A Review on Significance of Azolla Meal as a Protein Plant Source in Finfish Culture

Sebastian S Mosha*

Training Department, Ministry of Agriculture Training Institute (MATI), Mtwara, Tanzania

Abstract

The increase in costs and demand of protein from conventional resource necessitates fish farmers and hatcheries manager to incorporate cheap and locally available ingredients in fish diets. Among protein plant sources, Azolla seems to be good replacer of protein from expensive sources such as fish meal and fish oil depending on feeding habits of the fish species. It contains high crude protein content (13% to 30%) and essential amino acid (EAA) composition (rich in lysine) than most green forage crops and other aquatic macrophytes. A review was conducted on significance of Azolla meal as a protein plant source in finfish culture, mostly focus was on Tilapia species and family Cyprinidae. About 30 published online journal papers, from Research gate and Google scholar in aquaculture nutrition were reviewed. Among reviewed papers revealed that, the dietary Azolla supplementation at certain level have a positive effect on feed utilization and protein conversion ratio, mobilization and utilization of glycosgenic amino acids, and growth performance. Therefore, this review suggests that, 10-45% Azolla inclusion level can be incorporated in the diet for Tilapia species, except for T. zillii which requires more than 40% protein contents. While in fish belong to the family Cyprinidae, the inclusion level should be 10-50% for Rohu, and 10-25% for the rest of family members, except Labeo fimbriatus which didn’t shows any effect up to 40% Azolla inclusion level in a diet.

Keywords: Fish growth performance; Protein plant source; Azolla meal; Tilapia species; Family Cyprinidae

Introduction

Aquaculture is the fastest growing food producing sector and is perceived to have the greatest potential to meet the growing demand for aquatic food [1]. World aquaculture production is likely to grow continuously, but at slow rate [2]. In Tanzania, aquaculture is largely a subsistence activity practiced in the coastal and inland areas [3,4]. The sector is mainly dominated by tilapia species, Oreochromis niloticus and African catfish, Clarius gariepinus which accounting around 90 per cent of the total inland production. In the coastal areas particularly Zanzibar, it is dominated by sea weed, Eucheuma denticulatum farming [5].

The increase in costs and demand of protein from conventional resources necessitate fish farmers in developing countries [6] including Tanzania to incorporate cheap and locally available ingredients in fish diets. Recent literatures reported that, the utilization of high food value aquatic plants are used to supplement fish feeds [7].

A floating freshwater, Azolla pinnata is one of the aquatic plants with high biomass and protein production which can be used as a direct fish feed or diet ingredient of an alternative protein source [7]. Azolla has gained its importance in aquaculture due to higher crude protein content (13% to 30%) and essential amino acid (EAA) composition (rich in lysine) than most green forage crops and other aquatic macrophytes [6]. In spite of its attractive nutritional qualities and relative ease to produce in ponds, reports on use of Azolla in aquaculture are extremely limited. However, it is well documented in some shellfish such as black tiger shrimp Penaeus monodon [8] and finfish such as carps [9] and Nile tilapia [10].

These fish species have been reported to convert raw protein from Azolla into the best edible protein, thus reduces the cost of production of feeds [11]. Also, it is reported to have important components which enhance performance of fish. Cohen et al. [12] reported the presence of the 3-Deoxyanthocyanins which are the only known flavonoids of Azolla. In addition, Mithraja et al. [13] reported various antioxidants like phyto-constituents such as tannins, phenolic contents and flavonoids from Azolla crude extract. Therefore, this review aimed to explore the significance of Azolla in fish diets from the recent studies conducted by several researchers in the field of aquaculture nutrition.

Literature Review

Origin, classification and distribution of Azolla species

Azolla is a genus of aquatic ferns and small leaved floating plants, native to the tropics, subtropics, and warm temperate regions of Africa, Asia, and America [14]. It is very sensitive to lack of water in aquatic ecosystems such as stagnant waters, ponds, ditches, canals or paddy fields. These areas may be seasonally covered by a mat of Azolla associated with other free-floating plants such as Duckweed (Lemna minor L.), Water lettuce (Pistia stratiotes L.), Water calthrop (Trapa natans L.), Water meal (Wolfia Horkel ex Schleid) and mud-rooting species such as Hornwort (Ceratophyllum demersum L.), Water purslane (Ludwigia palustris L.) and Knot weed, Polygonum arenstram [15].

Literature shows that, Azolla domestication dates back to the 11th century in Vietnam [16], and the genus was botanically established by Lamarck in 1783 [15]. The Azolla are categorized either into subgenera or taxonomic “section” level. In subgenera classification, Azolla are divided into two genera based on the sporocarp characters: Euazolla and Rhizosperma [16]. Euazolla is further classified into the taxonomic “section” level [17] which have 5 species, namely Willd. (A. caroliniana), Lam. (A. ficutoloides), Presl (A. Mexicana), Kaulf (A. microphylla) and A.

*Corresponding author: Sebastian S Mosha, Training Department, Ministry of Agriculture Training Institute (MATI), P.O. Box 121, Mtwara, Tanzania, Tel: +918300983373; E-mail: seblyn2012@yahoo.com

Received May 16, 2018; Accepted July 30, 2018; Published August 10, 2018

Copyright: © 2018 Mosha SS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
rubra [18]. While, the former genera (Rhizosperma) has only 2 species called Decne. ex Mett. (NI), A. nilotica and R. Br. A. pinnata [19].

According to Kannaiyan and Kumar [15], Azolla species are distributed all over the world in fresh water ecosystems of temperate and tropical regions. Some literature has indicated that species of genera Euazolla have originated from North and South America while Rhizosperma originated from Africa, Asia and Australia (Table 1) [15,20].

Impacts of Azolla species in nature

Azolla is the one of the world’s fastest growing aquatic macrophytes which can be doubling in only 2-5 days [21,22]. Though, it has various benefits, are also considered as annoying weeds in nature, particularly A. pinnata and A. filiculoides [23]. Many studies have mentioned Azolla as a weed [24-26]. For instance, the North American native A. filiculoides has invaded many places in Iran [25,27], Europe and South Africa [26], where it is now considered as an important exotic weed. A. pinnata is another example of an obnoxious weed [16,28]. This fern became naturalized in North Carolina (US) in 1999, where it continues to be present [24], and also in New Zealand where it displaced the native A. rubra in most parts of the country. In fact, such invasive aquatic ferns are major concern for biologists and ecologists dealing with conservation and management of wetland ecosystems due to the threats they may pose to the rich original biological diversity.

Azolla may have important harmful and irreversible impacts on wetlands as they may change the local fauna and flora [29,30]. Also, they may reduce the ecological quality through changes in biological, chemical and physical properties of aquatic ecosystems [31]. According to Olenin et al. [32], some of the biological changes consist of eradication of susceptible or rare species, alteration of native communities and algal blooms. While physical-chemical changes involve the modification of substrate conditions and the shore zones, alterations of oxygen and nutrient contents, pH and transparency of the water and accumulation of pollutants. In addition, these invaders can survive and reproduce in a wide range of environmental conditions [33,34].

Importance of Azolla in fish pond

Azolla can be used either directly or indirectly in the fish pond, due to higher percentage in nutrients composition on dry weight basis (Table 2) and other constituents such as minerals, chlorophyll, carotinoids, amino acids, and vitamins [35]. It can be used as fish food in Azolla-fish pond culture and contributes directly to weight gain of macrophytophagous fish [36]. Also, it has been reported that, Azolla tends to increase production of fish faeces which directly consumed by bottom dwellers which in turn used as an organic (nitrogenous) fertilizer to increase overall pond productivity. In addition, the high rates of decomposition of Azolla make it a suitable substrate for enriching the detrital food chain or for microbial processing such as composting, prior to application in ponds [36]. However, the contribution of Azolla to aquaculture sector is promising, it may not ensure high productivity when used alone. Hence, it can be a useful supplement to natural feed in low-input aquaculture and can reduce high dependency on fish meal and fish oil from the nature [37].

Significance of Azolla meal

Among published papers reviewed, Tilapia species (Oreochromis niloticus, Tilapia mossambica, Tilapia zillii) and Family Cyprinidae (Labeo rohita, Catla catla, labeo calbasu, Labeo fistriatus, Ctenopharyngodon idella, Barbonymus gonionotus) were mostly reported to utilize Azolla when incorporated into the diets.

Tilapia Species

Nile tilapia, Oreochromis niloticus

The aquatic fern Azolla has been successfully used in tilapia culture as feed ingredients [38-42]. Some authors have been studied on growth performance and survivability of tilapia fingerlings by providing Azolla partially or fully as a component in the fish feed [43]. Therefore, most of the literatures reviewed reported the improvement on growth performance, feed utilization and survival rate on Nile tilapia fry at the increased dietary inclusion of Azolla up to a certain level. For instance, Santiago et al. [44,45] reported that, Nile tilapia fry fed rations containing up to 42% of A. pinnata outperformed fish fed a fishmeal-based control diet. Also, Micha et al. [46] reported highest performance in Tilapia rendalli fingerlings when fed feeds incorporated with Azolla. In contrast, Abou Youssouf [10] reported that, the final mean weight of Nile tilapia decreased as Azolla inclusion level increased from 0% to 50% in the experimental diets (Figure 1). Similar results have been

Table 1: Worldwide distribution of Azolla species.

<table>
<thead>
<tr>
<th>Genera</th>
<th>Species</th>
<th>Origin and Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euazolla</td>
<td>A. filiculoides</td>
<td>Southern South America, and Western North America to Alaska</td>
</tr>
<tr>
<td></td>
<td>A. caroliniana</td>
<td>Eastern North America, Central America, North South America, the Caribbean, Mexico and West Indies</td>
</tr>
<tr>
<td></td>
<td>A. mexicana</td>
<td>Northern South America to British Columbia, Western North America and Eastward to Illinois</td>
</tr>
<tr>
<td></td>
<td>A. microphylla</td>
<td>Western and Northern South America to Southern North America and the West Indies</td>
</tr>
<tr>
<td>Rhizosperma</td>
<td>A. pinnata</td>
<td>Tropical Africa and Southern Africa, South East Asia, Japan and Australia</td>
</tr>
<tr>
<td></td>
<td>A. nilotica</td>
<td>Central Africa, upper Nile Sudan, Uganda, Tanzania, Congo and Namibia</td>
</tr>
</tbody>
</table>

Source: Carrapiço et al. [20] and Kannaiyan and Kumar [15].

Table 2: Nutrient composition (%) of Azolla on dry weight basis.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Azolla (%) Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>13-30</td>
</tr>
<tr>
<td>Crude fat</td>
<td>4.4-6.3</td>
</tr>
<tr>
<td>Cellulose</td>
<td>5.6-15.2</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>9.8-17.9</td>
</tr>
<tr>
<td>Lignin</td>
<td>9.3-34.8</td>
</tr>
<tr>
<td>Ash</td>
<td>9.7-23.8</td>
</tr>
</tbody>
</table>

Source: Ayyappan [37].
Azolla was incorporated in their diets. When (Table 3). Similarly, Micha et al. [46] reported a decreased growth of fish fed a diet replaced with either 0, 25, 50, 75 or 100% bran and rice bran (control feed), wheat bran, rice bran and Azolla in the ratio of 25:25:50 (experimental feed) for the duration of 90 days. Similar results reported by Micha et al. [46].

Tilapia mossambica

Earlier studies have been reported the improvement in feed utilization and increased growth in *Tilapia mossambica*. According to Sithara and Kamalaveni, [48] the biochemical studies on this fish species reported that, the protein, carbohydrate and lipid contents in liver and muscles were increased when fish fed a diets containing wheat bran and rice bran (control feed), wheat bran, rice bran and Azolla in the ratio of 25:25:50 (experimental feed) for the duration of 90 days. Similar results reported by Micha et al. [46].

Tilapia zillii

Several researches have been conducted in *Tilapia zillii* based on the knowledge of being microphagous omnivore fish. However, Abdel-Halim et al. [49], reported high growth performance in common carp, *Cyprinus carpio* (Tables 4 and 5) when Azolla was incorporated in their diets.

Family Cyprinidae

Rohu, *Labeo rohita*

Among fish cultured in family *Cyprinidae*, Rohu is the most commercial fish with maximum market demand and acceptability as food by the consumers due to its test and flesh quality [1]. Various kind of supplementary feeds have been tried to accelerate growth and production of fish per unit area [50], including Azolla. Several studies have been focused on growth and survival of herbivorous fishes including Rohu fingerlings by providing *Azolla* species partially or fully as a component in the fish feed [11,43]. According to Panigrahi et al. [6], the highest percentage weight gain and growth parameters of Rohu fingerlings were found in T2 group fed with 40% *Azolla* followed by T3 fed with 50% *Azolla* (Tables 4 and 5). Similarly, Das et al. [51] reported significantly increased growth up to 40% level of *Azolla* inclusion and then significantly decreased growth when the level of *Azolla* increased to 56.8% and 63.6% in the diets. Also, Kumari et al. [1] reported better growth performance of Rohu fingerlings when fed 200g/kg feed *Azolla* supplemented diet. In contrast, Mohanty and Dash [52] reported higher weight gain and good utilization in Rohu fry fed with *A. caroliniana* at 60% inclusion level, comparing diets with 30, 40 and 50% *Azolla* incorporation.

Catla (Catla catla)

Several studies conducted in other carp species reported the efficiently utilization of *Azolla* inclusion diets. For instance, Catla which is an economically important South Asian freshwater fish, reported a higher growth rate and compatibility with other major carps, surface feeding habit, and consumer preferences. In a study conducted by Umalatha et al. [35] reported that, incorporation of *Azolla* up to 20% did not have any adverse effect on dry matter and protein digestibility, both decreasing (p<0.05) at higher inclusion levels (Table 6). Similarly, Asadujjaman and Hosain [53] reported poor growth of Catla fed *Azolla* as compared to those fed control diet consisting of rice bran, wheat bran and mustard cake (30:30:40). However, in other carp species the different results have been reported. For instance, Ahmad [54] reported high growth performance in common carp, *Cyprinus carpio* L. fingerlings when fed *Azolla* incorporation diet.

Orange fin labeo, Labeo calbasu

Orange fin labeo, *Labeo calbasu* is an herbivorous fish belonging to family *Cyprinidae*, found commonly in rivers and freshwater lakes around South Asia and South-East Asia [55]. It is a bottom dweller and can tolerate high turbid water during dry season [56]. It is considered as herbivorous fish feeding mainly on vegetable matter, followed by crustaceans and other insect larvae. It feeds on algae (10%), higher plants (48%), protozoa (12%), crustaceans (10%), molluscs (5%), and production of fish per unit area [50], including *Azolla*. Several studies have been focused on growth and survival of herbivorous fishes including *Azolla* species partially or fully as a component in the fish feed [11,43]. According to Panigrahi et al. [6], the highest percentage weight gain and growth parameters of Rohu fingerlings were found in T2 group fed with 40% *Azolla* followed by T3 fed with 50% *Azolla* (Tables 4 and 5). Similarly, Das et al. [51] reported significantly increased growth up to 40% level of *Azolla* inclusion and then significantly decreased growth when the level of *Azolla* increased to 56.8% and 63.6% in the diets. Also, Kumari et al. [1] reported better growth performance of Rohu fingerlings when fed 200g/kg feed *Azolla* supplemented diet. In contrast, Mohanty and Dash [52] reported higher weight gain and good utilization in Rohu fry fed with *A. caroliniana* at 60% inclusion level, comparing diets with 30, 40 and 50% *Azolla* incorporation.

![Figure 1: Changes in fortnight mean weight (mean ± S.D.) of Nile tilapia fed in earthen ponds for 90 days.](image)

Table 3: Growth performance of *Tilapia zillii* fry fed on diets containing different levels of *Azolla* meal.

<table>
<thead>
<tr>
<th>Experimental diets</th>
<th>Ingredients</th>
<th>Azolla sp. powder</th>
<th>Rice bran</th>
<th>Groundnut oil cake</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>0</sub> feed</td>
<td>NIL</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>T<sub>1</sub> feed</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>T<sub>2</sub> feed</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>T<sub>3</sub> feed</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Source: Panigrahi et al. [6].

Table 4: Percentage composition of different ingredients in experimental diets.

<table>
<thead>
<tr>
<th>Growth parameters</th>
<th>Treatments</th>
<th>T<sub>0</sub></th>
<th>T<sub>1</sub></th>
<th>T<sub>2</sub></th>
<th>T<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage weight gain</td>
<td>175.62 ± 2.31</td>
<td>197.17 ± 6.19</td>
<td>281.57 ± 7.21</td>
<td>239.33 ± 5.24</td>
<td></td>
</tr>
<tr>
<td>SGR</td>
<td>0.55 ± 0.01</td>
<td>0.60 ± 0.01</td>
<td>0.73 ± 0.01</td>
<td>0.67 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>4.21 ± 0.09</td>
<td>3.79 ± 0.61</td>
<td>2.93 ± 0.18</td>
<td>3.49 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Survival (%)</td>
<td>76</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Source: Panigrahi et al. [6].

Table 5: The growth parameters and experimental diets.
mud and sand (15%) [57]. Gangadhar et al. [55] reported the highest (p<0.05) digestibility values of this species at 10% Azolla inclusion level. However, some researcher reported that, Azolla can be incorporation up to 30% without any adverse results in Orange fin labeo and other species, which indicates the superiority of Azolla as a feed ingredient over other plant protein sources.

Labeo fimbriatus

Freshwater herbivorous fishes like *Labeo fimbriatus* feed mainly on unicellular algae, filamentous algae and parts of higher aquatic plants [58]. Among published papers reviewed, only one publication has been found reported insignificant differences in the growth parameters of *L. fimbriatus* fry receiving Azolla-incorporated diets (up to 40% inclusion level) [58].

Grass carp, Ctenopharyngodon idella

The Grass carp, *Ctenopharyngodon idella* is a rapid growing, phytophagous, cyprinid fish indigenous to the large rivers of China and Siberia [59]. Several studies have been conducted in this species and the results have been shown almost the same trend as in Catla, Orange fin labeo and Thai Silver barb. According to Nekoubin and Sudagar, [60], the highest food conversion ratio (FCR) was observed in *Azolla* (*A. fliculoids*) (62.18 ± 4.29) which had significant difference (P<0.05) from other treatments. Similarly, Ayyappan, [61] reported that, grass carp and common carp recorded a weight gain of 174 and 35.8g/fish respectively and utilized *Azolla* to the extent of 30% inclusion level.

Thai Silver barb, *Barbonymus gonionotus*

Thai silver barb, *Barbonymus gonionotus* is an omnivorous species in origin [62], an exotic fish of Bangladesh belonging to the family *Cyprinidae*. It has good palatability, high yield potential, and very large market demand [63,64]. Das et al. [65] reported that, the highest average weight gain (AWG) and specific growth rate (SGR) were observed in fish fed at T1 (0% *Azolla*) compared to other treatments. However, the general growth and production performance of fish was higher in T2 (25% *Azolla*) and was gradually decreased with the increase in the levels of supplementary *A. pinnata*. (Tables 7 and 8).

Similar results have been reported in several studies with the same purpose of replacing fish meal by the plant protein in Nile tilapia [66,67].

<table>
<thead>
<tr>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: Umalatha et al. [35].</td>
</tr>
</tbody>
</table>

Table 6: Digestibility (% mean ± SD) of dry matter, protein and fat by Catla fed experimental feeds.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Protein (%) (Dry Matter)</th>
<th>Protein (g/day)</th>
<th>Feed Quantity (g in Wet Weight/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFF</td>
<td>A. pinnata</td>
<td>CFF</td>
</tr>
<tr>
<td>T<sub>0</sub> (Control)</td>
<td>100</td>
<td>0</td>
<td>5.46</td>
</tr>
<tr>
<td>T<sub>1</sub></td>
<td>75</td>
<td>25</td>
<td>4.10</td>
</tr>
<tr>
<td>T<sub>2</sub></td>
<td>50</td>
<td>50</td>
<td>2.73</td>
</tr>
<tr>
<td>T<sub>3</sub></td>
<td>25</td>
<td>75</td>
<td>1.36</td>
</tr>
<tr>
<td>T<sub>4</sub></td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Das et al. [64]

Table 7: Experimental design and feeding dose (at initial level) at different treatments.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>T<sub>1</sub></th>
<th>T<sub>2</sub></th>
<th>T<sub>3</sub></th>
<th>T<sub>4</sub></th>
<th>T<sub>5</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>IAW (g)</td>
<td>3.90 ± 0.13</td>
<td>3.90 ± 0.11</td>
<td>3.90 ± 0.29</td>
<td>3.90 ± 0.09</td>
<td>3.90 ± 0.08</td>
</tr>
<tr>
<td>FAW (g)</td>
<td>30.93 ± 0.4<sup>a</sup></td>
<td>30.68 ± 0.4<sup>b</sup></td>
<td>24.55 ± 0.45<sup>b</sup></td>
<td>19.81 ± 0.25<sup>a</sup></td>
<td>15.20 ± 0.39<sup>bc</sup></td>
</tr>
<tr>
<td>AWG (g)</td>
<td>27.03 ± 0.16<sup>a</sup></td>
<td>26.78 ± 0.10<sup>a</sup></td>
<td>20.65 ± 0.19<sup>b</sup></td>
<td>15.91 ± 0.46<sup>b</sup></td>
<td>11.30 ± 0.34<sup>bc</sup></td>
</tr>
</tbody>
</table>
Discussion

Basing on research papers reviewed, Azolla seems to be a good replacer of protein from expensive sources such as fish meal. Among reviewed papers, suggest that Nile tilapia and T. mozambiqueicus can perform better in a range of 20% to 42% of Azolla inclusion diet [38,68]. Some literatures suggest positive growth even in higher inclusion level of Azolla up to 50% [45,69]. However, young Nile tilapia have been reported to efficiently utilize sun-dried Azolla more than adults [44,69,70]. The reason might be due to highly presence of enzymes in the gut which can effectively digest Azolla which have a relatively low fibre content and no ant-nutrient factors or a deficiency in amino acids and phosphorus [71].

In recent biochemical studies on Tilapia mossambica reported that, the increased protein, carbohydrate and lipids content in liver when fish fed with Azolla diet [48]. The significant increases of the biochemical parameters in various fish’s tissues revealed that the protein conversion ratio, mobilization and utilization of glycogenic amino acids are very high, in fish fed with Azolla diet. While, the increased lipid content suggests the fewer uptakes of lipid components by tissues for utilization [48]. In contrast, several studies conducted by Almazan et al. 69 with O. niloticus, Antoine et al. 72 with O. niloticus and Cichlasoma melanurum, Michal et al. 46 with O. niloticus and Tilapia rendalli and Joseph et al. 70 with Etroplus suratensis revealed lowering of growth performance and food conversion with increasing Azolla incorporation in the diet. The reason could probably be due to the lower protein digestibility of this fern, as mentioned by Leonard et al. 73 and, Michal and Leonard 74 in Oreochromis aureus Steinachner and in O. niloticus respectively.

In addition, Tilapia zillii reported to have poor growth performance in Azolla meal (Abdel-Halim et al., 1998) despite being a microphagous omnivore fish [75-77]. Similarly, Michal et al. 46 reported a decreased growth of both O. niloticus and T. rendalli when Azolla was incorporated in their diets. The reasons might be due to the low protein content of Azolla diets (about 20%) while protein requirement for tilapia fry is 35% [78,79] and may be as much as 40% [80]. Also, the poor performance of T. zillii fed high levels of Azolla meal on diets might be contributed with the deficiency of some essential amino acids especially methionine, lysine and histidine, as well as the high neutral detergent fiber of Azolla and possibly adenine limits the usefulness of Azolla as a food ingredient for simple-stomach animals [81].

On the other hand, fish belong to family Cyprinidae reported to have different ranges of Azolla inclusion levels in the diet. Most studies reviewed reported improved feed utilization and increased growth in Rohu at 10-50% Azolla inclusion level in the diet [6,11,82,118,While Orange fin labo [55], Catla [35], silver carp and mrigal [82], grass carp [83], and Thai Silver barb [65], reported to have a range between 10-25% Azolla inclusion level in the diet [1]. Similar results have been reported by several researchers with other aquatic plants supplemented diet such as Duck weed [84,85]. The reasons for the different inclusion levels might be due to the presence of ω-6 fatty acids [52], nutrients value of the plants such as the gross energy content of the diet and the dietary protein [86,87] which assimilated differently, depends on feeding habits of the species (example, Calta vs Ruhu). Also, due to different enzymes in the fish gut play an important role in the digestion and utilization of feed [88].

In contrast, among published papers reviewed, only one publication has been reported insignificant differences in the growth parameters of Labeo fimbriatus fry receiving Azolla-incorporated diets (up to 40% inclusion level) [57]. The reason could be due to differences in energy contents of the experimental diets [89].

Conclusion

Azolla seems to be a good replacer of protein from expensive sources such as fish meal depending on feeding habits of the species. This is due to proper corroboration between the activity pattern of the digestive enzymes in fish and the essential nutrients such as ω-6 fatty acids from Azolla diet. Also, the dietary Azolla supplementation shows to have a positive effect on growth performance of fish and reduce the cost of feeding from fish meal and fish oil diet. In addition, due to increase of the biochemical parameters in various fish’s tissues revealed that the protein conversion ratio, mobilization and utilization of glycogenic amino acids are very high, in fish fed with Azolla diet. However, too much Azolla incorporation in the diet will decrease fish growth performance and food conversion, probably due to low protein digestibility and high fiber contents. Therefore, this review suggests that, 10-45% of Azolla inclusion level can be incorporated in the diet for Tilapia species, except for T. zillii which requires more than 40% protein contents. While in fish belong to the family Cyprinidae, the inclusion level should be 10-50% and 10-25% for L. rohita and the rest of family members respectively, except Labeo fimbriatus which didn’t shows any effect up to 40% Azolla inclusion level in a diet.

Acknowledgement

The author is grateful to all journals and researchers to whom their works have been used to prepare the review. This review is a contribution to aquaculture knowledge and is a part of literature review of author’s PhD dissertation.

References

5. Msuya FE, Burio A, Omar I, Pascal B, Marrain K, et al. (2014) Cultivation and

