
Research Article Open Access

Akhmet’ev, J Phys Math 2014, 5:1 
DOI: 10.4172/2090-0902.1000124

Research Artilce Open Access

Volume 5 • Issue 1 • 1000124
J Phys Math
ISSN: 2090-0902 JPM, an open access journal

Introduction
An approach by Wu describes homotopy groups πn(S2) of the 

standard 2-sphere as isotopy classes of spherical n+1-strand Brunnian 
braids, for more details, Theorem 1.2. This straightforward approach is 
not possible for n=3, i.e. for 4-strand braids the connection with π3(S2) 
was unknown.

The homotopy group π3(S2) in an infinite cyclic group, detected by 
the Hopf invariant 

2
3: ( ) .H Sπ 

				   (1)

 An element of π3(S2) is represented by a mapping 3 2:h S S , 
which is considered up to homotopy. The Hopf invariant H(h) is well-
defined as the integer linking number of two oriented curves h-1(a), 
h-1(b), where a,b∈S2 be a pair of regular points of h. The Hopf invariant 
is very important for applications.

Proposition 7.1.1, sequence (17) gets an exact sequence, which 
algebraically describes the group Brunn4 of 4-straight Brunnian braids 
[1]. The key point of our elementary geometrical construction is to 
construct an alternative epimorphism onto the group ×  , see 
Definition. The kernel of this epimorphism is a well-defined subgroup 
Brun4 ⊂ Br4 of Brunnian braids in a new sense (let us remark that 
Brunn4 is not a subgroup of Brun4. Define the Hopf invariant as a 
function of isotopy classes of spherical braids in Brunn4. An idea of the 
construction was coming from Graham and Roman [2]. However, the 
results by Ellis and Mikhailov are not adopted for physical applications.

The Hamiltonian provides an elegant method for generating simple 
geometrical examples of complicated braids and links, as is presented 
in Mitchell A Berger [3].

The paper is motivated by the following problems:

• Derive applications of higher-order winding numbers to
generate turbulent motions of vortices in two dimensions. For
a special Hamiltonian motion of 3 vortices on the plane this is
done in Mitchell A Berger [3]. (Problem 1).

• To unify the approach Ch.3 to π*(S2) with the Wu’s approach
(Problem 2) [4].

Let us clarify Problem 2. Let F be the space of functions 
1 1:f →   with “right” boundary conditions at the infinity. The 

derivative of the order 1,2, and 3 of a function f ∈ F can nowhere be 
vanished simultaneously. Define the mapping, 3: ( \ 0)A F → Ω  , by 

the formula 
2 3

2 3

( ) ( ) ( )( ) = { ( , , )}df x d f x d f xA f x
dx dx dx

 .

V.I.Arnold (1996) conjectured that the induced homomorphism 
An: πn(F) → πn(Ω(S2)) ≅ πn+1 (S2) is an isomorphism for n ≥ 0. This 
theorem was proved by V.A. Vassiliev in the special case n+2, and by 

Eliashberg and Mishachev in the general case.

The paper is organized as following. In Section 2 we recall 
required definitions concerning first-order stage of the construction 
and determine the linking numbers of spherical 4-component braids. 
In Section 3 the Hopf invariant for 4-component spherical braids is 
defined. This is a second-order particular defined invariant: to define 
this invariant we should assume that the all linking numbers (there are 
two) of components of a spherical braid are equal to zero. Results are 
formulated in Theorems 4, 6. The main result is the Corollary 8. In 
Section 4 we give proofs.

A possible application for turbulences (Problem 1)

Assume a motion of a large collection of n vortexes (or, particles) 
in a bounded domain U on the plane is investigated. The trajectories of 
vortexes (or, of particles) in the configuration space, i.e. in the Cartesian 
product,  of the domain and the time, are represented by a braid F, 
components of the braid F correspond to vortexes in the collection. 
Assume that the windings numbers of components of the braid F are 
distributed as in the statement of Corollary. This means that the length 
of the segment (a,b), which is assumed sufficiently large, is bounded 
from below; the upper bound depends of the number n of vortexes in 
the collection. We may replace F by a colored braid, if b-a is sufficiently 
large, using the Arnol’d collection of the short paths, we have no loss 
of a generality.

Otherwise, assume that the bound k of the distribution of full 
angles of windings numbers is much less then the number n of partials. 
Consider the normalized sum of squares of Hopf invariants 
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this sum is taken over all collection of admissible quadruples of 
components of F, the number l of admissible quadruples could be 
sufficiently large by Corollary 8. The following statements will be 
proved, or disproved, elsewhere:

• Υ is the universal constant of the motion, which depends no of
the time scale and of the time interval [a, b] itself;

• The constant Υ is large (correspondingly, is small), if the motion of 
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the system of vortexes (or, of partials) is turbulent (correspondingly, 
the system is closed to an integrable system);

•	 Assume the sum (2) is taken over all admissible quadruples, 
between which the distance is smaller then L. Then Υ (L) correlates 
with the spacial turbulent spectra of the motion up to the scale L.

Linking Numbers For Spherical Braids
By a spherical (ordered) n-braid we mean a collection of 

embeddings of the standard circles 
1 2 1

=1

: ,
n

i
i

f S S S⊂ ×


where the composition of this embedding with the standard projection 
S2 × S1 → S1 on the second factor in the target space, restricted to an 
arbitrary component 1

iS , i=1,…,n is the identity mapping. 

The set of all ordered spherical n-braids up to isotopy is denoted by 
Brn. It is well-known that Brn is a group.

For a fixed value t ∈ S1, a braid f ∈ Brn intersects the level S2 × t by 
an (ordered) collection of n points {Z1(t),… Zn(t)}. Let assume that n=4. 
Denote by 

1 1 1 2 1
1 2 3= ( ) : ,g g f S S S S S∪ ∪ ⊂ ×

the 3-component braid, obtained from f by eliminating of the last 
component 1

4S .

Let us identify the sphere S2 with the Riemann sphere, or with the 
complex projective line C. For a braid f let us consider the collection of 
Mobius transformations, which transforms the points z1, z2, z3 into 0, 
1, ∞ correspondingly: 

1 2 3

3 2 1

( ( ))( ( ) ( ))( ; ) = .
( ( ))( ( ) ( ))
z z t z t z tF z t
z z t z t z t

− −
− −

The image F(f) is a 4-strand braid with the constant components 
{z1(t), z2(t), z3(t)}={0, 1, ∞}. Denote this braid by 

( ) = .normF f f 					                    (3)

 The 3-strand braid g, constructed from fnorm is the constant in the 
points {0, 1, ∞}. The last component fnorm(S1) of F(f) is represented by 
a closed path 

1
4 ( ) \{0,1, }, / 2z t t π∈ ∞ ∈ 

. Note that, generally 
speaking, braids f, fnorm are not isotopic. Moreover, if f is a Brunnian in 
the sense [2], fnorm is, generally speaking, not a Brunnian.

For a given (ordered) 4-component braid f let us define the linking 
number Lk(f), 

4: .Lk Br → 					                      (4)

Consider the following 1-form 

0
1= .

2
dz

i z
ω

π
					                      (5)

By definition we get 

1log( ) = ,
2

dzd z
i zπ

 

where log (z) is given by the formula: 
1log( ) = (2 ) ,dzz i

z
π − ∫

assuming that log (1)=0, as a multivalued complex function.

Define Lk(f) by the formula: 
2

4
00 44

( )( ) = = ,
( ) normf

dz tLk f
z t

π
ωℜ∫ ∫ 			                       (6)

where ℜ is the real part of the integral. By construction, Lk(f) is the 
winding number, i.e. the integer number of rotations of the path z4(t) 
of fnorm with respect to the origin and the infinity in C.

The permutation group Σ(4) of the order 24 acts on the space of 
ordered spherical braids: 

4 4(4) .Br BrΣ × → 				                      (7)

 The image of an ordered braid f by a transposition 
1 2 3 4: (1, 2,3, 4) ( , , , )σ σ σ σ σ  is well-defined by the corresponding 

re-ordering of components of f. Let us investigate the orbit of the 
linking numbers Lk(f) with respect to (7). Simply say, we investigate 
how many independent linking numbers of components of braids are 
well-defined?

Let us consider the following exact sequences of groups: 

4 40 / 2 0,
sign

A→ → Σ → → 			                     (8)

40 / 2 / 2 / 3 0.A→ × → → →   			                     (9)

 The subgroup A4 ⊂ Σ4 in the sequence (8) is represented 
by permutations, which preserve signs (equivalently, which is 
decomposed into an even number of elementary transpositions). 
The subgroup 4/ 2 / 2 A× ⊂   in the sequence (9) is generated by the 
permutations{(1,2)(3,4);(1,3)(2,4);(1,4)(2,3)}.

Let us consider 2-primary subgroup K ⊂ Σ4 (the dihedral group 
of the order 8), which is defined as the extension of the subgroup 

/ 2 / 2×   from the sequence (9), which is included in the sequence 
(8). An epimorphism 

1 2= ( , ) : / 2 / 2,Kθ θ θ → ×  			                    (10)

is defined as follows: θ1(σ)=1 (the group Z/2 is in the multiplicative 
form), if σ preserves a (non-ordered) partition (1,3)(2,4), and θ1(σ), 
and θ1(σ)=-1, otherwise. Therefore θ1 is an epimorphism with the 
kernel / 2 / 2×   from the left subgroup of the sequence (9). The 
epimorpism θ2(σ) is determined by the sign of a permutation σ, this 
is the restriction of the right epimorphism in the sequence (8) to the 
subgroup K ⊂ Σ4. The kernel ( ) / 2Ker θ ≅    is the center of the dihedral 
group K.

Lemma 1 

1. The function (4) is invariant with respect to the action (7) by an 
arbitrary permutation, which in the kernel of  in (10).

2. The function (4) is skew-invariant with respect to the action 
by a permutation, which is in the kernel of θ1 (the composition of θ 
with the projection on the first factor, but not in the kernel of θ2 (the 
composition of θ with the projection on the second factor).

3. Denote by 4f Br∈  the ordered braid, which is obtained from 
f ∈ Br4 by the action (7) by the element (1,2)  is the product of the 
generators of the factors). There exists an ordered braids f ∈ Br4, for 
which the linking numbers Lk(f),  ( )Lk f  are arbitrary integers.

From Lemma one may deduce the following corollary.

Corollary 2 

1. For an arbitrary braid f ⊂ Br4 the linking number Lk(f), is well-
defined as the differences of the winding number of the component 
2 between the components 1 and 3 with the winding number of the 
component 4 between the components 1 and 3.

2. For a braid  , where f ∈ Br4 is an arbitrary, f   is defined in Lemma 
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1, the linking number ( )Lk f  is well-defined as the difference of the 
winding number of the component 2 between the components 1 and 3 
with the winding number of the component 4 between the components 
2 and 3. 

Corollary (2) motivates the following definition.

Definition 3 

Let f ∈ Br4 be a (ordered) spherical braid. Define the total linking 
number ( )LK f ∈ ⊕ 

  by the following formula: 

The total linking number is a well-defined homomorphism 

4: .LK Br ⊕ 

Hopf Invariant of Braids
Let f ∈ Br4 be a (ordered) spherical braid with the trivial total 

linking number: Lk(f)=0. Such braids generate the subgroup in the 
group Br4, denote this subgroup by Brunn4 ⊂ Br4. Let us remark that 
this subgroup does not coincide with the subgroup of Brunnian braids 
Brun4, defined in Berrick et al. [1], Theorem 1.2.

Theorem 4 

There exists a well-defined homomorphism 

4: ,H Brunn Z→ 					                    (11)

called the Hopf invariant. The homomorphism (11) is invariant with 
respect to the action (7) by an arbitrary permutation, which in the 
kernel of θ2 in (10) (this homomorphism is defined as the sign of a 
permutation of straights), and is skew-invariant with respect to the 
action by a permutation, which is not in the kernel of θ2. 

Definition of the hopf invariant

In this section we present the construction, which is closed to 
Theorem 3 of Mitchell A Berger [3], using differential topology instead 
of homology algebra. Let f ∈ Brunn4 be an arbitrary. Consider the braid 
fnorm, given by Mitchell A Berger [3]. Recall, the braid g ∈ Br3, which 
consists of the straits (1-3) of fnorm, is the constant braid at the points 0, 
1, ∞ in   correspondingly. Consider the strait (4) of the braid fnorm. This 
strait is represented by an oriented closed path 1

4
ˆ: \{0 1 }z S C→ ∪ ∪ ∞ . 

This path determines a cycle, which is an oriented boundary, because of 
the condition LK(fnorm)=0.

Let us prove that Lk(f)=0. Denote the group of Mobius 
transformations by M. The standard inclusion SO(3) ⊂ M is well-
defined. This inclusion is a homotopy equivalence, therefore we get 

1 1( ) = ( (3) = / 2M SOπ π  . This proves that LK(2fnorm)=LK(2f). Because 
LK(2fnorm)=2LK(2fnorm), LK(2f)=2Lk(f), we get LK(fnorm)=Lk(f). The 
equality Lk(f)=0 is proved.

Consider the inclusions 

0 : \{0 1 } \{1 },I C C∪ ∪ ∞ ⊂ ∪ ∞

: \{0 1 } \{0 1},I C C∞ ∪ ∪ ∞ ⊂ ∪

1 : \{0 1 } \{0 }.I C C∪ ∪ ∞ ⊂ ∪ ∞

Because 1 1
ˆ ˆ( \{1 }; ) = ( \{1 }) =H π∪ ∞ ∪ ∞    , the condition 

LK(fnorm)=0 implies I0,#([i])=0, for the homomorphism 

0,# 1 1: ( \{0 1 }) ( \{0 }).I C Cπ π∪ ∪ ∞ → ∪ ∞

Analogously I∞,#([i])=0, I1,#([i])=0.

There exist the following 3 maps of the standard 2-disk 

2
0 0 0 2 4

ˆ: \{1 }, | = ,
D

e D C e z
∂

→ ∪ ∞
2

2 4
ˆ: \{0 1}, | = ,

D
e D C e z∞ ∞ ∞ ∂

→ ∪ 	 
2

1 1 1 2 4
ˆ: \{0 }, | = .

D
e D C e z

∂
→ ∪ ∞ 	 

Consider a 2-sphere, which is represented by a gluing 2 2

0
D D

∞∂∪
of the disks 2 2

0D D∞∪  along the common boundary, which is identified 
with the circle 1

4S . Denote this sphere by 2
1S . Analogously define 

spheres 2 2 2
0 1=S D D∞ ∂∪ , 2 2 2

1 0=S D D∞ ∂∪ . Because the target spaces of 
the mappings e0, e∞, e1 are aspherical, the corresponding mapping is 
well-defined up to homotopy.

Consider the following commutative diagram of inclusions: 
\{0 1} \{0 }

\{ 1} \{ }

C C

C C

∪ ∞ ∪ ⊂ ∪ ∞
∩ ∩
∞ ∪ ⊂ ∞

		                (12)

Consider the mappings 2
0 0: \{1 }e D C→ ∪ ∞ , 2

1 1: \{0 }e D C→ ∪ ∞  
to the left bottom and to the right upper spaces of the diagram (12) 
correspondingly. The mapping 2

0 1 : \{ }e e S C∂ ∞∪ → ∞  is well defined by 
gluing of the two mappings e0, e1 along the common mapping i of the 
boundaries. Consider the standard 3-ball 3D∞  (with corners along the 
curve 1

4S ) with the boundary 3 2=D S∞ ∞∂ . The mapping e0 ∪∂ e1 can be 
extended to the mapping 

3 ˆ: \{ }.d D C∞ ∞ → ∞ 			       	                 (13)

The target space of this mapping is the right bottom space of the 
diagram (12). Because the target space of the mapping d∞ is contractible, 
the mapping d∞  is well-defined up to homotopy. By the analogous 
constructions the following mappings 

3
1 1

ˆ: \{1},d D → 				                   (14)
3

0 0
ˆ: \{0}d D → 				                   (15)

 are well-defined.

The mappings (13), (14), (15) determine the mapping 
3 2= ( ) :h h f S S→ 				                   (16)

as follows. Take a 3-sphere S3, which is catted into 3 balls 3 3 3
1 0, ,D D D∞  

along the common circle 1 3
4S S⊂ . The sphere S3 is represented as the 

join 1 1
4 aS S∗  of the two standard circle. On the circle 1

aS  take 3 points 
1

0 1, , ax x x S∞ ∈ . The subsets 1 3
4 0 1[ , ]S x x S∗ ⊂ , 1 3

4 1[ , ]S x x S∞∗ ⊂ , 1 3
4 0[ , ]S x x S∞∗ ⊂  

are 3 copies of 3D disks, which are glued along corresponding subdomains 
in its boundaries.

Let us identify 3 1
4 0 1[ , ]D S x x∞ ≅ ∗ , 3 1

0 4 1[ , ]D S x x∞≅ ∗ , 3 1
1 4 0[ , ]D S x x∞≅ ∗ . The 

boundary 3D∞∂  is identified with the balls 1 2
4 0{0}S D∗ ≅ , 1 2

4 1{1}S D∗ ≅ , 
which are glued along the common boundary 1

4S . The boundary 3
0D∂  is 

identified with the balls 1 2
4 1{1}S D∗ ≅ , 1 2

4 { }S D∞∗ ∞ ≅ , which are identify 
along the common boundary 1

4S . The boundary 3
1D∂  is identified with 

the balls 1 2
4 { }S D∞∗ ∞ ≅ , 1 2

4 0{0}S D∗ ≅ , which are identified along 
the same boundary 1

4S . The mappings d0, 1, d∞ on the corresponded 
balls are well-defined by the formulas (13-15) correspondingly. This 
mappings define the mapping (16) on the 3-sphere.

Definition 5: The Hopf invarian H(f) for a braid f ∈ Brunn4 in the 
formula (11) is defined as the Hopf invariant of the mapping h by the 
formula (1). The mapping h=h(f) is explicitly defined from the braid f 
by the formula (16). 
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A formula to calculate the Hopf invariant

Let us introduces an explicit formula to calculate the Hopf invariant 
for a braid f ∈ Brunn4. Consider the complex plane C. The 4-th strain of 
the braid fnorm determines a curve on the plane without two points {0.1}, 
which is denoted by 

1: \{0 1}.Sγ → ∪  				                (16)

Let us consider the closed 1-form (4). Define a complex 1-form 

1
1= .

2 1
dz

i z
ω

π −
					                     (17)

Define a real (multivalued) function λ0 by integration along the 
path γ (t), t ∈[0,t] ⊂ S1 of the real part of the form (18) as following: 

0 00
( ) = .

t
tλ ωℜ∫ 					                    (18)

Define a real (multivalued) function λ1 by integration along the 
path of the real part of the form (17) as following: 

1 10
( ) = .

t
tλ ωℜ∫ 					                     (19)

To take the multivalued functions (18), (19) well-defined, assume 
that the path γ starts at the point 2∈ : λ0(0)=2, λ1(0)=2.

Define a closed 1-form Ψ (t) along a curve ( ) \{0 1}tγ ∈ ∪  by the 
following formula:

0 1 1 0( ) = ( ) ( ) .t t tψ λ ω λ ω+  			                    (20)

Let us consider a function, which is well-defined as the real part of 
the integral 

1

0
( ) = ( ) , [0, ] , (0) = 0.

T
T t d t T Sψ γΨ ℜ ∈ ⊂ Ψ∫ 	                 (21)

Theorem 6 

The Hopf invariant of a braid f ∈ Brunn4 in the formula (11), which 
is defined by Definition 5, is calculated by the formula: 

2

0

1( ) = (2 ) = ( ) ,
2

H f t d
π

π ψ γ− Ψ ℜ∫ 			                  (22)

where γ is the closed path, determined by the 4-th straight   of the braid 
fnorm by the formula (17). 

From Theorem 6 we get a corollary. 

Corollary 7 

1. The Hopf invariant (11) is an epimorphism.

2. Assume there is a braid f ∈ Brunn4 for which the braid fnorm is 
represented by a commutator of the straight (4) with straights (1) and 
(2) (such a braid is called the Borromean rings). Then H(f)=±1, where 
the sign in the formula depends on the sign of the commutator. 

Proof of corollary  

It is sufficient to prove --2. The right-hand side of the formula 
(21) coincides with the formula (28) [1], which is simplified for the 
considered example. The Berger’s formula is applied for the 3-uple 
configuration space, this gives the opposite sign for the last term in the 
formula (21) with respect to the origin formula. For the Borromean 
ring the formula (22) is non-trivial. The right side of the formula gives 
H(f)=1 for the right Borromean rings. Corollary is proved. 

The following Corollary is the main result of the paper. The author 
hope that this result is the initial step toward the solution of the first 
problem, mentioned in Introduction.

Corollary 8 

Assume we have a classical  -conponent colored non-ordered braid F, 
n>>4, for which all pairwise winding (integer) numbers of components 
are distributed to the segment: { 2 , 2 ,0,2 , 2 }k kπ π π π− − 

,  0<k<<n. 
Let G is the spherical braid, which is defined as the image of F by the 
stereography projection 2 2I S I× → × . Then there exist at least 

4
3

2= ( )
24(2 1)

nK O n
k

+
+

 ( )( ) whenK n n→ +∞ → +∞  4-component 

subbraids fi ⊂ F, for which LK(gi)=0, gi ⊂ G,. In particular, the squares 
2 ( )iH g ∈  are well-defined. 

Proof of corollary  

Proof is evident: the number K of subbraids gi ⊂ F with trivial 
total linking number LK(gi)=0 is explicitly estimated from below using 
integers k, n.

Proofs
Proof of lemma  

Proof of Statement 1. Take an oriented 3--manifold M3. Take two 
disjoin oriented cycles CI ⊂ M3, CII ⊂ M3, which represent the trivial 
homology class 

3
10 = [ ] = [ ] ( ; ).I IIC C H M Z∈ 			                (23)

The linking number link (LI, LII) is a well-defined integer the 
algebraic intersection coefficient of the boundary 3( , )I I MΓ ∂Γ ⊂ , 

=I IC∂Γ . The linking number link (CI, CII) is well defined, because of 
the condition.

Obviously, link (CI, CII)=link (CII, CI), because the collections of 
signed points =I I IIA CΓ ∩  and =II I IIA C ∩ Γ  represent the same 
cycle [AI]=[AII] ∈ H0(M3; Z). The boundary of -[AI] ∪[AII] is given by 
the oriented curve I IIΓ ∩ Γ .

Take M3=S2 ×S1. Take an arbitrary braid fnorm. The cycle CI is 
represented by the images of the following two closed paths [z1(t)]=0 
×- S1, [z3(t)]=∞ ×S1, t ∈[0,2π], where the path z1(t) is taken with the 
opposite orientation along S1. The cycle CII is represented by the two 
closed paths [z2(t)]=0 × -S1, [z4 (t)] ⊂ S2 × S1, where the path z2(t) is 
taken with the opposite orientation along S1.

Take σα=(1,2)(3,4), σα is the generator of Ker(θ). It is easy to see that 
Lk(fnorm)=link(CI, CII), Lk(σα × fnorm)=link(CII, CI). Statement 1 is proved.

Proof of Statement 2. Assume σb=(1,3), the case σb=(2,4) is 
analogous. Then Lk(fnorm)=link(CI, CII), Lk(σb × fnorm)=link(-CI, CII). 
Therefore we get Lk(fnorm)=-Lk(σb × fnorm). Statement 2 is proved.

Lemma 1 is proved.

Proof of Corollary 2

Statements 1,2 are obvious.

Proof of Statement 3. The straights {z1(t), z2(t), z3(t), z4(t)} 
determines 6 pairs of  -cycles in S2 × S1. A function of winding 
numbers of component is given by a linear combinations of linking 
numbers between the corresponding pairs of cycles. To prove that 
such a function is well-defined, we have to assume that the each cycle 
is a boundary. Denote the cycle, generated by the pair of paths –zi 
(t), zj (t) by Ci,j. We have the following identity: link (C1,2, C3,4)+link 
(C2,3, C1,4)+link (C3,1, C2,4)=0, and the analogous 3 identities, which 
are obtained by the permutation of the indexes. Therefore we get a 
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collection of 2 independent well-defined linking numbers. Statement   
is proved. Corollary 2 is proved.

Proof of theorem  

Let us prove that the homomorphism (11) is skew-invariant with 
respect to the action (7) by an odd permutation. Assume that the 
permutation σ is given by an elementary transposition of straights 
with number (1-3) say by the transposition σ=(1,2). Then by the 
formula (16), the mappings h(f) is related with the mapping h(σ×f) by 
the composition with the reflection S3→S3, which translates the curve 

1 3
4S S⊂  to itself, and permutes the points x0, x1 on the circle 1

aS . The 
reflection changes the homotopy class of h to the opposite. This proves 
Theorem in this case.

Assume that σ=(1, 4) (the cases σ=(2, 4), or (3,4) are analogous). 
Then we may calculate the Hopf invariants of the mappings h(f) and 
h(σ×f), using the formula (22) (Theorem 6 is proved below). The 
Mobius group is locally contractible. Therefore, the ordered braid 
(σ×f) is isotope to the braid f in which the components (1,4) are re-
numbered. The restriction of the considered isotopy on the common 
straight at ∞∈ C is the identity.

By Statement 2 of Corollary 7, the Hopf invariant h(σ×fnorm) is 
defined as the length of commutators of the straight (1) with straights 
(4) and (2).

The Hopf invariant for h(f) coincides with the commutator of the 
straight (4) with the straights (1,4). Therefore the Hopf invariant for 
h(σ×f) is opposite to the Hopf invariant for h(f), because the sign of the 
commutator is changed by a permutation of components.

Theorem 4 is proved.

Proof of Theorem 6

Consider the mapping 3 2 ˆ: =h S S C→ , which is defined by the 
formula (16). Take two normalized volume forms 2 2

0 1, ( )SΩ Ω ∈ Λ : 

0 12 2= = 1.
S S

Ω Ω∫∫ ∫∫
The forms Ω0, Ω1 are defined as the standard ill-supported forms at 

the points 0, 1, correspondingly. The Hopf invariant (11) is calculated 
by the formula: 

0 1 1 03
1( ) = ( ) ( ) ,
2 S

H f h hβ β∗ ∗Ω ∧ + Ω ∧∫∫∫ 	                 (24)

where x ∈ S3, 2 3
0( ) ( )h S∗ Ω ∈ Λ  is the pull-back of 2 2

0 ( )SΩ ∈ Λ  by h: 
S3→S2, β0 ∈ Λ1 (S3) is an arbitrary 1-form, such that d(β0)=h *(Ω0), the 
1-form β1 ∈ Λ1(S3) is defined analogously to β0.

Evidently, the 1-forms β0 in the integral (24) is represented 
in its cohomology class by a cocycle, which satisfies the condition 
h*(Ω0)=dβ0=0 inside the ball 3

0D . This follows from the fact that the
curve h-1(0) is outside the ball 3

0D . In the formula (24) the first term is 
well-defined up to gauge transformation 0 0 0gradβ β ϕ+

. We may 
put β0=0 in 3

0D , and keep β0 on 2 3 3
1 0=D D D∞∩ .

Analogously, dβ1=0 in the ball 3
1D . In the second term in the 

integral (24), using 1 1 1gradβ β ϕ+

, we get β1=0 in 3
1D , and keep β1 

on 2
0D . Then we get the following simplification of (24): 

0 1 1 03
1( ) = ( ) ( ) .
2 D

H f h hβ β∗ ∗

∞
Ω ∧ + Ω ∧∫∫∫

In the ball 3D∞ the 3-form 0 1( )h β∗ Ω ∧  is exact, we get 2 3
1 ( )Dα ∞∈ Λ , 

1 0 1= ( )d hα β∗ Ω ∧ . Moreover, we may put 1 0 1=α β β∧  over 2 3 3
1 0=D D D∞ ∩ , 

0 = 0α  over 2 3 3
0 1=D D D∞ ∩ .

In the ball 3D∞ the 3-form  1 0( )h β∗ Ω ∧  is exact, we get 2 3
0 ( )Dα ∞∈ Λ ,  

0 1 0= ( )d hα β∗ Ω ∧ . We may put  0 1 0 0 1= =α β β β β∧ − ∧  over 2
0D , 

and α0=0 over 2
1D .

Apply the 3D Gauss-Ostrogradsky formula, we get 

0 1 0 13 2
1

( ) = ,
D D

h β β β∗

∞
Ω ∧ ∧∫∫∫ ∫∫

1 0 0 13 2
0

= .
D D

h β β β∗

∞
Ω ∧ − ∧∫∫∫ ∫∫

The 2-form 2 2
0 1 1( )Dβ β∧ ∈ Λ  is exact. Because in the disk 2

1D  the 
0-form λ1 is well defined, and dλ1=β1, we get: 1 0 0 1( ) =d λ β β β− ∧ .

Analogously, the 2-form 2 2
0 1 0( )Dβ β∧ ∈ Λ  is exact. Because 

in the disk 2
0D  the 0-form λ0 is well defined, and dλ0=β0, we get: 

0 1 0 1( ) =d λ β β β∧ .

Apply the 2D Green formula (singular points of β0, β1 give no 
contribution to the integral over the boundary) we get: 

0 1 1 02
1

= ,
D γ

β β λ β∧ −∫∫ ∫
0 1 0 12

0
= ,

D γ
β β λ β∧∫∫ ∫

where 2 2
1 0= D Dγ ∩ .

The integral (24) is simplified as 

0 1 1 0
1( ) = .
2

H f
γ
λ β λ β− +∫

This formula coincides with the formula (22). Theorem 6 is proved.
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