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Introduction
In this article, we are interested in the problem of identifying 

signals of the following form
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and n(t) is measurement noise. These are signals that are the sums 
of n periodic components with each component composed of mi 
harmonics. The periods, the harmonic amplitudes and relative phases 
can vary slowly in time. By identification, we mean determining the 
values ωi, Āij and φij - φ11.

Several techniques have been developed in the literature to solve this 
problem. The most traditional technique is the fast Fourier transform. 
Newer techniques include wavelet analysis. These approaches suffer 
from not allowing continuous estimations of the frequencies and have 
difficult trade-offs between time and frequency resolutions. Other 
approaches are based on the use of adaptive notch filters [1] and 
output regulation [2]. A new approach that has been widely applied 
is the Hilbert Huang Transform (HHT) [3]. Control engineers treat 
similar problems where exact tracking of reference signals or rejection 
of disturbances is required. Approaches that accomplish this include 
repetitive controllers [4] and adaptive feed-forward cancellation (AFC) 
[5]. The repetitive controller is based on a fundamental control theory 
principle called the internal model principle (IMP). This principle was 
presented by Francis and Wonham and states that the output error 
can be driven asymptotically to zero by placing a model of exogenous 
signals in a stable feedback loop [6]. Unfortunately small errors in this 
model can lead to significant degradation in the performance of internal 
model principle controllers. This problem of uncertainty in the signal 
model can be overcome with adaptive controllers [7]. In achieving 
asymptotically perfect rejection of disturbances it is inherent that the 
disturbance is completely identified. Thus, these types of controllers can 
be turned into signal processing algorithms by replacing the process to 
be controlled with tuning functions [8].

Unfortunately, to successfully implement this algorithm requires 
being able to tune a stable feedback control loop for the entire range of 
possible frequencies in the model given by equation (1). Fortunately, it 
has been shown that in the signal processing framework, the simplest 
tuning solution, i.e. selecting all of the gains to be one, is guaranteed to 
be stable. This algorithm has been successfully applied to the problem 
of the repeatable disturbances seen in disk drive head control [9]. 
Unfortunately, by resorting to this simple tuning approach, there is 
no control over the dynamics and noise rejection characteristics of the 
algorithm. 

When the frequencies are known a priori, the report [10] shows 
how the dynamics of the algorithm can be completely specified. 
Unfortunately this article requires solving a set more than 2 2t in m= ∑
coupled linear equations which are a function of the signal’s frequencies. 
Unless the sample rate is less than 1Hz this will not be feasible to do 
each sample. This article shows how these parameters can be explicitly 
solved by simply evaluating some frequency response functions at 
certain frequencies.

In Section II, an instantaneous Fourier decomposition (IFD) 
algorithm [11] that is similar in approach to the HHT is presented. 
In Section III an updated formula for calculating the instantaneous 
frequencies are given. In Section IV, the new realtime tuned algorithm 
is presented. In Section V, the ability of the proposed algorithm to 
identify the periodic signal with uncertain frequencies is demonstrated. 
Conclusions are drawn in Section VI.

A preliminary version of this article was presented at the 30th 
annual IEEE Canadian Conference on Electrical and Computer 
Engineering (IEEE 2017 CCECE) in Windsor [12].

Abstract
This article presents a new tuning approach for an adaptive internal-model-principle based signal identification 

algorithm whose computational costs are low enough to allow a realtime implementation. The algorithm allows an 
instantaneous Fourier decomposition of non-stationary signals that have a strongly predictable component. The 
algorithm is implemented as a feedback loop resulting in a closed loop system with a frequency response of a bandpass 
filter with notches at the frequencies of the Fourier decomposition. This is achieved through real time selection of 
the coefficients of the transfer functions in the feedback loop. Previously these coefficients were selected by solving 
a large set of coupled linear equations. Rules for explicitly solving for these parameters are given that only involve 
evaluating frequency responses at the frequencies of the instantaneous Fourier decomposition. This allows realtime 
implementation on a low cost lap top with sampling rates up to 10 kHz.
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Adaptive Algorithm and Comparison to HHT
The HHT proceeds from the realization that the Hilbert 

transform gives a mathematically precise definition of instantaneous 
frequency that agrees with our intuitive understanding when applied 
to narrowband signals. In this narrowband case, the instantaneous 
frequency can be approximated as the derivative of the angle of the 
narrowband signal and 1−  times the quadrature of that signal where 
the quadrature can be approximated by either a scaled version of 
the derivative or integral of the signal. The HHT uses an empirical 
method to break down signals into narrowband signals. This empirical 
method is numerically intensive and not compatible with a realtime 
implementation.

Our algorithm uses the same approximations to estimate the 
instantaneous frequencies as the HHT but uses an alternative, notch 
filter based approach that simultaneous calculates the quadrature 
signals and decomposes the signal into narrow band signals. The 
structure of the adaptive instantaneous frequency decomposition is 
shown in Figure 1, where G(s) is a tuning function.

Each of the transfer functions IMi,j are an internal model for a 
sinusoid of frequency ij ω∗  . When the model frequencies and the 
signal frequencies match, i.e., i iω ω=  and the closed loop system is 
stable, each uij will be a single sinusoidal and meet the HHT definition 
of an intrinsic function. The basic algorithm is the state space based 
implementation of the internal models given by
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This is taken from [11] with minor modifications to fit the signal 
model that was given in equations (1) and (2). The gains K1ij, K2ij 
have been moved to the input vector from the output vector so that 
adjustments in their value do not directly change u, i.e., a bumpless 
transfer. Consequently, the responses at x1ij(t) and x2ij(t) in steady state are:

1 ( ) cos( )ij ij i ix t A j tω φ= + 				                   (5)

( )2 ( ) = sinij ij i ix t A j tω ϕ+ 				                   (6)

i.e., the second state is the sinusoidal component of the original signal 
and the first state is its quadrature. While the states are time varying, 

when the signal parameters are time invariant 2 2
1 2( ) ( )ij ij ijA x t x t= +  is 

time invariant as is 1
2 1= ( ( ) / ( ))tani ij ij ix t x t j tϕ ω− −

Frequency Estimation ( )iω
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Since the state variables x1i1 and x2i1 are orthogonal to each other 
then, as with the HHT, the derivative of the angle of 1i1 2i11x x+ − is ωi. 
It can be shown that when i ijω ω≠  then in steady state, without noise
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Thus, using an integral controller 
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can be used to update the frequency estimates. 

Thus a quasi-periodic signal can be decomposed into a sum of 
narrow band signals, {uij}={x2ij}, and a real time Fourier representation 
of the reference can be obtained. The signal u(t) is the estimate of the 
signal of interest and can be represented by
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In ref. [11], it is establish for sufficiently small Kai the algorithm 
is locally exponentially stable when G(s) and the K1ij, K2ij are chosen 
so that the feedback loop in Figure 1 is stable at each point in time. 
Designing these controller parameters is a challenging problem as it 
is assumed that there is limited knowledge about the {ωi} and during 
transients there can be a significant difference between {ωi} and { }iω

 .

Control Parameter Selection
Off-line tuning

As with ref. [10], we satisfy the above stability assumption by 
designing the closed loop system to incorporate a bandpass filter with 
notch filter. Let a 2nd order desirable bandpass filter be given by 

2
1

4 3 2
1 2 3 4

( )bp
d sT s

s c s c s c s c
=

+ + + +
			                (10)

We choose the controller parameters to be such that the transfer 
function from d to e is
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Figure 1: Structure of adaptive instantaneous frequency decomposition.
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where ijε  are small real numbers, and ijω  are the notches frequency. 
The presence of the numerator of the second term is a fundamental 
consequence of the internal model principle. Therefore, the ability of 
the algorithm to improve noise rejection is achieved.

An analysis of Figure 1 gives
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Note in equations (11,12) П represents 
imn

i 1 j 1= =
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kmn
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∑∑ . The terms Ykl are the product of all the terms 2 2

is ( j )+ ω except 

the i=k, j=l term. Now, all the controller parameters can be calculated 
by matching the coefficients of numerators and denominators in 
equations (11) and (12). Note, the only controller parameters in the 
numerator is b1 hence we get b1=d1. A unique solution for ai, where 
i=(1,2,…,4) for the tuning function G(s) and the feedback gains 
{ }n n111 211 1nm 2nmK K ,...,.K K  for each internal model can be derived 

from the denominator. Unfortunately we get a set of 2nt +4 coupled 

equations with 2nt+4 unknowns where 
n

t i
i 1

n m
=

=∑ , which is possible to 

solve off-line and/or theoretical but not practicable to solve in real time. 
The contribution of this article is to develop a less computationally 
intensive algorithm for calculating the controller parameter to meet 
the realtime requirement.

On-line frequency identification

Now the crucial question is how to choose G(s) and K1jk, K2jk and 
implement the algorithm without needing to solve a set or 2nt+4 linear 
equations. It can be seen that all of the terms in the denominator except 

the term containing Ykl will be zero if ˆ= 1 ks lω± − . Thus when 
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This generates 2 complex and complementary conjugate equations 
with 2 unknowns, i.e., the real part of either equation gives K1jk and the 
imaginary gives K2jk. The 4 ai parameters can be explicitly solved by 
equating the coefficients of the degree 0, 1, 2nt+2, 2nt+3 terms of the 
denominator. Note the second term of the denominator of equation 
(12) contribute nothing to these four terms. These coefficients can be 
calculated by utilizing the relationships between the coefficients of a 

polynomial and the roots of a polynomial. We have that 
t
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Linear dependency of equations: When i kj lω = ω   when i k≠  

then the equations to be solved become linearly dependent. With our 
solution technique this is reflected in the fact that the denominator of 
equation (12) will be zero when we substitute in ˆ= 1 ks lω± −  and 
it will not be possible to calculate two pairs of internal model gains. 
Further, while it is theoretical possible to solve when the frequencies are 
extremely close, we get solutions that lead to unstable results because of 
numerical stability issues. To solve this problem, while calculating the 
controller gains, we drop the approximately redundant internal model 
when the frequencies become close, i.e., within 0.1%. After calculating 
the controller gains, the two redundant models are each assigned half 
of the gain. That is when jωi=lωk, we drop Internal model IMl,k from the 
design stage. Let 1ijK  and 2ijK  be the calculated controllers gains. Then 

1ij 1kl 1ijK = K = 0.5K  and 2ij 2kl 2ijK = K = 0.5K . It should be noted that 
the threshold for HHT to distinguish between close frequencies is 10%.

Simulation Results
In this particular section, the effectiveness of our real time 

implementation of our proposed adaptive algorithm is verified via 
simulation. The model configuration parameters that are used with 
the matlab/simulink (R2016) environment are as follows: Solver ode5 
(Dormand-prince) selection with fundamental sample time is 0.0025 s. 
Therefore, the sampling rate in our case is selected to be 400Hz, then 
the Nyquist frequency is 200 Hz. The code generation with C language 
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Figure 2: Structure of periodic signals generator.



Citation: Mohsen E, Brown LJ, Chen J (2017) A Real time Alternative to the Hilbert Huang Transform Based on Internal Model Principle. J Electr Electron 
Syst 6: 233. doi: 10.4172/2332-0796.1000234

Page 4 of 6

Volume 6 • Issue 2 • 1000234J Electr Electron Syst, an open access journal
ISSN: 2332-0796

and tool chain (Microsoft visual C++ 2012 V11.1 n-make 164-bit 
windows). All random numbers were zero mean.

Our signal to be identified was produced by summing the outputs 
of two copies of the model shown in Figure 2. The feedback loop 
containing the pure delay is called a repetitive controller and is capable 
of producing any periodic disturbance with period T. The value T was 
an integrated band limited white disturbance. The frequency cutoff of 
this noise was 20 rad/s and the variance was 0.5. The initial conditions 
for both fundamental frequencies are 4.2 and 5 Hz. The disturbance 
input to the repetitive controller causes the amplitudes and relative 
phases to vary slowly with time as well. This random signal was band 
limited to 50 Hz and had variance 0.1. Additional measurement noise 
was added to the sums of these two signals. This noise was band limited 
to 50 Hz and had a variance of 0.1. The low pass filter had a cutoff 
frequency of 100 rad/s concentrating the energy in the harmonics 
to below the 4th and third harmonic, respectively though signal was 
present in all harmonics up to the Nyquist frequency.

The frequency adaption gains were chosen as Ka=1.95 or with 
frequency 7.5% to 10% of the fundamental frequencies (Table 1). 
The closed loop transfer function was chosen to be a second order 
Chebyshev band-pass filter with 1 dB band-pass ripple, and low and 
high band-pass frequencies are 1 and 50 Hz, respectively. So the 
bandpass filter transfer function is given by

4 2

bp 4 3 4 2 5 6

3.262.10 sT (s)
s 200s 3.897.10 s 2.369.10 s 1.403.10

=
+ + + +

          (15)

For 1ˆ = 4.2* 2*ω π  and 2ˆ = 5* 2*ω π  and ijε  are small real 
numbers ij 0.1ε =  the coefficients of the simple tuning function are 
given in the Table 2.

Under these conditions, a 50 s Matlab simulation could be 
performed in under 5 s. The identified frequencies are shown in Figure 
3. We can see good identification and tracking of the fundamental 
frequencies. Figures 4 and 5 show a close up of the actual outputs of 
the signal generators and the identified signals (very good tracking of 
amplitude and relative phases). The first component has significant 
DC which we have not attempted to identify. In particular, there is no 
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Figure 3: Frequency identification for both fundamental components.

d1=b1 × 1004 c1 c2 × 1004 c3 × 1005 c4 × 1006

3.2624 200 3.897 2.369 1.403

Table 1: Bandpass filter parameters.

b1 × 1004 a1 a2 × 1004 a3 × 1005 a4 × 1006

3.2624 373.4367 8.6845 2.8156 1.4027

Table 2: Values of simple tuning function G(S) (b1; a1; a2; a3 and a4).
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Figure 4: Identified versus true signal for the first set of the internal model.
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Figure 5: Identified versus true signal for the second set of the internal model.
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Figure 7: Comparison of identified signal and real signal.
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way to distinguish and hence identify the DC content of the two true 
signals. Again we show good matches and thus we are able to identify 
these periodic signals in real time.

To get an overview of the signal frequency content and the 
accuracy of the identified models, the FFT transforms of the signal to 
be identified and the error signal are shown in Figure 6. It can be seen 
that most of harmonics have been identified although there is a huge 
DC component in both the signal and (e) in the proposed algorithm, 
which is as anticipated as we did not attempt to identify it.

Figure 7 displays the quasi-periodic signal d(t), the identified 
signal y(t) and their difference e(t). After a brief transient we see that e 
becomes quite small. Note at 42 s the 5th harmonic of the 1st signal and 
the 4th harmonic of the second signal both had frequencies of 21.61 Hz. 
When a threshold of 0.01% was chosen for eliminating the redundant 
internal model, the algorithm went unstable. At the threshold of 0.1% 
there was a brief loss (<0.1 s) of performance in the signal estimation. 
At a threshold of 0.5% there was no noticeable loss in quality of the 
signal estimation.

It can be shown that the choice for controller parameters of G(s)=1, 
K1ij=0 and K2ij=1 always results in a stable feedback loop for any possible 
values of iω

 . Unfortunately, this leaves the dynamics of the closed 
loop system uncontrollable and uncertain which may require more 
conservative selections of the adaption gain and increase amplification 
of measurement noise. Figure 8 demonstrates the low performance of 
the simply tuned algorithm compared with the proposed algorithm. 
This simple approach resulted in much longer initial transient response 
(not shown). The steady state error was about 10 times larger in 
magnitude.
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Conclusion and the Future Work

This article has shown the instantaneous Fourier decomposition algorithm that 
is based on the orthogonal state variables of an internal model principle controller. 
First we examined how we implemented this algorithm off-line by matching the 
coefficients of numerators and denominators in both equations (11,12). Second, 
and the main contribution in this article is to develop a means of calculating the 
controller parameters that has a lower computational burden such that it can be 
successfully implemented in realtime. As a result of our work in section IV-B, the 
schema has been successfully implemented online after solving for the issue 
of overlapping harmonics from different signal components. One of the models 
is removed from the design process eliminating the dependent equations. The 
associated controller gains are distributed equally in the implemented controller. 
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Thus, the instantaneous Fourier decomposition is implemented in real time, 
the frequency is identified with high speed of convergence and the predictable 
disturbance is identified as well as the system stability is guaranteed.

Our future work will be conducted to identify the uncertain frequencies of 
periodic signals and eliminate periodic disturbances in discrete state space form.
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