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Introduction
The classical transportation problem (Hitchcock transportation 

problem) is one of the sub-classes of non-linear programming problem 
in which all the constraints are of equality type. In many industrial 
problem, a homogeneous product is delivered from an origin to a 
destination by means of different modes of transport called conveyances, 
such as trucks, cargo flights, goods trains, ships, etc. In general, the 
real life problems are modeled with multi-objective functions which 
are measured in different respects and they are non-commensurable 
and conflicting in nature. Furthermore, it is frequently difficult for 
the decision maker to combine the objective functions in one overall 
utility function. In a Solid Transportation Problem (STP) more than 
one objective is normally considered. In many practical situations, it is 
realistic to assume that the amount which can be sent on any particular 
route is restricted by the capacity of that route. Moreover, Appa [1] 
discussed about the different variations in transportation problem.

It is often difficult to estimate the accurate values of transportation 
cost, delivery time, quantity of goods delivered, demands, availabilities, 
the capacity of different modes of trans-port between origins to 
destinations, etc. Depending upon different aspects, these fluctuate due 
to uncertainty in judgment, lack of evidence, in sufficient information, 
etc. i.e., it is not possible to get relevant precise data, which are assumed 
by several researchers Shell [2]. So, a transportation model become 
more realistic if these parameters are assumed to be flexible/imprecise 
in nature i.e., uncertain in non-stochastic sense and may be represented 
by fuzzy numbers. (Here, for the first time a solid transportation 
problem is considered with fuzzy parameters like, Shell [2], Jimenez 
and Verdegay [3]. 

Based on Das et al. [4], the interval number transportation 
problems were converted into deterministic multi-objective problems. 
Grzegorzewski [5] approximated the fuzzy number to its nearest 
interval. Omar and Samir [6] and Chanas and Kuchta [7] discussed 
the solution algorithm for solving the transportation problem in fuzz 
environment. Sakawa and Yano [8] proposed an interactive fuzzy 
decision making method using linear and non-linear membership 
functions to solve the multi-objective linear programming problem. 
Gao and Liu [7,9] presented two-phase fuzzy algorithms. Shaocheng 
[10] discussed about the interval number linear programming. Verma

et al. [11], Bit at al. [12,13], Jimenez and Verdegay [14], Li and Lai 
[15] and Waiel [16] presented the fuzzy compromise programming
approach to multi-objective transportation problem.

In this paper, a capacitated-multi-objective, solid transportation 
problem is formulated in fuzzy environment with non-linear varying 
transportation charge and an extra cost for transporting the amount 
to an interior place through small vehicles (like rickshaw, auto etc.). In 
the non-linear varying transportation charge, one part is linearly and 
another nonlinearly proportional to the transported amount. Here, the 
non-linear cost increases with the increase of transported amount but 
the rate of increase decreases. The fuzzy quantities and parameters are 
replaced by equivalent nearest interval numbers and thus a fuzzy multi-
objective, capacitated and solid transportation problem is transformed 
to corresponding crisp multi-objective transportation problems. 
Membership function is formulated for each objective function from 
their individual minimum and maximum. These membership functions 
may be of different types and it may depend upon the decision maker’s 
(DM) choice/past data, if available. The main contribution of the paper 
is the mathematical formation of the above mentioned innovative 
transportation problem in fuzzy environment and its solution. Here for 
the first time, here man-machine interaction has been introduced in 
the transportation system. In this way, multi-objective transportation 
problem is solved using IFPT through GRG. This model is illustrated 
with an example. In particular, results of some specific transportation 
models are presented.

Fuzzy Number and its Interval Approximation 
Definition 1: Fuzzy Number [17]:
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If X is a collection of objects denoted generically by x then a fuzzy 
set Ã in X is a set of ordered pairs: 

 {( , ( )) | }µ ε=




A
A x x x X



( ))Au x  is called the membership function of x in A   which maps X to 
the membership space [0,1]. 

(i) A is normal, i.e.the supremum of 

(ii) A is fuzzy convex, i.e. μA(x) is 1 ∀ ∈x S  and

(iii) A is fuzzy convex, i.e. 

1 2 1 2 1 2( (1 ) ) ( ) ( ) , , [0,1]µ λ λ µ µ λ+ − ≥ ∧ ∀ ∈ ∈A A Ax x x x x x R for

Definition 2: α-Cut of a fuzzy number [17] (Figure 1): 

A α-cut of a fuzzy number A is defined as crisp set

Aα={x : µ ˜(x) ≥ α, x ∈ X} where α ∈ [0, 1]

Definition 3: Interval Approximation [17]:

Aα is a non-empty bounded closed interval contained in X and it 
can be denoted by Aα=[AL(α), AR(α)]. AL(α) and AR(α) are the lower 
and upper bounds of the closed intervalrespectively. A fuzzy number A 
with α1, α2-cut Aα1=[AL(α1), AR(α1)],

Aα2=[AL(α2), AR(α2)] and if α2 ≥ α1, then AL(α2) ≥ AL(α1) and AR(α1) 
≥ AR(α2).

Definition 4: Nearest interval approximation of a fuzzy number 
[18]:

Here a fuzzy number is approximated by a corresponding crisp 
interval. Suppose A and B, two fuzzy numbers with α-cuts are [AL(α), 
AR(α)] and [BL(α), BR(α)] respectively. Then the distance between A  
and B  is

 
1 12 2

0 0
( , ) ( ( ) ( )) ( ( ) ( ))α α α α α α= − + −∫ ∫
 

L L R Rd A B A B d A B d

Given A is a fuzzy number. We find a closed interval Cd( A ) which 
is nearest to A  with respect to metric d. It can be done since each 
interval is also a fuzzy number with constant α-cut for all α € [0, 1]. 
Hence (Cd(A))α=[CL, CR]. Now we have to minimize

1 12 2

0 0
( , ( )) ( ( ) ( )) ( ( ) ( ))α α α α α α= − + −∫ ∫
 

d L L R Rd A C A A C d A C d  

with respect to CL and CR. In order to minimize d ( A , Cd( A )), it is 
sufficient to minimize the function D(CL,CR)=d2( A , Cd( A )). The first 
partial derivatives are

1 1

0 0

( , ) ( , )2 ( ) 2 2 ( ) 2δ δα α α α
δ δ

= − + = − +∫ ∫L R L R
L L R R

L R

D C C D C CA d C and A d C
C C

 

Solving,  
( , ) ( , )0 0δ δ
δ δ

= =L R L R

L R

D C C D C Cand
C C

we get, 
1*

0
( ( )α α= ∫L LC A d  and  

1*

0
( ( )α α= ∫R RC A d

Again since,  
2 * * 2 * *

2 2

( , ) ( , )2 0, 2 0δ δ
δ δ

= > = >L R L R

L R

D C C D C C
C C

and  
22 * * 2 * * 2 * *

2 2

( , ) ( , ) ( , ). 4 0
.

δ δ δ
δ δ δ δ

 
− = > 
 

L R L R L R

L R L R

D C C D C C D C C
C C C C

So D(CL, CR) i.e. d( A , Cd( A )) is global minimum. Therefore the 
interval

1 1

0 0
( ) ( ) , ( )α α α α =   ∫ ∫


d L RC A A d A d  is nearest interval approximation of 
fuzzy number A  with respect to metric d.

Let A  =(a1, a2, a3, a4) be a fuzzy number. The α-level interval of A is 
defined as (A )α = [AL(α), AR(α)].

When A  is a trapezoidal fuzzy numbers then AL(α)=a1+α(a2−a1) 
and AR(α)=a3−α(a4−a3), 0<α ≤ 1.

By nearest interval approximation method lower and upper limits 
of the interval are respectively

1 1

1 2 1 2 10 0

1[ ( )] ] ( )
2

α α α= = + − = +∫ ∫L LC A d a a a d a a  

and  
1 1

3 4 3 3 40 0

1[ ( )] ] ( )
2

α α α= = − − = +∫ ∫R RC A d a a a d a a

Therefore, the nearest crisp interval number considering A  as a 
trapezoidal fuzzy number is [(a1+a2)/2, (a3+a4)/2].

Interval Analysis 
We consider an interval A=[aL, aR]={a:aL ≤ a ≤ aR, a ∈ R}, where aL 

and aR are the left and right limits of A respectively. The interval A is 
also denoted by its centre and width as:

, { : , }= 〈 〉 = − ≤ ≤ + ∈C W C W C WA a a a a a a a a a R  

Where aC=(aR+aL)/2 and aW=(aR−aL)/2 are the center and half-width 
of A respectively.

Definition 5 [18]: The order relation, ≤RC between A=[aL, aR] and 
B=[bL, bR] is defined as

,

.
≤ ≤ ≤

< ≤ ≠
RC R R C C

RC RC

A B iff a b and a b
A B iff A B and A B

 

The order relation ≤ RC represents the decision maker’s preference 
for the alternative with the lower minimum value, i.e., if A ≤RC B, then 
A is preferred to B for the minimization problem.

Theorem: The order relation ≤RC satisfied transitive law.

Proof: Let A=[aL, aR], B=[bL, bR] and C=[cL, cR] such that

;

& .
& .

& & ;
;

2 2 2

≤ ≤

≤ ≤
⇒ ≤ ≤ ⇒ ≤ ≤

⇒ ≤ ≤ ⇒ ≤ ≤
⇒ ≤ ≤

RC RC

RC RC

R R R R C C C C

R R R C C C

C C C

A B B C
Now A B B C

a b b c and a b b c
a b c and a b c

and a b c
Figure 1: α-cut of a general fuzzy number.
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Then subtracting we have aL ≤ bL ≤ cL and

A ≤RC B & B ≤RC C ⇒ A ≤RC C

≠ ≠ ≠RC RC RCf A B and B C this implies A C

If possible = ⇒ = =RC L L R RA C a c and a c  

( , & )≤ ≤ ≤ ≤ ≤
⇒ = =

R R R RC RC RC

R R R

Nowa b c Since A B B C A C
a b c

 

Moreover aL=cL and aR=cR

 2 2
(

& )

+ +
⇒ = =

⇒ = = ≤ ≤
≤ ≤

L R L R
C

C C C C C C

RC RC

a a c ca

a b c Since a b c
A B B C

 

which is the contradiction. Therefore  ≠ ≠ ⇒ ≠RC RC RCA B and B C A C 	

Thus the theorem proved.

Formulation of the STP in Fuzzy Environments
The solid transportation problem (STP) stated by Shell [2] is a 

generalization of classical transportation problem. Here, we consider 
m origins(or sources) Oi (i=1,2,....m) , n desti-nations(i.e. demands) 
Dj (j=1,2,....n) and K conveyances Ek (k=1,2,....K). Let ia  be the fuzzy 
amount of a homogeneous product available at i-th origin, jb  be the 
fuzzy demand at j-th destination and ke  represents the fuzzy amount 
of product which can be carried by k-th conveyance. The fuzzy penalty  


p
ijkC is associated with transportation cost (for p=1), distance, time etc, 

(for p=2,3..P) of one unit of a product to transport from i-th source to 
j-th destination by means of the k-th conveyance for p-th criterions.   
 ijkH be the inversely varying cost for different quantity to transport 
from i-th source to j-th destination by means of the k-th conveyance. 
The penalty may represent transportation cost, delivery time, quantity 
of goods delivered etc. The vehicle carrying cost F (xijk) for the quantity 
xijk from i-th source Oi to j-th destination Dj via k-th conveyance is 
defined as:

. .
( )

( 1).
=

=  +
c ijk

ijk

m v i f m v x
F x

m v Otherwise

 

m=[xijk/vc], vc=vechicle capacity and v=vehicle cost.

Let rijk be the capacity restrictions on route (i, j) by means of k-th 
conveyance. Therefore, the fuzzy-capacitated -constrained multi-
criteria solid transportation problem represented as:

1 1

1 1 1
( ) [[ / ( ) ( )]γ

= = =

= + +∑∑∑  

m n K
ijk

ijk ijk ijk ijk
i j k

Min Z X C H x F x                (1)

1 1 1
( ) 2,3,... .

= = =

= =∑∑∑ 

m n K
p p

ijk ijk
i j k

Min Z X C x p P                                 (2)

0 <γijk< 1

subject to the constraints

1 1
1, 2,3,...,

= =

= =∑∑ 

n k

ijk i
j k

x a i m   		                  (3)

1 1
1, 2,3,...,

= =

= =∑∑ 

m k

ijk j
i k

x b j n 		                  (4)

1 1
1, 2,3,...,

= =

= =∑∑ 

m n

ijk k
i j

x e k K 		                 (5)

0 , , .≤ ≤ijk ijkand x r for all i j k  			                  (6)

Where , , , ,  

 

P
i j k ijk ijka b e C and H  are fuzzy numbers which may be 

represented by triangular, trapezoidal or other fuzzy numbers.

Reduced Crisp Model
Following ($4) fuzzy numbers , , , ,  

 

P
i j k ijk ijka b e C and H  are 

approximated to

[ , ],[ , ],[ , ],[ , ] [ , ]L R L R L R Lp Rp L R
i i j j k k ijk ijk ijk ijka a b b e e C C and H H   respectively.

Then the earlier transportation model takes the following form:

{ ( ), ( )} 1,2,3,...=p p
C RMinimize Z X Z X p P   	                   (7)

1 1

1 1 1
( ) (( / ( ) ) ( ))γ

= = =

= + +∑∑∑
m n K

C C
C ijk ijk ijk ijk ijk ijk

i j k
where Z X C H x x F x      (8)

1 1

1 1 1
( ) (( / ( ) ) ( ))γ

= = =

= + +∑∑∑
m n K

R R
R ijk ijk ijk ijk ijk ijk

i j k
Z X C H x x F x                 (9)

1 1 1
( ) 2,3,...

= = =

= =∑∑∑
m n K

p Cp
C ijk ijk

i j k
Z X C x p P 		                   (10)

1 1 1
( ) 2,3,...

= = =

= =∑∑∑
m n K

p Rp
R ijk ijk

i j k
Z X C x p P  		                (11)

0 1.γ< <ijk 					                    (12)

subject to the constraints

1 1
[ , ]

= =

∈∑∑
n K

L R
ijk i i

j k
x a a 				                  (13)

1 1
[ , ]

= =

∈∑∑
m K

L R
ijk j j

i k
x b b  				                 (14)

1 1
[ , ]

= =

∈∑∑
m n

L R
ijk k k

i j
x e e  				                   (15)

0 .≤ ≤ijk ijkx r 					                     (16)

The constraints (13),(14),(15) and (16) can be written in the 
following form:

1 1= =

≤ ≤∑∑
n K

L R
i ijk i

j k
a x a  				                   (17)

1 1= =

≤ ≤∑∑
m K

L R
i ijk j

i k
b x b  				                  (18)

1 1= =

≤ ≤∑∑
m n

L R
k ijk k

i j
e x e  				                   (19)

0 .≤ ≤ijk ijkx r  				                  (20)

Solution Procedure: Interactive Fuzzy Programming 
Technique 

Step-1: Optimize (minimized & maximized) each objective 

function individually at a time ignoring the others. Let, p
Rx  and p

Cx   
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be the solutions for the objective functions p
RZ  and p

CZ  (p=1,2,3,...,P) 
respectively [8].

Step-2: Determine the corresponding values for every objective at 
each solution derived and form a pay-off (Table 1).

Also consider ( i
RU , i

RL ) and ( i
CU , i

CL ) be the upper and lower 
bounds of ( i

RZ , i
CZ ) functions (i=1,2,3,....,P) from Table 1 respectively.

Step-3: Let µ i
R  and µ i

C  be the membership functions of i
RZ  

and  i
CZ  (i=1,2,3,.....,P) respectively. The decision maker can select the 

above membership functions in a subjective manner from among the 
following four types of functions: linear, exponential, hyperbolic and 
hyperbolic inverse functions.

Different types of membership functions: Let ZU and ZL be the 
upper and lower bounds of the function Z(x) respectively. For the 
function Z(x), the corresponding membership functions are defined as 
follows:   

(i) (Type-I) Linear membership function:

µZ (x)=[ZU−Z(x)]/[ZU−ZL]			               (21)

(ii) (Type-II) Exponential membership function:

µZ (x)=a[1−exp{−b([ZU−Z(x)]/[ZU−ZL])}]		                (22)

log 1
1

 = > − 
ab and a

a
(iii) (Type-III) Hyperbolic membership function:

( )( ) tanh{ . } |µ −
=

−
U

Z
U L

Z Z xx c
Z Z

			                (23)

where c=tanh-11.

(iv) (Type-IV) Hyperbolic inverse membership function:

1 ( )( ) . tanh { . }µ − −
=

−
U

Z
U L

Z Z xx e d
Z Z

			               (24)

where d=
1tanh( )
e

 

Step-4: After determining the membership functions for each of 
the objective functions, we adopt the maximizing decision proposed by 
Bellman and Zadeh [19], the resulting problem to be solved is:

Max	 (min of all µ(x))

subject to x ∈ S   where S is the feasible region of problem.

By introducing an auxiliary variable β, the above problem can be 
transformed into the following equivalent conventional problem.

Maximize β,					                      (25)
, 1, 2,3,...,µ β≥ =i

R i P  			                 (26)

 , 1, 2,3,...,µ β≥ =i
C i P 			                (27)

where 0 ≤ β ≤ 1 and x ∈ S (the set of all feasible solutions)

However, with the four types of membership functions given 
by (21),(22),(23) and (24), the resulting problem is a non-linear 
programming problem. The constraint like µz(x) ≥ β takes the following 
form:

( ) (1 ). .γ γ≤ − +U LZ x Z Z 				                   (28)

Where 11 1 1, 1 , tanh ( ) tanh( )α β βγ β β−− =  
 

n and
b a c d e

  for Types 

-I, II, III and IV respectively. The solution of this final problem gives 
β=β* and the corresponding x=x∗ is the required optimum solution.

Numerical Experiment 
To illustrated proposed model numerically, we a set of input data 

for two origins and destination, three different conveyance and criteria 
(Table 2).

 ( )1a  31,  33,  35,  37= ,  ( )2a  27,  29,  30,  32= ,  ( )1b  25,  28,  32,  34= ,      

 ( )2b  31,  33,  34,  36 ,=  ( )1e  18,  20,  24,  26 ,= ( )2e  23,  26,  27,  28 ,=

 ( )3e 21,  24,  25,  26 ,=

v=12, Vc=5 and

Let the route capacities, rijk’s are 

r111=16; r121=19; r211=14; r221=15; r112=17; r122=19; r212=16; r222=14; 



p
ijkC

p=1 p=2 p=3
 ijkH

111
p

C
(1, 3, 5, 7) (2, 5, 6,9) (6, 9, 10,12)

111H (1, 2, 6, 7)

121
p

C
(3, 7, 9, 11) (7, 9, 12,15) (6, 9, 11,14)

121H (4, 5, 7, 12)

 
 211

p
C

(3, 6, 9, 11) (6, 9, 13,17) (5, 9, 11,13)
121H (3, 7, 9, 12)

 221
p

C
(2, 5, 7, 12) (5, 8, 11,15) (5, 7, 9, 12)

 221H (5, 9, 11, 13)

112
p

C
(2, 3, 5, 9) (1, 5, 9, 10) (3, 7, 10,13)

112H (3, 5, 9, 12)

 
122

p
C

(4, 6, 8, 12) (4, 7, 8, 14) (7, 9, 11,15)
122H (6,10,12,15)

 212
p

C
(3, 7, 9, 12) (2, 7, 10,13) (6, 9, 13,15)

 212H (4, 6, 8, 10)

 222
p

C
(5, 8, 10, 13) (3, 8, 12, 16) (4, 7, 9, 12)

 222H (6, 9, 11, 14)

 
113

p
C

(4, 5, 7, 9) (4, 8, 12, 14) (1, 3, 5, 7)
113H (2, 4, 6, 10)

123
p

C
(5, 9, 12, 14) (3, 7, 11, 13)  (3, 5, 8, 12)

123H (3, 7, 10, 13)

 213
p

C
(6, 8, 13, 15) (6, 9, 12, 15) (2, 5, 9, 10)

 213H (3, 5, 9, 13)

 
 223

p
C

(3, 5, 9, 13) (5, 9, 12, 15) (5, 9, 13, 16)
 223H (4, 6, 10, 12)

Table 2: Input data for transportation costs.

Obj. 1
CZ  

1
RZ 2

CZ 2
RZ 3

CZ 3
RZ

Max. 817.548 1036.145 582.368 817.282 630.437 772.24
Min. 718.0256 936.0466 522 751 467.812 615.5

Table 3: Pay-off table.

x ZR
1 ZC

1 ZR
2 ZC

2 − − ZC
P

xR
1 ZR

1(xR
1) ZC

1 (xR
1) ZR

2(xR
1) ZC

2 (xR
1) − − ZC

P (xR
1)

xC
1 ZR

1(xC
1) ZC

1 (xC
1) ZR

2(xC1) ZC
2 (xC

1) − − ZC
P (xC

1)
xR

2 ZR
1(xR

2) ZC
1 (xR

2) ZR
2(xR

2) ZC
2 (xR

2) − − ZC
P (xR

2)
xC

2 ZR
1(xC

2) ZC
1 (xC

2) ZR
2(xC

2) ZC
2 (xC

2) − − ZC
P (xC

2)
− − − − − − −
− − − − − − −
xR

P ZR
1(xR

P) ZC
1 (xR

P) ZR
2(xR

P) ZC
2 (xR

P) − − ZC
P (xR

P)
xC

P ZR
1(xC

P) ZC
1 (xC

P) ZR
2(xC

P) ZC
2 (xC

P) − − ZC
P (xC

P)

Table 1: Pay-off Matrix for the objective functions.
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r113 =16 ; r123=19 ; r213=14 ; r223=16;

γ111=0.3; γ121=0.7; γ211=0.45; γ221=0.75;

γ112=0.25; γ122=0.5; γ212=0.25; γ222=0.35;

γ113=0.75; γ123=0.8; γ213=0.95; γ223=0.85;

We now approximate the fuzzy numbers to their nearest intervals, 
then form the objective functions 1

RZ , 1
CZ , 2

RZ , 2
CZ , 3

RZ , 3
CZ  find their 

individual solutions 1
Rx , 1

Cx , 2
Rx , 2

Cx , 3
Rx , 3

Cx  minimizing 1
RZ , 1

CZ , 2
RZ , 

2
CZ , 3

RZ , and 3
CZ  separately.

The individual minimum and maximum of  1
RZ , 1

CZ , 2
RZ , 2

CZ , 3
RZ , 

3
CZ   are shown is pay-off table in Table 2. Now solving the problem (25), 

with all membership functions as linear, we get Table 3.

Following IFPT, the auxiliary variable β is maximized and the 
optimal solutions are displayed in Tables 3 and 4 and corresponding 
decision variable are again if we take the membership functions µ1

C, 
µ2

C and µ3
R as exponential and others linear, then the solution and the 

objective functions are shown in Tables 5 and 6, and corresponding 
decision variable are shown in Table 7.

Particular cases 

Case I: Multi-objective and Solid Transportation Problem (i.e., 
Non-capacitated)

In this case all routes can be used to transport any amount of 
products. For this situation we remove the route restrictions (rijk) from 
the formulation of above problem. For the reduced problem we get the 
following optimal solution using all the linear membership functions 
and corresponding decision variable are displayed in Tables 8 and 9.

β∗ ZC
1∗ ZR

1∗ ZC
2∗ ZR

2∗ ZC
3∗ ZR

3∗ Zav

0.426653 775.086 988.212 556.612 789.001 561.052 693.894 727.31

Table 4: Optimal auxiliary variable.

β∗ ZC
1∗ ZR

1∗ ZC
2∗ ZR

2∗ ZC
3∗ ZR

3∗ Zav

0.25486E-06 804.934 1021.602 551.658 775.665 615.786 757.824 754.58

Table 6: Optimal auxiliary variable.

β∗ ZC
1∗ ZR

1∗ ZC
2∗ ZR

2∗ ZC
3∗ ZR

3∗ Zav

0.463242 701.649 893.878 576.515 776.265 426.945 603.929 663.197
0.11801 770.265 956.16 488.064 678.495 619.398 790.023 717.067

Table 12: Non-solid and capacitated for conveyance-2.

β∗ ZC
1∗ ZR

1∗ ZC
2∗ ZR

2∗ ZC
3∗ ZR

3∗ Zav

0.460702 699.197 890.871 576.90 776.717 426.618 603.33 662.273

Table 14: For not solid and not capacitated for conv-3.

β∗ ZC
1∗ ZR

1∗ ZC
2∗ ZR

2∗ ZC
3∗ ZR

3∗ Zav

0.394097 766.902 976.196 570.267 793.062 550.606 698.779 725.97

Table 7: The transported amounts.

β∗ ZC
1∗ ZR

1∗ ZC
2∗ ZR

2∗ ZC
3∗ ZR

3∗ Zav

0.394097 766.902 976.196 570.267 793.062 550.606 698.779 725.97

Table 8: Optimal auxiliary variable.

β∗ ZC
1∗ ZR

1∗ ZC
2∗ ZR

2∗ ZC
3∗ ZR

3∗ Zav

0.020707 824.98 981.033 485.622 688.26 570.573 741.198 715.28

Table 10: Non-solid and capacitated for conveyance-2.

Case II: Multi-objective and Capacitated Transportation 
Problem ( i.e., Non-solid)

In this case only one conveyance is used for transportation with 
some route restrictions. Since every conveyance has some capacity, 
sometimes one conveyance cannot transport all products. Due to this 
reason we take individual conveyance for transportation with route 
restrictions and all membership functions as linear, the first conveyance 
is not suitable for transportation: Table 10 and corresponding decision 
variable are for conveyance-2 & conveyance- 3 shown in Tables 11 and 
12 respectively.

Case III: Transportation Problem not being solid and capacitated

This case is the combination of above two cases (Case I and II). 
Taking all the membership functions as linear, we find the following 
optimal solution for the individual conveyance-2 displayed in Tables 12 
and 13) or conveyance 3 in Table 14. But if we take only conveyance-1, 
then feasible solution does not exist, and corresponding decision 
variable are for conveyance-2 shown in Tables 12 and 15.

Conclusion
This paper proposes an interactive fuzzy programming approach to 

find the optimal com-promise solution for an innovative capacitated, 
multi-objective, solid transportation problem with fuzzy fixed charge, 
fuzzy partial varying transportation charge and vehicle cost. Here the 
transportation model is more realistic and flexible in nature. In the 
proposed problem the coefficient of objective function, resources, 
demands, and conveyances are taken as trapezoidal fuzzy number 
and approximated to corresponding nearest interval. Finally the 
solution procedures have been illustrated by an example. The present 
formulation and solution procedures can be applied to transportation 
problems with other and general fuzzy numbers.
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