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Background
Microbiota plays an important role, beneficial or harmful, in many 

aspects of environment and our daily life. The study of microbial genetic 
material obtained directly from environmental/clinical samples, the 
so called metagenomics, has become a widely-used methodology 
to learn about a microbial community [1]. Aiming to characterize 
microbial communities residing in natural ecosystems or biologically 
host associated systems, metagenomic samples have been taken from 
various kinds of environments: seawater [2], soil [3], mine drainage 
[4], human or animal’s oral cavity [5,6], gut system [7,8], and so on. 
One of the major interests from collecting these samples is to reveal 
the diversity and abundance of biochemical functions associated to a 
microbial community [9].

Protein coding sequences (CDSs) contained in genomes can 
indicate the potential for a microbial community to encode proteins, 
which link to different biochemical functions in cells. Categorizing 
CDSs into one family if the proteins they encode perform the same 
function, and tabulating the relative abundances among all the families, 
is a widely adopted practice for functional profiling of a metagenomic 
sample [10]. Specifically, in a metagenomic study, the sequencing 
reads are translated to all possible reading frames and then aligned 
against a protein/domain sequence database, for example, the Clusters 
of Orthologous Groups of proteins (COG) [11,12] or Eukaryotic 
Orthologous Groups of proteins (KOG) [13], the collections of protein 
families PFAM [14] and TIGRFAMs [15], such that a read can be 
assigned to a protein functional family. The list of all the detected 
functional families and the corresponding proportions of counts of the 
reads to these families present the functional profile of the metagenomic 

sample. This is the so called read-count approach [16].

The next-generation sequencing (NGS) technologies such as 
Roche’s 454 Life Sciences, Illumina/Solexa, and Applied Biosystems’ 
SOLiD adopt an array-based work flow, which is exponentially faster 
than traditional chain-termination methods. These technologies do not 
require DNA cloning, and thus can avoid the cloning bias associated 
with the traditional Sanger sequencing technology [17]. Meanwhile, 
the sequencing cost has been dramatically reduced. These advantages 
have made the NGS technologies more and more preferred. Currently, 
one can hardly find a metagenomic project which does not choose a 
NGS technology.

Compared to Sanger sequencing, NGS technologies produce 
relatively short reads. Some NGS platforms produce sequencing reads 
with average length about 100 bases. However, it has been shown that 
the mean length of CDSs is highly conserved in prokaryotes, and is 
estimated to be about 924 base pairs [18]. Thus, when a translated short 
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Abstract
Background: Categorizing protein coding sequences into one family, if the proteins they encode perform the same 

biochemical function, and then tabulating the relative abundances among all the families, is a widely-adopted practice 
for functional profiling of a metagenomic sample. By homology searching of metagenomic sequencing reads against a 
protein database, the relative abundance of a family can be represented by the number of reads aligned to its members. 
However, it has been observed that, for short reads generated by next-generation sequencing platforms, some may 
be erroneously assigned to the functional families they are not associated to. This commonly occurred phenomenon 
is termed as cross-annotation. Current methods for functional profiling of a metagenomic sample use empirical cutoff 
values, to select the alignments and ignore such cross-annotation problem, or employ summarized equation to do a 
simple adjustment.

Result: By introducing latent variables, we use the Probabilistic Latent Semantic Analysis to model the proportions 
of reads assigned to functional families in a metagenomic sample. The approach can be applied on a metagenomic 
sample after the list of the true functional families being obtained or estimated. It was implemented in metagenomic 
samples functionally characterized by the database of Clusters of Orthologous Groups of proteins, and successfully 
addressed the cross-annotation issue on both in vitro-simulated, bioinformatics tool simulated metagenomic samples, 
and a real-world data.

Conclusions: Correcting cross-annotation will increase the accuracy of the functional profiling of a metagenome 
generated by short reads. It will further benefit differential abundance analysis of metagenomic samples under different 
conditions.
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read is aligned to a protein/domain sequence, the alignment actually 
finds the sequence similarity between the translated read and a fragment 
of the protein/domain sequence. This may affect the alignment accuracy. 
First, it may violate an assumption for BLAST [19,20] to compute the 
significance of sequence similarity, which requires that the lengths of 
two sequences compared are sufficiently long [21]. Researchers had to 
use different “conventional” or “empirical” cutoff values to choose the 
alignments with significant sequence similarity, for example, BLAST 
E-value cutoffs 10-3, 10-5 [7,9,22]. It has been observed that, a large part 
of homologues, which can be detected by BLAST searching with long 
reads, are missed by searching with short reads using these E-value 
cutoffs [22]. In our recent paper [23], we proposed taking a number 
between 63 and 68 (default as 66) of BLAST similarity score as the 
cutoff to choose homologues, when aligning short reads with ~100 
bases against COG database. We further suggested, through comparing 
the alignment output by RPS-BLAST on the same sample, to estimate 
artificial COGs in the BLAST output after cutoff.

Zhang et al. [16] pointed out another issue in the read-count 
approach with short reads, that is, different functional families tend 
to have different proportions of wrong annotations. We observed 
the same problem when analyzing the in vitro-Simulated data set 
M_4X (details later). For example, in the BLAST searching output 
after filtration by the score cutoff 66, the counts of reads assigned to 
COG0642, COG5001, COG2199, and COG2200 are 12172, 18, 4584 
and 3543 respectively. But, only partial numbers of these reads truly 
originate from the CDSs to which they are associated. There are 7757, 
12, 1669 and 1117 such reads correspondingly. This indicates that a 
non-negligible proportion of aligned reads, for example 4415 (12172 
minus 7757) reads to COG0642, are actually associated to other COGs. 
Meanwhile, we know that the true counts of reads to these four COGs 
should be 10573, 5071, 2241, and 1751 respectively. This implies 
that many reads from a COG, for example 2816 (10573 minus 7757) 
reads from COG0642, can be erroneously assigned to other COG 
families. These phenomena together define cross-annotation and are 
demonstrated in Figure 1.

The above examples show that the problem of cross-annotation is 
not trivial and will greatly affect the accuracy of the functional profiling 
if not being addressed properly. In this paper, we propose a method 
to mitigate the cross-annotation effect and improve the accuracy of 
estimates of read counts assigned to the functional families.

Methods
In construction of functional profile of a metogenomic sample 

by the read-count approach, given the total number of reads and the 
probability that a read is generated from a COG family, the expected 
count of reads originated from the family can be easily calculated 
following a multinomial rule. Thus, accurately estimating the 
probability that a read is generated from a COG can certainly reduce 
the cross-annotation effect. We apply Probabilistic Latent Semantic 
Analysis (PLSA, details next) to estimate these probabilities, and then 
the proportions of reads originated from the estimated existing COGs.

Input data

The metagenomic short reads with about 100 bases are BLAST 
(specifically, blastx) aligned against the COG database. A read is 
assigned to a COG family according to its best-hit association. The 
raw functional profile, consisting of the list of all detected COGs and 
corresponding relative abundances (quantified by the counts of reads 
assigned), may include artificial COGs and have the cross-annotation 
issue. Following the work-flow in Du et al., [23], the BLAST alignments 
with similarity score greater than 66 are retained and the artificial 
COGs are identified and removed. Furthermore, we treat a COG family 
as an artifact as well, if it has zero read count in the RPS-BLAST output 
after filtration by the similarity score 61. Then the input data for PLSA 
modeling consist of the following parts:

(1). The COGs, to which the sequencing reads have been aligned;

(2). The count of reads assigned to each COG in (1);

(3). The estimated existing COGs (that is, the non-artificial COGs), 
and one extra family which covers the CDSs that exist but 
are not classified into COG families, and all the existing non-
coding sequences in the sample.

PLSA modeling

PLSA is a statistical modeling technique originally developed for 
information retrieval from text collections [24]. In the following, we 
will show how PLSA modeling is used to correct the cross-annotations. 
Suppose that the metagenomic sequencing reads are aligned to N 
different COG families, of which there are M truly existing COGs (M 
≤ N). Define

A: one of the N COGs, denoted by a1, a2…aN, to which a read is 
aligned;

T: one of the M COGs, denoted by c1, c2…cM, from which a read 
originates;

αij: the probability of a read being aligned to ai given that it 
originates from cj, that is, αij=P(A=ai |T =cj) or P(ai | cj);

βj: the probability of an aligned read being from the COG cj in the 
metagenomic sample, that is, βj=P(T=cj) or P(cj);

yi : the observed count of reads being aligned to the COG ai;
u
irt : The unobserved value of T for the rth read aligned to COG ai, 

where r=1,…, yi.

Then, the probability of a read originating from cj and being aligned 
to ai is

P (A=ai, T=cj)=P (A=ai | T=cj) P (T=cj)=αij βj.

However, it is unobservable which COG an aligned read originates 

 

Figure 1: An example of cross-annotation in the aligned reads. (A) The 
true number of reads to each of the four COG families in the metagenome. 
(B) For each COG, only a partial number of the true reads being correctly 
assigned to the same COG. (C) In the alignment output, the read count to 
a COG includes the number of correctly assigned reads (from the same 
COG), and the number of erroneously assigned reads (from other COGs).
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• M step. In this step, we seek the maximizer of ( )( )kQ θ θ  , that is, 

find  θ(k+1)=argmax ( )( )kQ θ θ .
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Using the Lagrangian method to maximize this function with 
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where i =1,…, N, j =1,…M.
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where j=1,…,M. For any parameter, the iteration continues until the 

from. Thus, for any COG ai and the corresponding count yi, the 
probability that the rth read (r=1,…, yi) is from one of the M COGs, c1, 
c2 … cM, and aligned to ai can be written as:
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Note that this sum has only one non-zero term because a read originates 
from only one COG.

For any i∈{1,2,...,N}, under the assumption that a read being aligned 
to COG ai is independent of another read being aligned to ai , we have 
the following likelihood function of (αi1, αi2,…, αiM,β1, β2,…, βM):
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Further assume that a read being aligned to COG ai is independent of 
the read being aligned to another COG, then the likelihood function 
and the log-likelihood function of (α, β) are
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where α denotes the vector ( )11 12 1 21 22 2 1 2, , , , , , , , , , , ,M M N N NMα α α α α α α α α ′⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ;   β 

denotes the vector ( )1 2, , , Mβ β β ′⋅⋅⋅ ;  y  denotes the vector ( )1 2, y , , yNy ′⋅ ⋅ ⋅ ; and 
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Given the observed counts {yi}, our goal is to find the estimates 
(Maximum Likelihood Estimates, MLEs) of parameters α, β. However 
this could not be done by maximizing the likelihood directly since tu, 
the realization of T, is unobservable. Nevertheless, by treating T as a 
latent variable, we can apply the Expectation-Maximization (EM) 
algorithm to search for the MLEs of α, β. Next, we describe in detail the 
iteration steps of the algorithm, but postpone the setting of the initial 
values to Section 4.3.

•	 E step. In this step, we calculate the expected value of the 
log-likelihood function with respect to the condition distribution of T 
| y, θ(k), where θ(k) stands for the current estimate of θ=(α,β)'. By Bayes' 
rule, for a read being aligned to COG ai, the conditional probability that 
it is from COG cj is
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absolute change of two consecutive estimates is less than 10-6.

After the convergence of E-M iterations, PLSA modeling constructs 
the below decomposition of the vector of observed read counts, by 
introducing the latent variables:
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The approximation symbol is used to reflect the fact that the left 
hand side is a vector of integers (counts), while the decomposition in 
the right hand side may result in non-integer output. The MLEs of βj' 
s will then serve as the estimate of the proportions of the estimated 
existing COG families. Then, the estimated read count to COG cj can 
be computed as

1

ˆˆ
N

j i j
i

y y β
=

  
=   

  
∑ ,

where [ ] denotes the round function and ˆ
jβ is the MLE of βj, j= 

1,2,…,M. We implemented PLSA modeling in R (http://www.r-project.
org). An R script is available upon request.

Statistical learning about the initial values for PLSA modeling

Generally, the result by iterative MLE approach is sensitive to the 
initial values, since the algorithm may reach the local maximization. 
Two assumptions have been made in order to learn the initial values 
of parameters. First we assume that, for the reads originating from the 
CDSs associated to a common COG, the frequencies of reads assigned 
to different COGs are similar across samples. Second, for the reads 
aligned to a common COG, the frequencies of the reads originating 
from CDSs associated to different COGs, which appear in considered 
samples, do not change dramatically either. Thus, we can learn the 
distributions from one simulated metagenomic sample, and then use 
the learned distribution to set the initial values for PLSA modeling for 
another simulated or real sample.

 The learned L
ijα  was computed as the percentage of the reads 

being aligned to COG ai among the reads originating from COG cj, in 
the learning sample. Let jiγ  be the conditional probability of a read 
originating from cj given it being aligned to ai. Empirically, the learned 

L
jiγ  was calculated as the observed relative frequency of reads 

originating from cj in all the reads assigned to ai. In the following, we 
describe in detail how to set the initial values for PLSA modeling in a 
sample different from the learning sample.

The initial value of α

(1) For an estimated existing COG family cj, which is also present 

in the learning sample, we directly take L
jiα  as the initial value if the 

corresponding aligned COG appears in both samples. Otherwise, if the 
corresponding aligned COG appears in the new sample only, the initial 

value is set as the ratio of the remaining probability, 1
L
ij

i
α

∈

−∑


, and 

the number of the aligned COGs that appear in the new sample only, 
where i∈  means that the summation is over all the aligned COGs 
appearing in both samples. 

(2) For an estimated existing COG family shown in the new 

sample but not in the learning sample, we set the equal initial value as 

probability 
1
N

 for each aligned COG.

The initial value of β

(1) For an estimated existing COG family cj, which is also in the 
learning sample, the initial value for L

jβ  is set as, 

1

L L i
j ji N

i
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l

y
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where i ∈   has the same meaning as above.

(2) For the estimated existing COGs shown in the new sample only, 
they share the same initial value, that is, the ratio of the remaining 

probability, 1 L
j

j
β

∈

−∑


, and the number of the estimated existing COGs 

appearing in the new sample only.

Results
Results from the in vitro-simulated metagenomic data set

We used the simulated metagenomic datasets M2 and M3 in 
[25], which are 4X read-coverage data, and named M2_4X and 
M3_4X here. In the simulations, sequencing reads with about 100 
bases were produced for different preselected bacterial genomes by 
454 GS20 platforms. The description about these genomes is given 
in Supplementary file. These data were generated through a genuine 
sequencing process; therefore they can best capture the characteristics 
of the sequencing errors introduced by 454 GS20 platforms. The 
related genome references were downloaded from NCBI website, with 
the files that contain the locations of COG coding sequences (COG-
CDS) on the genomes. BLAST (that is, blastn) was applied to align 
the short reads against the references. The best-hit alignment with 
identical match greater than 95% determined where a read comes from 
(genome, location), otherwise the read was excluded. If the location of 
a read overlaps with the coverage of a COG-CDS by at least 60 bases, we 
consider this COG as the correct annotation for the read.

Following the steps given in Section 2.1, M3_4X were BLAST 
aligned against the COG database, and the output alignments with 
similarity score greater than 66 were kept to serve as a learning sample. 
M2_4X is the data set we used to evaluate the proposed methods. In 
Figure 2 we compare the propositions of COG families generated with 
("After PLSA" in the plot) and without ("Before PLSA" in the plot) 
our proposed method to the true propositions. Note, since here we 
address the cross-annotations within the filtered BLAST result, the 
true proportions in the plot were generated by the reads with similarity 
scores above 66 only. The left panel presents the propositions of the 
20 most abundant truly existing COGs; while the right panel lists 
the accuracies of the estimates of the complete functional profiles, 
evaluated by four measurements: 
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the total variation distance (DTV): 
1

1

1 ˆ| |
2

M

j j
j

β β
−

=

−∑  [26-28]. For each 

of the four measurements, the lower the value, the more accurate 
the method is. Both panels in Figure 2 indicate that the accuracy of 
the functional profiling of M2_4X is further improved by applying the 
PLSA method.

We also compared the functional profiles, in Figure 3, generated 
separately by our PLSA modeling method, the method proposed in 
Zhang et al., [16], and the two currently used E-value cutoff methods 
(1e-3, 1e-5). Note, in order to compare different methods, the 
true proportions are generated using all the sequencing reads with 
detected genomic locations. Due to the facts that Zhang’s method was 
summarized from a single simulation, and that the problems of both 
artificial families and cross-annotations are ignored by the E-value 
cutoff methods, the abundance proportions of certain COGs are 
skewed greatly in the profiles generated by these methods. In the true 
profile, COG2814 is ranked the fourth abundant family; however, it 
is ranked the 27th in Zhang’s method, the 196th and 243th abundant 
in the profiles by E-value cutoff at 1e-3 and 1e-5 respectively. In the 
profile by our method, this functional family is correctly annotated as 

the fourth abundant one. Similar situations can be observed for the 
families: COG4191, COG5001 and COG2271 (left panel in Figure 3). 
For example, COG5001 is ranked the 14th, 13th, 2246th, 2230th and 2215th 
abundant respectively in the true profile, the profiles by our method, 
Zhang’s method, E-value cutoff at 1e-3 and 1e-5. Its actual proportion 
of 0.0047 is closely estimated as 0.0056 by our method; but the 
estimation drops dramatically to 3.9e-6, 6.6e-6 and 4.6e-6 respectively 
in the other three profiles, erroneously indicating that the family is very 
trivial. On the other hand, we observed that certain trivially abundant 
entries in the true profile, such as COG0784 (1866th), COG0067 (2024th) 
and COG0506 (2255th), become non-trivial in profiles by Zhang’s 
method and the methods of E-value cutoff (not appear in the plot). 
As an example, COG0784 becomes non-trivial (ranks the 77th, 27th and 
70th respectively) in the profiles by the three methods. Evaluated by 
the above four measurements, the estimate of the complete functional 
profile by our PLSA method also shows the best accuracy (the lowest 
bar in the right panel in Figure 3).

Results from metagenomic data set simulated by a 
bioinformatics tool

The numbers of species in the samples in Section 5.1 are 7 (M2_4x) 

 

Figure 2: Comparison of COG functional profiles of M2_4X before and after the cross- annotation corrected by PLSA modeling: the 
estimated proportions of the truly most 20 abundant COGs (left); the accuracies of the estimates of the complete functional profiles, 
evaluated by the four measurements (right).

 

Figure  3:  Comparison of  COG  functional  profiles  of  M2_4  generated  by  the  different methods: the estimated proportions of the truly 
most 20 abundant COGs (left); the accuracies of the estimates of the complete functional profiles, evaluated by the four measurements 
(right).
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and 8 (M3_4X), usually smaller compared to the real-life metagenomic 
data. Thus, in this subsection, we would evaluate the proposed method 
on a metagenomic sample with large species diversity. We randomly 
selected 100 NCBI bacterial genome accession numbers (in the format 
of NC_######), among which 57 genomes were excluded in the 
simulation since they were for plasmid DNA sequences. MetaSim, a 
bioinformatic tool to simulate sequencing reads according to selected 
genomes, was used to generate the metagenomic data set, called Simu. 
The data set contains the short reads of 43 genomes with coverage one 
under the simulated conditions of 454 GS20 sequencing platform (see 
a brief description about these genomes, and the parameters used for 
simulation in Supplementary File). Since we know exactly where a read 
originates from, we did not use the blastn step as we did in Section 5.1. 
As before, the correct annotation of a read is defined as the COG whose 
coverage overlaps with the location of the read by at least 60 bases. To 
apply our method for modelling this simulated data set, we selected 
the learning data as the combination, called M_4X (available upon 
request), of all the three 4X read-coverage data sets of the simulated 
metagenomes M1, M2 and M3 in [25]. The reason we combined these 
4X read-coverage data as the learning set is that this would provide 
us with more observed reads originating from a common COG, thus 

we will have a better statistical learning result about the distribution 
of these reads being aligned among COGs. On the other hand, with 
more reads being aligned to a common COG, we would have a better 
learning about the distribution of reads originating from COGs as well. 
The results presented in Figure 4 exhibit the profiles of COG families 
generated before and after applying the proposed PLSA modeling 
method. The finding is similar to those from Figure 2 in that the 
accuracy of the functional profiling can be improved by the proposed 
method, except the AVGRE measurement. A partial explanation for 
this is that the proposed method smooth the relative errors.

The comparison between PLSA modeling approach and the other 
three methods using data set Simu is presented in Figure 5. It is clear 
that (the left panel) the proportion of COG2814 is poorly estimated 
by the three methods (the true proportion: 0.0082; the proportion 
by Zhang’s method: 0.0017; the proportion by cutoff 1e-3: 0.00048; 
the proportion by the cutoff 1e-5: 0.00045). The estimation is greatly 
improved to 0.0057 by our method. As a trivial abundant family, 
COG0784 has the true proportion of 1.9×10-5, which is estimated as 
3.07×10-5, by our method (not appear in the plot). Its abundance is 
greatly inflated to a significant entry in the profiles generated by the 
two E-value cutoff methods (the cutoff 1e-3: 0.0013; the cutoff 1e-5: 

 

Figure 4: Comparison of COG functional profiles of Simu before and after the cross-annotation corrected by PLSA modeling method: 
the estimated proportions of the truly most  20  abundant  COGs  (left);  the  accuracies  of  the  estimates  of  the  complete functional 
profiles, evaluated by the four measurements (right).

 

Figure 5: Comparison of COG functional profiles of Simu generated by different methods: the estimated proportions of the truly most 20 
abundant COGs (left); the accuracies of the estimates of the complete functional profiles, evaluated by the four measurements (right).
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0.0011). For the estimate of the complete functional profile, PLSA 
modeling method provides the best accuracy giving the lowest error in 
each of four measurements (the right panel in Figure 5).

Application of the proposed method on a real data set

A picoplanktonic sample was collected from 25m-depth seawater 
at the Hawaii Ocean Time Series (HOT) station on March, 2006. It was 
then sequenced with 454 GS20machine to yield 385,193 short reads 
of 108 bases long on average [2]. We name this data set as HOT25. 
By using M_4X as the learning data, we applied he proposed PLSA 
modeling approach to correct the cross-annotations in its BLAST 
output (the one after filtration with similarity score cutoff 66). For the 
top 20 most abundant COGs estimated by PLSA modeling method, 
Figure 6a shows the discrepancy of the abundances given by the four 
approaches (the PLSA modeling method, Zhang’s method, E-value 
Cutoffs 1e-3 and 1e-5). Unlike the simulated data, prior information on 
COG families for real data are not available, and thus, cannot be used 
to show the closeness of these profiles to the true one. The comparison 
of the complete functional profiles is displayed in Figure 6b, with the 
profile generated by Zhang’s method being excluded since it is too 
different to compare. We can see that some COGs are estimated as very 
trivial ones by PLSA modeling method, but significant ones by E-value 
cutoff methods (the red/orange triangles close to the right tail of the 
blue curve).

Table 1 lists three functional families, COG1028, COG0642 and 
COG0477, with corresponding proportions estimated by the methods 
and the ranks of abundances in each generated profile. A recent 
study has detected COG1028 is the most abundant COG family in 
the metagenomic samples from HOT station, the second abundant 
in the samples collected from western Arctic Ocean, and the third 
in the samples from the coastal water near Cape May, NJ [29,30]. 
The COG1028 belongs to the COG category I, Lipid transport and 
metabolism, demonstrating the universally important roles in different 

latitude of seawater. The PLSA modeling method also ranks COG1028 
as the most abundant one inthe HOT25 sample, but the other methods 
do not reach to the same conclusion. Thefamily COG0642 comes from 
COG category T, Signal transduction. This mechanism is important for 
microbes to cope with changing environmental conditions. The role of 
COG0642 has been examined in many seawater related metagnomic 
projects; its abundance level is found varied in different depth of water 
since the environmental stimuli, such as temperature and sunlight, are 
different [31-34]. For the HOT25 sample, the COG0642 is estimated 
as the 51st abundant family by the PLSA modeling method, but ranked 
verydifferently, 86th and 131th separately, by the E-value cutoff 
methods. There are also some research records about COG0477. In 
order to understand how bacterioplankton transform dissolved organic 
carbon in marine systems, Mou [35] conducted metagenomic analysis 
of bacterioplankton enriched with dimethylsulfoniopropionate 
(DMSP) and vanillic acid (VanA). Sequencing reads with an average 
length of 97 bases were obtained by pyrosequencing. The reads were 
aligned to COG database, and theabundance of each COG family was 
obtained. Furthermore, PCR-based 16S rDNAanalysis was also carried 
out in the same project. For COG0477, its abundances in both DMSP 
and VanA samples were found very high by the metagenomic approach; 
but, interestingly there are no genes associated to COG0477 in the 
genomes detected by 16SrDNA analysis using the same samples. This 
is another supporting evidence aboutartifacts and cross-annotations 
when short reads being annotated. Note that different fromE-value 
cutoff methods, both PLSA modeling method and Zhang’s method give 
zero abundance to this family.

Discussion
Due to the fact that a microbial community usually includes 

multiple strains or similarspecies, the algorithms for assembling 
sequencing reads generated from a single genome are not applicable 
to metagenomic reads. On the other hand, accurate assembly really 
depends on sufficient sequencing depth [36], while a metagenomic 

 

Figure 6:   Comparison of COG functional profiles of HOT25: (a) the estimated proportions of the truly most 20 abundant COGs; (b) the 
complete functional profiles generated by PLSA modeling, E-value cutoff at 1e-3 and 1e-5.

PLSA Zhang’s E 1e-3 E 1e-5
prop. rank prop. rank prop. rank prop. rank

COG1028: Dehydrogenases with different specificities 0.0062 1 0.01 3 0.0059 3 0.0049 13
COG0642: Signal transduction histidine kinase 0.0022 51 0.0031 22 0.002 86 0.0018 131

COG0477: Permeases of the major facilitator superfamily 0 NA 0 NA 0.0015 161 0.0011 276

Table 1: Proportions and ranks of three COGs by different methods.
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sample generally consists of data with lower sequencing depth. Prior 
to 2013, the development of metagenomic assembly was evaluated as 
“in its infancy” [37,38], “at an early stage” [36]. And, to our knowledge, 
since 2013, there has been no breakthrough that can provide a 
widely accepted assembling tool. Therefore, we chose to analyze the 
unassembled short reads directly in this study. There might be an 
argument that assembled reads would reduce the cross-annotations. 
However, as a recent study indicated, there is a price for using 
assembled reads – it can bring in a considerable proportion of chimeric 
contigs [39], which is even harder to deal with in our opinion. Analysis 
of unassembled metagenomic reads is one of the approaches currently 
employed to study microbial communities [40-43]. Our method can be 
adapted to handle short reads with different lengths (e.g. ~200 bases), 
given a good alignment cutoff value and a trustable learning data set. 
We conducted the study specifically on reads with ~100 bases owing 
to two reasons: first, the alignment cutoff value for reads with ~100 
bases has been suggested [23], and PLSA modeling method was applied 
on the filtered result; second, through literature search, the in vitro-
simulated metagenomic samples are only available with this length 
range. Should similar samples with other lengths become available, we 
will enlarge the application scope of the method.

In addition to the issues of artificial COGs and cross-annotations, 
it has been reported in the literature that another problem exists with 
read count bias in metagenomic data [16]. Briefly speaking, the count 
of reads aligned to a COG family is correlated with the lengths and 
the conservations of COG-CDSs associated to the COG. This bias may 
have impact on the accuracy of the functional profile of COG families 
and deserves further investigation. To study and correct the read bias is 
one of our future research topics.
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