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Introduction
Copy number alterations (CNAs) are key genetic events in 

the development and progression of numerous human diseases. 
Recent advances in high density microarray technologies enable 
high-throughput genome-wide profiling of DNA copy number; see 
[1,2]. Using the array-based comparative genomic hybridization 
(array-CGH) technology, the average genomic DNA copy number at 
thousands of locations linearly ordered along the chromosomes can 
be quantitatively measured [3]. Since cancer genes are more likely to 
be found in common or recurrent regions in the sequence of CNAs 
across patients of the same cancer [4], one is more interested in finding 
recurrent CNA regions that consist of continuous probes and show 
evidence of alteration in some samples [5].

During the past years, a large number of computational and 
statistical methods have been developed to locate the recurrent CNA 
regions across samples, see reviews and comparisons of these methods 
in [5,6]. Most of these methods involve a two-step procedure, in which 
the first step is to identify the gain and loss regions in individual samples 
and the second step is to make inference on recurrent regions based on 
a threshold for occurrence frequencies. Examples of these approaches 
can be found in [7-14]. As the first steps of these approaches require 
segmentation of individual samples, they may strengthen or weaken 
some important information in recurrent regions. In contrast to two-
step methods, one-stage approaches analyze raw data directly and 
avoid the information change in the two-step process. Recently, several 
statistical approaches have been proposed along this line, including 
score-based approach [15,16] hierarchical hidden Markov model 
[17], Bayesian hidden Markov model [18] kernel smoothing methods 
[19,20] analysis of variance approach, and likelihood-based test for 
simultaneous change-points [21]. Most of these methods involve 
a hard segmentation procedure. However, for complex alteration 
profiles across samples, identified recurrent CNA regions vary greatly. 
This indicates that hard segmentation procedures may be difficult for 
identification of recurrent regions, and instead, an inference procedure 
on the probability of recurrent regions might be necessary.

In this paper, we propose for the analysis of recurrent CNAs a 
stochastic segmentation model and associated inference framework. 

The proposed model has a hierarchical hidden Markov structure 
which make the inference framework associated to our model possess 
attractive statistical and computational properties. The hierarchical 
hidden Markov structure in our model is similar to that in Shah et al. 
[7], but our model allows different “quantitative” states conditional on 
a given “categorical” state, while the model in Shah et al. [7], assumes 
all “quantitative” states are same for a “categorical” state. Specifically, 
we assume a finite state hidden Markov chain for (categorical) states 
of recurrent regions across samples, and then conditional on the 
categorical state, signal levels (or “quantitative states”) of CNAs in each 
sample follow a sample-specific continuous state hidden Markov chain. 
As a working model, although these assumptions seem to complicate 
for obtaining an inference procedure, they actually provide us more 
flexibility to model the non-simultaneity feature of break points 
across samples and yields explicit recursive formulas for posterior 
distributions of hidden “categorical” states (i.e., the recurrent CNA 
region) and sample-specific “quantitative” states (i.e., the signal levels 
of CNAs in individual samples) at each probe, whereas the model in 
Shah et al. [7], has to rely on Monte Carlo simulations.

Our stochastic segmentation model assumes that the log 
fluorescence ratios ylt for sample l∈ {1, . . . , L} measured through the 
array-CGH technology follow that ylt=θlt + σl∈lt (t=1, . . . , T), in which 
θlt are independent standard normal random variables, and θlt are 
piecewise constant whose values at location t follow a prior distribution 
that depends on a hidden Markov chain st with three categorical states 
(gain, baseline 0 or loss). In this specification, θit and st represent the 
true signal levels of CNAs in sample l and the gain-loss states across 
the L samples at location t. When st shifts from one categorical state 
to another, signal levels (or quantitative states) θlt  in sample l jump to 
a new state, whose prior distribution depends on st, hence θlt may be 
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Abstract
Recurrent DNA copy number alterations (CNAs) are key genetic events in the study of human genetics and disease. 

Analysis of recurrent DNA CNA data often involves the inference of individual samples’ true signal levels and the cross-
sample recurrent regions at each location. We propose for the analysis of multiple samples CNA data a new stochastic 
segmentation model and an associated inference procedure that has attractive statistical and computational properties. 
An important feature of our model is that it yields explicit formulas for posterior probabilities of recurrence at each 
location, which can be used to estimate the recurrent regions directly. We propose an approximation method whose 
computational complexity is only linear in sequence length, which makes our model applicable to data of higher density. 
Simulation studies and analysis of an ovarian cancer dataset with 15 samples and a lung cancer dataset with 10 
samples are conducted to illustrate the advantage of the proposed model.
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different from the quantitative states whose corresponding categorical 
states are same as st. Making use of this specific hierarchical model 
structure, we compute the posterior distributions of θlt and sl based 
on explicit recursive formulas that are derived using forward and 
backward filters of the hidden Markov model. The forward-backward 
filters in our model can be considered as a non-trivial extension of the 
Baum-Welch algorithm and similar to those developed by [22-24]. 
The difference of our forward-backward filters from previous work is 
that the hidden categorical and quantitative states in our model have a 
hierarchical structure and the top layer hidden states become a finite-
state Markov chain. As the problem of locating recurrent CNA regions 
intrinsically involves much computation, to reduce the computational 
complexity of our inference procedure, we further consider a bounded 
complexity mixture approximation scheme so that the computational 
complexity becomes linear. Another discussion we have made is that, 
since all model hyper parameters are unknown in real applications, 
we propose to estimate all hyper parameters by an expectation-
maximization (EM) algorithm.

The rest of the paper is organized as follows. Section 2 provides the 
model details and develops an inference procedure. It also discusses 
some computational issues and proposes a bounded complexity 
mixture approximation scheme and a hyper parameter estimation 
algorithm. Section 3 shows the performance of our model and associated 
inference procedure via intensive simulation studies. Section 4 analyzes 
two groups of CNA data, one is on ovarian cancer based on 15 samples 
and the other is on lung cancer based on 10 patients. We identify the 
recurrent CNA regions related to those cancers and demonstrate that 
our result is consistent with that in current medical studies. Section 5 
provides some conclusive remarks.

A Stochastic Segmentation Model
Model specification

We consider the problem of analyzing DNA copy number profiles 
from multiple distinct biological samples {ylt: 1 ≤ l ≤ L, 1 ≤ t ≤ T }, 
where ylt is the observed log fluorescence ratio at location t of sample l, 
T is the number of probes, and L is the number of samples. To estimate 
recurrent signals, we assume the following model for ylt:

ylt=θlt + σl∈lt,	                                                                 (1)

in which ǫlt are independent Gaussian random errors with mean 
0 and variance 1, σl

2 are sample-specific error variances and {θlt} is the 
true signal level of CNA of sample l at location t. Since we want to 
find recurrent regions across all L samples, we assume that recurrent 
regions can be represented by a “master” sequence of categorical states 
{st}, where st ∈ {G, O, S} (gain, baseline 0, loss) is an irreducible hidden 
Markov chain with probability transition matrix P=(pij) and stationary 
distribution π. Then given the master sequence {st}, the dynamics of θlt 
in sample l is expressed as

{ } { }1 , 1 1 , 1  1  θ θ− − −= = + ≠lt t t l t t t lts s s s z 		                   (2)

in which zlt are independent normal variables with mean z (l,st)  and 
covariance v(l,st) . 

In the above model assumption, the existence of stationary 
distribution π could define us a reversed chain for {st}, and it further 
implies that the Markov chain {θlt} has a stationary distribution. 
Moreover, if we further assume that θl0 is initialized at the stationary 
distribution, {θlt} become a reversible Markov chain, which provides 
substantial simplification for the smoothing estimates of {θlt} and 
st. We should note that this assumption is to simplify the estimation 

procedure. It may not reflect the real situation since the probability 
of amplification or deletion might be different across the whole 
chromosome.

The assumption that the master sequence of states is common 
across all the samples may not be necessarily true in practice, and it is 
only an approximation for the fact that most samples share a unique 
profile signature. This assumption is used in some models to obtain 
an estimation procedure with reasonable computational complexity 
for identifying recurrent CNAs; see Shah et al. The assumption also 
implies that the model is not suitable for a class of samples that consists 
of several disease subclasses with each subclass having a unique profile 
signature. For sample with disease subclass, we need to know the 
information about disease subclasses before applying the above model. 
Furthermore, assumption (2) indicates that signal levels θlt with same 
categorical states could be different.

Filtering estimate

Let { }1
( )      :      · · ·    −= ≤ ≠ = = =k

t i i tJ max i t s s s k  be the most recent 
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conditional distribution of θlt given Y1,t becomes a mixture of normal 
distributions:
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Smoothing estimate 

Our model assumptions imply that the stationary distribution of 
θlt exists and is given by (l,k) (l,k

1
)N(z , v )π

=∑ k
kk . This indicates that, if θlt is 

initialized at its stationary distribution, its time-reversed Markov chain 
can be defined. This substantially simplifies the smoothing estimates 
of θlt. Actually, it further implies that {θlt} is a reversible Markov chain, 
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so we can reverse time and obtain a backward filter that is analogous 
to (4):

( ) (l, )(1, )
1, 1, 1,1 1 1,l,t 1 | ( , ),θ η+ + +=+ = + +∑ ∑

kK T kk
t T t j t jK j t t j

y N vz                     (7)

Where the mixture weight 
( )

1,η +

k

t j is given by 
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in which rk t t+1 kr rp  = P(s  = k|s  = r) = p /π π k is the transition probability of 
the reversed chain of {st}. Since 1,T , 1 , 1 1,T( | ) ( ) ( )θ θ θ θ+ + + +∈ = ∈∫tt t tt l t l t tp A Y p A dP Y , 
it follows from (8) and the reversibility of {θt} that
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Next, we shall use Bayes’ theorem to combine the forward filter (4) 
with its backward variant (9) to estimate θlt given TY  (1 t < T), (1 l < J)≤ ≤ , 
which is expressed as the following mixture of normal distributions

( ) (l, )(l, )
T ,, ,

1 1  
| ( , )θ α
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k kk

lt t jij t t j
k i t j T

Y N vz ,                                 (10)

In which the mixture weights 
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 Therefore, from (10), it follows that

( ) (l, )
1,T ,,

1 1
( | )θ α

= ≤ ≤ ≤ ≤
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k

k k
tt i jij t

k i t j T
E Y z            		                (12)

1,t t 1, tt( | ) ( | ) ( | )θ θ θ+lt lt n ltf Y f Y f Y                                   	              (13) 

Figure 1 provides a schematic explanation for the above algorithm. 

For location t, the algorithm first decomposes conditional distributions 
1,t( | )θttf Y  and t 1,( | )θ +tt nf Y  based on the most recent switching location 

of st before and after t, then use Bayes theorem to combine these two 

distributions and obtain tt( | )θttf Y . 

Bounded complexity mixture approximations and hyper 
parameter estimation

The number of mixture weights in the above discussion increases 
dramatically with t (or n), resulting in rapidly increasing computational 
complexity and memory requirements in estimating θlt as t keeps 
increasing. To address the issue of computational efficiency, we 
follow Lai and Xing and use a bounded complexity mixture (BCMIX) 
approximation procedure with linear computational complexity; see 
Web Appendix B for details of the algorithm.

The inference procedures involve the hyper parameters p, 
probability transition matrix P, and 2(l,k) (l,k)

1
{z , v , ;1 k K, 1 l L}σ ≤ ≤ ≤ ≤ . In 

practice, these [(K − 1) K + (2K + 1) L + 1] parameters are unknown and 
should be replaced by their estimates. We consider an EM algorithm to 
estimate all hyper parameters with the details given in Web Appendix 
C.

In practical applications, we should also notice that the three 
categorical states in the above model are exchangeable; hence the 
categorical states st could be very difficult to identify. A remedy for 
this is to replace the normal priors for θlt by truncated priors, then the 
filtering and smoothing formulas in Sections 2.2 and 2.3 needs to be 
modified somewhat. Specifically, the normal distribution in conditional 
distribution (10) needs to be replaced by corresponding truncated 
normal distributions. Another way to mitigate the identification 
issue is to put constraints on hyper parameters. For example, a prior 
normal distribution with smaller variances could limit the estimated 
quantitative signals staying around its prior mean, so the distinction 
between the categorical states becomes clearer.

Simulation Studies
We now perform intensive simulations to evaluate the performance 

of the proposed model and inference procedure from frequentist and 
Bayesian viewpoints. To demonstrate the performance, we consider 
two measures for different purpose. One measure is mean square error 
(MSE), which provides the mean errors between the estimates θ̂lt  and 
the true θlt, i.e., 2

1 1

1 1MSE:= ( ˆ )θ θ
= =

−∑ ∑ lt lt
T L

t lT L
  and the other is mean 

identification rate (IR), which evaluates the accuracy of our inference 
on the hidden states st. As our model only computes the posterior 
probability of st given Y1,T , we estimate the state of location t as the 
one which maximizes the posterior probability of being in categorical 

state k, i.e., t k t 1,Tŝ := argmax {P(s  = k|Y  )}  With the above estimate, 

we define the mean identification ratio as 
t tˆ{s s }1

1IR:= 1 ==∑T

tT
.

We first evaluate the performance of BCMIX estimates in the 
frequentist setting by considering the following four cases of hidden 
state {st} with K=3. 

t {1 t 200} {201 t 400} {401 t 1000}

t {1 t 500} {501 t 700} {701 t 1000}

t {1 t 200,401 t 600,801 t 1000} {201 t 400} {601 t 800}

Case 1. s = 1.1 + 2.1 + 3.1 .

Case 2. s = 1.1 + 2.1 + 3.1 .

Case 3. s = 2.1 + 1.1 + 3.1 .

Case 4

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

t {1 t 200,401 t 600,801 t 1000} {201 t 300,601 t 700} {301 t 400,701 t 800}. s = 2.1 + 3.1 + 1.1 .≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

  

Given the above {st}, we generate θlt by assuming θlt ∼ N (z(l, st ), v(l, st )) 
with (z(l,1), z(l,2), z(l,3) )=(1, 0, −1), v(l,1)=v(l,2)=v(l,3)=0.22 (hence the standard 
deviation is about 0.47). We further assume L=10, T=1000, and generate 
observations ylt by (1) and ( )2

1   1   1,  . . . ,  σ = =l L . We then use the EM Figure 1: A schematic plot of forward-backward algorithm.
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ratios are about 70%), but they are typically smaller than ours.

Real data studies
Analysis for Ovarian cancer data

Ovaries are reproductive organs that produce eggs in women, and 
ovarian cancer is the fifth leading cause of cancer death in women. 
Ovarian cancers display a high degree of complex genetic variations. 
The existing literature show that the most frequently affected 
chromosomes in ovarian cancer are chromosome 1, 8, and 17. We 
use our model to analyze the copy number alteration (CNA) data for 
Ovarian serous cystadenocarcinoma (OV) based on Array based-CGH 
technology. The data in our analysis, consisting of the CNAs from 15 
OV cancer patients, were published on April 1st, 2010 in the Cancer 
Genome Atlas (TCGA) database (http://cancergenome.nih.gov/). We 
analyze the whole 23 chromosomes. Since the existing literature shows 
that the most frequently affected chromosomes in ovarian cancer 
are chromosomes 1, and 17, we only present our result on these two 
chromosomes.

There are 55,274 and 20,009 probes on chromosomes 1 and 17. Let 
k=1, 2 and 3 denote amplification, baseline and deletion, respectively. 
We first use the proposed model and inference procedure to estimate 
the hyper parameters, and then the signal levels θlt and probability of st 
for chromosomes 1 and 17. We run our model on a desktop with Intel 
core i5-3210M and 4G memory, and it takes 223 and 109 seconds for 
chromosomes 1 and 17, respectively. The results are summarized in Web 
Figures 2 and 3, respectively. We can see that our procedure analyzes 
all samples and estimates signal θlt for each sample simultaneously, 
which avoid the weakness of two-stage analysis. As our interest here is 
the recurrent CNA region, we now focus on the estimated probabilities 
of st, which are plotted in Figure 2. Those estimated probabilities 
indicate that the recurrent copy number amplifications involve regions 
1p34.2, 1p12, 1q23.2 and 1q42.3, and deletions involve regions 1p36.33, 
1p36.21, 1p36.13, 17p11.2 and 17p12. Well known tumor suppressor 
genes TP73 (1p36.33), TP53 (17p13.1), BRCA1 (17q21), oncogene 
MYCL1 (1p34.2), and transcription factors RAI1 (17p11.2), SREBF1 
(17p11.2) are found recurrent regions of copy number variants. Our 
results are consistent with earlier studies [26-28]. It is important to note 
that for chromosome 17, we focus on detecting the recurrent regions of 

algorithm to estimate the hyper parameters and compute the BCMIX 
estimates with (M, m)=(10, 5), (20, 10), (30, 15) and (40, 20). For 
comparison purpose, we also compute oracle estimate which assume 
{st} is known. We then run such simulation for each case 500 times, 
and summarize the MSE of two estimates and corresponding standard 
errors (in parentheses) in Web Table 1. We can see that the oracle and 
BCMIX estimates are quite similar, and the difference among BCMIX 
estimates with different (M, m) are quite small. Therefore, we will use 
BCMIX estimate with (M, m)=(20, 10) in the following discussion.

We then evaluate the performance of the inference procedure 
under our model assumption. Let K= 3, (z(l,1), z(l,2), z(l,3))=(1, 0, −1), 
v(l,1)=v(l,2)=v(l,3)=0.16, and 2

1   1 σ = for 1 ≤ l ≤ L=10. The probability 
transition matrix ( )

1 ,≤ ≤ij i j K
p of {st} is assumed to follow nine scenarios. 

Specifically, for Scenarios ,    1,  2,  . . . ,5kS k = , we let pij=0.001×2k−1 
for 1      3i j≤ ≠ ≤ . For Scenario S6, (p12, p13, p21, p23, p31, p32)=(0.002, 
0.001, 0.002, 0.002, 0.001, 0.002). For Scenario S7, (p12, p13, p21, p23, 
p31, p32)=(0.004, 0.001, 0.004, 0.004, 0.001, 0.004). For Scenario S8, 
(p12, p13, p21, p23, p31, p32)=(0.001, 0.002, 0.001, 0.001, 0.001, 0.001). For 
Scenario S9, (p12, p13, p21, p23, p31, p32)=(0.001, 0.004, 0.001, 0.001, 
0.001, 0.001). For each scenario, we first generate samples of different 
lengths with T=3000, 5000, 7000, then use the proposed EM algorithm 
to estimate the hyper parameters and estimate θit and P (st|Y1,T ). Web 
Tables 2 and 3 summarizes the MSE and IR of our estimate, and also 
provided in parentheses are the corresponding standard errors based 
on 500 simulations in each cell. We can see that the MSE are very small, 
and the IR is all larger than 84%.

Since data generation procedures in above studies do not deviate 
from our model assumption too much, to show the variability of our 
model, we also evaluate the performance of our algorithm on the 
data in Willenbrock and Fridly and [25], which are generated from 
a completely different procedure, and compute the MSE between the 
estimates θ̂lt  and the true signals θlt. The MSE of 100 datasets with 20 
samples and each sample with 500 clones on Chromosome 1 is 0.011 
with standard error 5.89e-4, indicating the estimates for signals in 
individual samples is still pretty good. Web Figure 1 demonstrates a 
randomly selected simulated ylt and θ̂lt  for 20 samples.

We next compare our model to the hierarchical hidden Markov 
model (HMM) in Shah et al. [7]. Specifically, we estimate all hyper 
parameters by the EM algorithm, and then fit the hierarchical HMM 
model to the simulated data generated in Scenarios S1-S9. Since Shah 
et al. assume the signal levels θlt of individual CNAs follow a normal 
distribution with the mean and variance depending on the hidden state 
st directly; it implies that the individual signal levels are fixed within 
the same segment of recurrent CNA regions. This is different from our 
model which allows signal levels θlt of sample l have different values at 
different locations t even if their categorical states st are same, which 
is more realistic in practice. Furthermore, our algorithm avoids the 
use of Markov Chain Monte Carlo algorithm, hence computationally 
is very fast. We run all simulations on a desktop with Intel core i5-
3210M and 4G memory, for each simulation of 10 samples with sample 
length T=3000, 4000, 5000 and 6000, our algorithm takes about 2.8-6 
seconds to obtain the estimates for θlt and sl , while the hierarchical 
HMM model takes over 10-20 minutes to get its estimates. Web Table 
3 summarizes the identification ratios and the corresponding standard 
errors (in parentheses) using Shah et al.’s model for different settings. 
Each cell is based on 100 simulations. We shall note that the hidden 
states st in our setting are very close to each other due to the large signal-
to-noise ratios, hence it is not easy to make a correct state calling. The 
identification ratios of the hierarchical HMM are very good (all their 

Figure 2: Estimated P (st=k|Y1,T) of chromosomes 1 (The top two) and 17 (The 
bottom two) for k=amplification (The 1st and 3rd panels) and deletion (The 2nd 
and 4th panels).
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copy number deletions, since the most common alterations for serous 
histology of OV cancer are deletions of 17p [26,28,29].

There are totally 178 and 136 unique known genes involving in 
recurrent CNA regions for chromosomes 1 and 17 respectively. These 
known genes are subjected to pathway exploration using the Ingenuity 
Pathway Analysis (IPA) software (Ingenuity Systems, Redwood City, 
CA). Significantly enriched pathways with Fishers exact P-values 
less than 0.05 are listed in this bar plot as shown in Figure 3. Yellow 
square line in the figure represents ratio which is the number of focus 
genes in the pathway divided by the total number of genes that make 
up that pathway. For chromosome 1, most of the pathways are related 
to cancer. Notably, as listed on the 7th, the breast cancer signaling was 
found enriched. Furthermore, a few hormone metabolism pathways 
are involved, which includes PXR/RXR activation, Estrogen receptor 
signaling and Aldosterone signaling in Epithelial Cells. This is 
consistent with current knowledge of disrupted hormone metabolism 
pathways as important causal factors in breast cancer [30-32]. In 
addition, a few important cellular pathways are revealed: The NRF2-
mediated oxidative stress response turns out to be most significantly 
changed in the list, which has been related to breast cancer. The 
G-protein signaling pathway, which is well-known to be related to 
cancer, is listed on the second. A basic transcription factor related 
pathway is ranked on the 3rd. And listed on the 4th, Ubiquitination 
regulates degradation of cellular proteins by the ubiquitin proteasome 
system, controlling a proteins half-life and expression levels. A change 
of ubiquitination activity is associated with ovarian tumorigenesis, 
so the protein ubiquitination pathway might be involved in breast 
ovarian progression. Finally, one of the most important developmental 

pathway in mammals, Notch signaling also known to play a role in 
cancer [33]. For chromosome 17, the pathway enrichment result 
reveals some biological mechanisms and pathway changes involved in 
ovarian cancer. First obviously, the ovarian cancer signaling pathway 
was found enriched. Particularly, the GADD45 and p53 signaling 
pathways are enriched. Both these two factors, especially p53, are well 
established tumor suppressor proteins. More importantly, almost half 
of the pathways are basic and critical cellular processes such as DNA 
repair, cell cycle regulation and apoptosis. Changes in these pathways 
indicate severe disruptions of normal cellular functions. This could be 
either the cause or the result of cancer.

Analysis for lung cancer data

There are two main types of lung cancer, small cell lung carcinoma 
(SCLC) and non-small cell lung carcinoma (NSCLC) [34]. NSCLC is 
the most common type of lung cancer, accounting for about 85% of 
total lung cancers. NSCLC is mainly comprised of adnenocarcinoma, 
squamous cell carcinoma and large cell carcinoma. About 30% of lung 
cancers are squamous cell carcinoma. Previous cancer studies have 
revealed that multiple tumor suppressor genes are involved in deletions 
at multiple chromosomal regions in lung carcinogenesis, and the most 
frequent deletions in lung cancer tissues are at chromosome 3, 13 and 
17.

We use our model to analyze the CNA data for Lung squamous 
cell carcinoma (one type of non-small cell lung cancer) based on Array 
based-CGH technology. The data used in our study, consisting of the 
CNAs from 10 cancer patients, were published on October 22nd, 2010 
in the Cancer Genome Atlas (TCGA) database (http://cancergenome.
nih.gov/). We analyze the whole 23 chromosomes. Since the existing 
literature shows that the most frequently affected chromosome in 
this type of lung cancer is chromosomes 17, we present our result on 
chromosome 17.

There are totally 13,575 probes on chromosome 17. Let k=1, 2 
and 3 denote the amplification, baseline and deletion. We first use the 
proposed model and inference procedure to estimate hyper parameters 
and then fit the model to the data. We run our model on a desktop 
with Intel core i5-3210M and 4G memory, and it takes 30 seconds for 
chromosome 17. The estimated signal levels θlt for chromosomes 17 are 
summarized in Web Figure 4. We can see that our procedure analyzes 

Figure 3: Canonical pathway analysis of detected genes on chromosomes 1 
(top) and 17 (bottom).

 

Figure 4: Estimated P (st=k|Y1,T) of chromosomes 17 for k=amplification (The 
1st panels) and deletion (The 2nd and 4th panels).



Citation: Xing H, Cai Y (2015) A Stochastic Segmentation Model for Recurrent Copy Number Alteration Analysis. J Biomet Biostat 6: 221. 
doi:10.4172/2155-6180.1000221

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 6 of 7

Volume 6 • Issue 1 • 1000221

all samples and estimates signal θlt for each sample simultaneously, 
which avoids the weakness of two-stage analysis. As our interest here is 
the recurrent CNA region, we now focus on the estimated probabilities 
of st, which are plotted in Figure 4. Those estimated probabilities 
indicate that the recurrent copy number amplifications at long arm 
of chromosome 17, which contains the oncogene ERBB2 at 17q12. 
Two regions of deletion can be found at short arm and long arm of 
chromosome 17 respectively, which contain the well-known tumor 
suppressor genes TP53 at 17p13.1, BRCA1 and CRHR1 at 17q21.31. 
Our results are consistent with earlier studies [35,36].

Conclusions
We have developed a stochastic segmentation model and an 

associated inference procedure for recurrent CNA data. The model 
implies explicit recursive formulas for both the posterior distribution 
of individual samples’ signal levels and the probabilities of the cross-
sample recurrent events at each probe. This further suggests the 
estimate of the recurrent states of CNAs. To speed up the computation 
for practical purpose, an approximation to the exact explicit formulas 
is developed, and the computational complexity is reduced to linear 
order. Estimation of hyper parameters involves an explicit EM 
algorithm which is described in the Web Appendix D.

In Section 4, we have analyzed two real datasets to illustrate the 
application of our model. In particular, we identify the recurrent 
CNAs regions using the copy number data for ovarian serous 
cystadenovarcinoma and non-small lung cancer carcinoma that are 
produced by the array-CGH technology. The estimated CNA regions 
by our model are consistent with the biological discovery in medical 
study. For ovarian serous cystadenovarcinoma, we further perform a 
canonical pathway analysis to evaluate our result, and find our pathway 
enrichment results yield significant pathways and most of them are 
cancer related pathways. Our result based on chromosomes 1 and 17 
already reveals certain biological mechanisms and pathway changes 
involved in ovarian cancer. These facts demonstrate that our model can 
successfully capture recurrent CNA regions and generate promising 
results in biological context.
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