular channels and the cortex [14]. Our patient’s biopsy report was in concurrence with the literature by the fact that there were multiple bone spicules with increased blood vessels in bone marrow. This suggests that there was increased vascularity (angiomatic hyperplasia) and was probably in the first phase of the disease.

The differential diagnosis should exclude other causes of osteolysis such as skeletal angiomas, essential osteolysis, hereditary osteolysis, infection, trauma (Sudeck atrophy), endocrinal abnormalities, rheumatoid arthritis and tumours [15].

Various modalities of treatment have been described for Gorham disease. We chose to surgically reconstruct his hand because he wanted to perform his activities of daily living. His main requirements were good hand grip and pincer grip.

Conclusion

Gorham disease is a combined clinical, radiographic and histological entity. It is characterized by a nonfamilial, histologically benign vascular proliferation originating in bone and producing complete lysis of all or a portion of the bone [16]. Usually, the prognosis depends on complications, such as neurological deficits or pleural effusion. It has been reported that more than 15% of patients die as a result of this disease. Life expectancy is not affected if the extremities are involved. The treatment of vanishing bone disease is controversial. A review of the literature led to the conclusion that there is no consensus about the most efficacious treatment. Synergistic action of zoledronic acid and Interferon is a powerful antiangiogenic therapy, which is currently giving the best results [17-19].

Radiotherapy acts by accelerating sclerosis of the proliferating blood vessels and prevents regrowth of these vessels. Although the use of total doses from 30 Gy to 45 Gy has been reported to be effective, some authors reported excellent results while using a total dose of 15 Gy in a case that involved the upper extremity [20-23].

Surgical intervention has been suggested as the method of choice when feasible and involves local resection of the affected bone, with or without replacement prostheses or bone grafts [24].

References


<table>
<thead>
<tr>
<th>Author and Gonzalez</th>
<th>Description</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 y old man with angiomatosis of the right hand and complete destruction of the second, third and fourth metacarpals.</td>
<td>The affected metacarpals with the distal row of the carpals were excised, and remaining defect was filled with a bone graft taken from the iliac crest.</td>
<td>Radiotherapy</td>
</tr>
<tr>
<td>13 y old girl with extensive metacarpal bone osteolysis of the right hand</td>
<td>Corticoanocellular bone grafting (failed), Radiotherapy</td>
<td></td>
</tr>
<tr>
<td>13 y old girl with extensive metacarpal bone osteolysis of the right hand</td>
<td>Corticoanocellular bone grafting (failed), radiotherapy</td>
<td></td>
</tr>
<tr>
<td>30 y old woman with osteolysis of the right hand</td>
<td>Radiotherapy and repeated bone grafting</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Previous cases reported in the international literature with hand and wrist involvement by Gorham’s disease.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:
- 700 Open Access Journals
- 50,000 Editorial team
- Rapid review process
- Quality and quick editorial review and publication processing
- Indexing of PubMed (partial), Scopus, EBSCO, Index Copernicus, Google Scholar etc.
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission