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Introduction
Coronary artery disease (CAD) is one of the prominent causes 

of demise in the world. Despite large number of study reports on 
pathogenesis of atherosclerosis and the development of ischemic heart 
disease there are numerous questions that are unrequited. About 70% 
of the risk factors associated with the CAD events are addressed by the 
classic factors while the other 30% of the CAD events do not elucidate 
any relationship with the existing classical factors. In addition, it is still 
not clear why some signs are established while others are susceptible 
to falling-out and in turn leading to acute coronary syndromes [1,2]. 

Percutaneous transluminal coronary angioplasty (PTCA) is one 
of the mechanical interventions which are used for the treatment of 
CAD [3]. Restenosis “the arterial healing response after injury incurred 
during revascularization” is a result of the local vascular expression of 
the biologic response to the injury. Recoil of the arteries during the 
healing is the primary factor that is responsible for the restenosis post-
PTCA [4]. Stents provide mechanical scaffolding and eliminate the 
vessel recoil and restenosis. But continuing pressure exerted by the 
stunt against the vessel wall may lead to neointimal tissue proliferation, 
over the stent and in turn initiate the recurrence of luminal narrowing 
due to in-stent restenosis (ISR). Brachytherapy and drug eluting 
stunts were considered to be the potential treatment method for the 
treatment of ISR but were associated with risk of edge restenosis and 
late thrombosis [5,6]. As the role of stents is temporary only till healing, 
reendothelialization and no benefits are found thereafter researchers 
have targeted the biodegradable and corrodible products used in 
medicine to develop biodegradable and bioabsorbable stents [7,8]. 

In addition to the stents based on the advances developed by the 
scientific community other treatments like use of nitric oxide, carbon 
monoxide, oligonucleotides (Antisense) in the treatment of CAD and 
preventing restenosis have also been advanced. In the current review 
we summarized the different biodegradable, bioabsorbable stents 
that need for mechanical support and also explained about the other 

advances that are used in addition to or as an alternative to stents in the 
treatment of CAD and prevent the potential risks of restenosis. 

Biodegradable and Bioabsorbable Stents
Despite the fact that stents are major breakthrough in the treatment 

of obstructive coronary artery disease, the device will remain as 
permanent implant/foreign body inside the artery after their intended 
use. There exists several questions till date; why should a device 
implanted just to prevent acute or sub-acute recoil occurring mainly 
after the initial days of procedure, and to deliver anti-proliferative 
dugs to prevent cell proliferation which is observed after 2-3 weeks of 
intervention, for life time? Issues with long term stay of stents in the 
artery include but not limited to, late restenosis, mechanical blockages, 
late development of malposition, etc. which made researchers to 
develop Biodegradable and Bioabsorbable stents.

Bio-degradable polymer based stents (BDS) have several advantages 
over permanent metallic stents [9]. Optimized polymer composition 
may facilitate more targeted drug delivery, limiting smooth muscle cell 
proliferation on the abluminal side, while simultaneously encouraging 
endothelialization on the luminal side [10,11]. Moreover, stents made 
of complete polymer may have a higher drug loading capacity. The 
magnetic resonance imaging/CT compatibility of BDS may result 
in more diagnostic interpretation since there is no interaction from 
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metallic stents. In addition, the avoidance of metallic stents may allow 
repeated percutaneous revascularization or surgical intervention if 
required [12]. 

There are several conditions to consider when selecting a polymer for 
the BDS [13]. These include, but not limited to, biocompatibility of the 
polymer, the strength of the polymer to avoid immediate recoil and lack 
of toxicity. Questions in regards to radial strength loss were of concern 
as there may be increased risk of stent fracture and migration over a 
period of time [14-17]. Furthermore, the long term biocompatibility 
of the breakdown products was relatively unknown [18]. Poly L-lactic 
acid (PLLA), polyglycolic acid (PGA), polycaprolactone (PCL) and 
poly (D, L-lactide/glycolide) copolymer (PDLA) are some of the 
suggested polymers for fabricating bioabsorbable stents. Each of these 
polymers was designed as either self-expanding or balloon expandable 
stents. Another proposed design is the hybrid stent, which combines 
polymeric absorbable stents with a metallic backbone to enable strength 
and prevent recoil [19-24]. 

Stack and colleagues at Duke University, Durham, NC, developed 
the first fully fabricated BDS, made of knitted poly-L-lactic acid (PLLA) 
[21]. This prototype stent could withstand up to 1000 mm Hg of crush 
pressure, kept its radial strength for 1 month and was almost completely 
degraded by 9 months [25]. Igaki and Tamai further refined the design 
to PLLA monofilaments (molecular weight, 183 kDa) in a zigzag helical 
coil configuration (Figure 1) [26]. This arrangement was associated 
with reduced vascular injury at the implantation site, which led to a 
reduction in initial thrombus deposition and neointimal proliferation 
[26]. PLLA with low molecular mass, was associated with an intense 
inflammatory reaction, whereas a minimal inflammatory reaction was 
observed with molecular mass >300 kDa [27].

Several clinical studies were performed on humans to assess the 
safety of Igaki-Tamai stent made of biodegradable polymer PLLA 
[28-34]. Initially, Igaki and co-workers have evaluated the safety and 
efficacy of PLLA stent implanted in 15 patients. The results from the 
study conclude that, the percent diameter stenosis decreased from 64% 
before stenting to 12% after stenting and the study also confirmed the 
PLLA stents might not be associated with intimal hyperplasia than 
stainless steel stents [30,35]. In another study, Tsugi et al. reported a 1 
year follow-up study of 50 patients who underwent stent implantation 
successfully in 63 lesions. Restenosis rates were 21% at 6 months and 
19% at 12 months. Overall, these findings suggest us that the use of 
PLLA stents is safe with acceptable efficacy in human coronaries [31]. 

The bioabsorbable vascular solutions (BVS) everolimus-eluting 
stent from Abbott Vascular, Santa Clara, CA utilized highly crystalline 
poly lactic acid (PLA) as backbone material, which allows the stent to 
achieve the radial strength of MULTI-LINK VISION® metal stent. The 
surface of the stent is coated with 1:1 mixture of drug to amorphous 
PLA matrix, allowing 80% of the drug to be released in first 30 days 
(Figure 2). Results from the studies concluded that, the stent is 
bioabsorbed in ~ 18 months [36].

Another biodegradable polymer tyrosine poly (desaminotyrosyl–
tyrosine ethyl ester) carbonate was utilized to make REVA stent by 
Reva Medical, with polycarbonate backbone. The REVA stent has 
a unique slide and locking design that provides both flexibility and 
strength (Figure 3). This design with polycarbonate backbone imparts 
high tensile strength and apparently negligible recoil with balloon 
deployment. From the human clinical trials it suggested that there is no 
recoil observed at the end of 6 months [37-41].

The IDEALTM biodegradable stent from Bioabsorbable Therapeutics 

Inc. was made from Poly-anhydride ester (PAE) with sirolimus and 
salicylic acid incorporated, to provide both anti-inflammatory and 
anti-proliferative property (Figure 4). Initial human clinical study 
demonstrated the structural integrity with no evidence of recoil. But, 
the stents failed to show the anti-proliferative property which could be 
due to lesser drug load. Therefore, second generation IDEALTM stents 
with higher drug load and slower drug release were under investigation 
[42].

Another interesting concept is the multi-layered biodegradable 
stent designed by Eury et al. which is made of various polymers such as 
PLLA, PGA, PCL, poly-orthoesters or poly-anhydrides [43]. The unique 
feature of this stent is that 1 layer addresses the structural requirements 
of the stent and an additional layer controls the drug release. 

Limitation of Biodegradable Stents
Despite the clinical advantages associated with biodegradable 

polymer stents, there exist several limitations. The polymer stents are 
associated with significant degree of local inflammation. These stents 
are not as strong as metal stents, which may result in recoil and may 

Figure 1: Igaki-Tamai stent made of biodegradable polymer PLLA with 
zigzag helical coil design and has been used for local delivery of transilast 
and paclitaxel.

Figure 2: Abbott vascular BVS stent made of biodegradable polymer PLA.

Figure 3: The REVA stent made from monomeric units of amino L-Tyrosine 
poly (desaminotyrosyl-tyrosine ethyl ester) carbonate and has been used 
for delivery of paclitaxel.

Figure 4: The IDEALTM stent from bioabsorbable therapeutics made 
of biodegradable polymer pae and is used to deliver salicylic acid and 
sirolimus.
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require strong backbone, especially in small vessels. These polymer 
stents may require special storage conditions and have a shorter shelf 
life [7].

Bioabsorbable Stents
Metal bioabsorbable stents are becoming attractive since they have 

the potential to overcome the limitations of biodegradable polymer 
based stents and to perform similarly to stainless steel metal stents. So 
far, only two classes of materials have been proposed and studied in 
humans include magnesium (Mg) and Iron (Fe). Use of both Mg and 
Fe metals as bioabsorbable stents can be justified by the well-known 
human metabolism. The systemic toxicity of Mg and Fe was very well 
documented. Therefore, bioabsorbable stents have gain more interest 
than the polymer stents [44-51].

Several Mg alloys have been investigated so far by several research 
groups. Mg alloys have very limited ductility compared with most Fe 
alloys. Advance processing techniques may improve the ductility of Mg 
alloys, for e.g. Hot Melt Extrusion of Mg-Ca showed better strength and 
ductility [52]. Several clinical investigations have been studied using 
Mg alloys as bioabsorbable metal stent. Heublein and co-workers have 
tested Mg alloy (AE 21) in porcine coronary arteries [53]. From the 
studies, they observed that, there was over stretch injury in the arteries 
because of assymetrical expansion of stent and strut positioned within 
adventia caused inflammation and exaggerated intimal hyperplasia. 
But, the natural process of arterial growth was not disturbed in young 
pigs and the in-stent area increased from 3.28 mm2 at 35 days to 6.15 
mm2 at 56 days.

Another most promising and most studied bioabsorbable metal 
stent is Fe. However, pure Fe unlike most other metals its shows 
ferromagnetic property, which may interfere with magnetic resonance 
imaging observation. Therefore, this property was altered by alloying 
with manganese (Mn) which resulted in anti-ferromagnetic property, 
while improving its mechanical properties [50]. Since the in vivo 
degradation of the Fe stent is slow, the cytotoxic property of Fe was 
found to be insignificant [49]. Relatively small amount of Fe (~ 40 mg) 
was found in stent when compared to systemic availability (447 mg/L) 
makes it least toxic systemically. Peuster and co-workers have studied 
and reported the experimental studies of bioabsorbable Fe stent (~ 
41 mg) into the aorta of New Zealand white rabbits (Figure 5). The 
results showed there was no adverse side effects resulted during the 
study period. Moreover, there was neither pronounced neointimal 
proliferation nor significant inflammatory response. 

The important clinical application for bioabsorbable metal stent 
(AMS) is for pediatric use. Schranz et al. [54] first reported the use of 
AMS for acute treatment of a new-born baby with severly impaired 

heart function. A recent study revealed early restenosis following 
AMS implantation in 2 months old girl. This study demands the 
further improvements in the field of Mg alloys stent technology [55]. 
PROGRESS-AMS (Clinical Performance and Angiographic Results 
of Coronary Stent) study was the first human coronary clinical trials 
reported. The study showed the AMS stents can be safely delivered 
and expanded at high pressure in simple coronary artery lesions with 
good mechanical scaffolding similar to that obtained from BMS. In 
conclusion from several clinical studies, implantation of AMS-1 is safe 
in human coronary and peripheral arteries and is associated with high 
procedural success rate. Degradation rate of the metal stents was as 
expected without any adverse events. But, however implantation was 
associated with higher restenosis rate than expected [54-57].

Conclusion 
With increasing trends in the people affected by coronary heart 

diseases and the advances in technology the treatments for CRD using 
intervention techniques will increase. Intervention treatments may also 
be followed by the physicians for patients with multi-vessel disease, 
diabetes, etc. Despite the advantages from intervention therapies there 
are also limitations like restenosis which can be solved by using different 
non interventional therapies. More research advances addressing the 
limitations associated with the existing therapies will further benefit the 
population that is affected by CRD.
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