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Introduction 
A star is a dense mass that generates its light and heat by nuclear 

reactions, specifically by the fusion of hydrogen and helium under 
conditions of enormous temperature and density. Stars are like our 
sun. The star is powered by hydrogen fusion. The fusion only takes 
place at core of the star where it is dense enough. The “life” of a star 
is the time during which it slowly burns up its hydrogen fuel, and 
evolves only slowly in the process. The star is in force balance between 
pressure and gravity. It is also in energy balance between production 
by fusion reactions, transport by photon radiation, and loss from the 
surface by the (usually) visible radiation by which we can detect the 
star. The “birth” of a star refers to the process by which it is formed 
from diffuse clouds of cold gas that are present in its galaxy. A cloud 
collapses to form a number of stars when it is disturbed so that its 
gravity overcomes its motion and pressure. The “death” of a star occurs 
when its fusion fuel, first hydrogen and then heavier nuclei, has run 
out. This can be very violent if the star is very massive, ending in things 
like a black hole and/or a supernova, perhaps leaving a neutron star 
behind. If the star is not very massive, like the Sun or even smaller, 
it ends by ejecting part of its atmosphere and then settling down to a 
cold, dense white dwarf. Harm and Schwarzschild (1955) has shown 
that the maximal possible mass of the star is 60MÅ and minimum mass 
of star is 0.01MÅ. The chemical element of star is hydrogen, helium 
and other heavier elements. If hydrogen, helium and other element 
were denoted by X, Y and Z, respectively. Then X+Y+Z=1. For the sun 
X=0.73, Y=0.25 and Z=0.02. 

Energy Production in Stars
A normal main sequence star derives energy from its nuclear source. 

Enormous amount of energy are continually radiated at a steady rate 
over long spars of time; for example the sun radiates approximately 1041 
ergs per year. Those thermonuclear reactions do produce energy. That 
a star can derive energy from thermonuclear reaction is understood 
from the following example, 4 1H1=2He4 + 2b+ + 2ν + γ. That means 
four hydrogen atoms combine to give one helium atom with the 
production of two positrons (b+), two neutrinos (ν) and radiation (γ). 
Energy production mainly in two ways (i) Proton-Proton chain (PP 
chain) (ii) Carbon-Nitrogen chain (CN chain).

Hydrostatic equilibrium of Star
Consider a cylinder of mass dm located at a distance r from centre 

of the star with height dr and surface area A at the top and bottom 
as shown in Figure 1. Also denote Fp.t and Fp.b to be the pressure 
forces at the top and bottom of the cylinder respectively If Fg<0 is the 
gravitational forces on the cylinder then from Newton’s second law we 
have

2

. .2 g p t p b
d rdm F F F
dt

= + +                   (1)

Defining the change in pressure force dFp across the cylinder by 

Fp.t=-(Fp.b+ dFp)

Then gives 
2

2 g p
d r F dF
dt

= −                     (2)

The gravitational force on the small mass dm is given by
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Figure 1: Illustration of hydrostatic equilibrium of tar.
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radial in which time variations are very important [1]. Let Lr is the rate 
of energy flow a across of sphere of radius r and Lr+dr for radius r+dr.

Now, the volume of the shell=4pr2dr. If r is the density, then mass 
of the shell is illustrated in Figure 3.

=4 p r2rdr.

The energy released in the shell can be written as 4pr2rdre, where 
e is defined as the energy released per unit mass per unit time. The 
conservation of energy leads that 

2
r dr r

2

2

L L 4 dr

4 dr

4

r
dL r
dr

dL r
dr

π

π

π

+ − = ρε

⇒ = ρε

∴ = ρε

This is the equation of energy conservation.

Energy Transport in Stellar Interior
Energy transport in stellar interiors occurs by three mechanisms, 

i.e., radiation, convection and conduction.

Radiation

Photons carry energy but constantly interact with electrons and 
ions. Each interaction causes the photon, on average, to lose energy to 
the plasma. ⇒Increase in gas temperature.

Convection 

Energy is carried by macroscopic mass motion (rising gas) though 
there is no net mass flux. If the density of an element of gas is less 
than that of its surroundings, it rises ⇒Schwarzschild criterion for 
convection [2]. 

Conduction

Energy is carried by mobile electrons, which collide with ions and 
other electrons, but still make progress through the star. The diffusive 
nature of this process makes it describable in a way similar to radiative 
transport.

Radiative energy transport

If the condition of the occurrence of convection is failed then 
radiative transfer occurs. The energy carried by radiation per square 
meter per second i.e., flux Frad can be expressed in terms of the 
temperature gradient and a coefficient of radiative conductively lrad 
as follows 

rad rad
dTF = -
dr

λ  					                       (10)

2

(r)
g

M dmF G
r

= −  				                         (3)

From the definition of pressure as the force per unit area we have

p
FP dF Adp
A

= ⇒ =  				                   (4)

Putting eqns. (3) and (4) in eqn. (2)
2

2 2

(r)d r M dmdm G Adp
dt r

= − −  			                     (5)

Assuming the density of the cylinder is r, then its mass is dm=rAdr, 
Now eqn. (5) becomes

2

2 2

( )d r M r AdrAdr G Adp
dt r

ρρ = − −

Dividing by volume of the cylinder gives
2

2 2

( )d r M r dPG
dt r dr

ρρ = − −

Assuming the star is static the acceleration term will be zero which 
then leads to

2

( )dP M rG g
dr r

ρ ρ= − = −  				                   (6)

Where 2

( )M rg G
r

=

This is the condition of hydrostatic equilibrium.

Mass Conservation
Consider a spherically symmetric shell of mass dMr with thickness 

dr and r is the distance from the centre of the star. The local density is 
of the shell is r (Figure 2). The shell’s mass is then given by dM=d Vr (r). 
Since δV=4πr2 δr. Then we have M=4πr2 δrρ(r)

2( ) 4 ( )dM r r r
dr

π ρ⇒ =  				                   (7)

In the limit where d r ® 0 which is the mass conservation equation. 
Now, the volume of the shell = 4pr2dr. If r is the density, then mass of 
the shell = 4 pr2rdr. The energy released in the shell can be written as 
4 p r2rdre, where e is defined as the energy released per unit mass per 
unit time. The conservation of energy leads that

2 2
r dr rL L 4 dr 4 drdLr r

dr
π π+ − = ρε ⇒ = ρε

24dL r
dr

π∴ = ρε  				                    (8)

Energy Conservation
Consider a spherical symmetric star in which energy transport is 

r 

dMr 

r+dr 

Figure 2: Mass conservation vs. local density is of the shell.

  r 

r +dr 

Figure 3: Energy conservation vs. rate of energy flow.
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Where –ve sign indicates that heat flows down the temperature 
gradient. Assuming that all energy is transported by radiation. We will 
now drop the suffix rad,

dT-
dr

F∴ = λ  					                      (11)

Astronomers prefers to work with an inverse of the conductivity 
known as opacity which opacity

34
3
acTκ
λ

=
ρ

 					                   (12)

Where a is the radiation density constant, c is the speed of light.

From eqn. (12) we have 
34

3
acTλ
κ

=
ρ

 		                 (13)

Putting eqns. (13) in eqn. (11) we have
34

3
acT dTF

drκ
= −

ρ
 				                      (14)

We know flux and luminosity equation is
24 FL rπ=

L = -
2 316ac r T dT

3 dr
π
κρ

 from eqn. (14)

2 3

dT 3
dr 6ac r T

κρ
π

⇒ =  				                    (15)

This equation is known as the equation of radiative transfer.

Convective Energy Transport
Let 

*
1ρ and *

1P  be the density and pressure inside the blob in its 
original position, the corresponding quantities outside being r1 and P1. 
In its displaced position, let 

*
2ρ  and *

2P  be the density and pressure 
inside the blob white corresponding quantities outside be r2 and P2. 
Before the perturbation, 

*
1ρ = r1 and *

1 1P P=  after the perturbation 
*

* * 2
2 1 *

1

P
P

ρ ρ
 

=  
 

 and *
2 2P P=

Where g is the ratio of specific that p

v

C
C

and has the value 5/3 for 

highly ionized gas. The layer may be stable if *
2 2ρ ρ> . Therefore mass 

motion will occur if 
*
2 2ρ ρ< . Now we have from the above equations 

1/
* * 2
2 1

1

P
P

γ

ρ ρ
 

=  
 

The equilibrium is stable if
1/

2
1 2

1

P
P

γ

ρ ρ
 

> 
 

And the equilibrium is unstable if 
1/

1 2ρ ρ
 
 
 

Let P1=P(r) andr1=r(r) P2=P(r+dr) and r2=r(r+dr)dr 

From stable condition we have 
1/

2 2

1 1

P
P

γ
ρ
ρ

 
> 

 

From unstable condition we have 
1/

2 2

1 1

P
P

γ
ρ
ρ

 
< 

 
which implies

1/
P(r + dr) (r + dr)>or <

P(r) (r)

γ
ρ
ρ

 
 
 

Or
1/1 11 1

rdP dPdr or dr
P dr P dr

   + > < +   
   

Expanding left side of the above inequalities in Taylor series and 
neglecting higher order terms

we have 
1/1 11 1

rdP ddr or dr
P dr dr

ρ
λ ρ

  + > < +  
   

1 1dP dor
P dr dr

ρ
γ ρ

⇒ > <

We know 

TKP
H
ρ

µ
=

Taking log and differentiating we have

1 1 1dP d dT
P dr dr T dr

ρ
ρ

= +

For stability condition we have

1 1 1dP dP dT
P dr P dr T drγ

> −

11 dP P dT
dr T drγ

 
⇒ − − > − 

 
Therefore mass motion will occur when

11 dP P dT
dr T drγ

 
− − < − 
 

Schwarzschild (1958) has shown that the temperature gradient for 
the convection is well represented by

11dT T dP
dr P dTγ

 
= − 
 

 				                   (16)

which is known as convective energy transport equation.

Schwarzschild Method and Variable
When one is searching for the numerical solution to a physical 

problem, it is convenient to re-express the problem in terms of a set 
of dimensionless variables whose range is known and conveniently 
limited. This is exactly what the Schwarzschild variables accomplish 
[3]. Define the following set of dimensionless variables

rx
R

=  					                   (17)

( )M rq
M

= 					                    (18)

( )L rl
L

=  				                                  (19)

4

2

4 R(r)p P
GM
π

=  				                    (20)

(r) R Rt T
GMµ

=  					                   (21)

3( )
4

M pr
R t

ρ
π

= 				                   (22)

Note that the first three variables are the fractional radius, mass 
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and luminosity, respectively and after three variables represented the 
pressure, temperature and density. In addition, let us assume that the 
opacity and energy generation rate can be approximately by

and 
16

0 03.5 6,
10CN
Tpp XX

T
ρκ κ ε ε ρ   = = ×   

   
 

where k0=4.34 × 1025 × Z(1+X)

Putting eqns. (17), (18), (20) and (19) in eqn. (6), we have
2

4 2 2 3( ) 4 4
d GM p GqM M p

d Rx R R x R tπ π
 

= − 
 

 

Again, putting eqns. (17), (18) and (22) in eqn. (7), we have
2 2

5 5 2

2

4 4
GM dp GM pq

R dx R tx
dp pq
dx tx

π π
⇒ = −

⇒ = −
 			                (23)

Again, putting eqns. (17), (18) and (22) in eqn. (7), we have

2

2

4
4

2 2
3

d M p(qM)= R x
d(xR) R t

M dq M px
R dx R t
dq px
dx t

π
π

⇒ =

⇒ =

 		                                  (24)

Now putting eqns. (17), (19), (22) and (21) in eqn. (9), we have

2
0 6

2 16 16

0 96

16 18
2 2 140

96 19

2 2 14

4 16
10

1 1( G)
4 10

1G). . .
4 10

2 2
CN

CN 3

CN

d T(lL)= R x XX
d(xR)

L dl M p tMXX
R dx R t R R

dl XX M p x t
dx R LR
dl Dp x t
dx

π ε ρ

ε µ
π

ε µ
π

 ×  
 

     = × ×     
     

 ⇒ =  ×  

⇒ =

             (25)

Where 
16 18

0
96 19

1( G)
4 10

CNXX MD
R LR

ε µ
π

 = × × × ×  

Again putting eqns. (17), (19), (21), (22) and (23) in eqn. (15), we 
get

16 18
0

96 19

1( G)
4 10

CNXX MD
R LR

ε µ
π

 = × × × ×  

2
0

2 2 6.5

6.52 6.5
0

2 2 3

3
16

3
16 4

d GMt lL
d(Rx) R R acR x T

dtGM
R dx

lL M p R R
acR x R t t GMt

µ κ ρ
π

µ

κ
π π µ

  = × 
 

⇒

    = − × × ×    
     

7.5 0.5 2
0
3 5.5 2 8.5

2

2 8.5

3 1
256

dt LR p l
dx ac G M x t
dt p lC
dx x t

κ
π

 ⇒ = −  
 

⇒ = −

Where 
7.5 0.5

0
3 5.5

3 1
256

LRC
ac G M

κ
π

 =  
 

 			               (26)

Putting eqns. (17), (19) and (20) in eqn. (16) we have

2
5

dt t dp
dx p dx

=  					                      (26)

Finally we have the full set equations
2dq px

dx t
−

=  					                    (27)

2dq px
dx t

−
=  				                                       (28)

2 2 14dl Dp x t
dx

=  					                (29)

2

2 8.5

dt p lC
dx x t

= −  (Radiative layer)		                                   (30)

2
5

dt t dp
dx p dx

=  convective layer 			                     (31)

which are subject to the boundary conditions

q(0)=l(0)=0 and q(1)=l(1)=1.			                  (32)

If the star has a convective core, then all the energy is produced 
in a region where the structure is essentially specified by the adiabatic 
gradient and so the energy conservation equation (29) is redundant. 
This means that the D is unspecified and the problem will be solved by 
determining C alone. Such a model is known as a Cowling model [4].

Solution of the Model
Since the model star is likely to have a small convective core with 

a radiative envelope, in principle we have two solutions, one is the 
envelope and another is the core. The two solutions must match at the 
interface.

a)	 Polytropic core solution

b)	 Envelope solution

Polytropic core solution

Eliminating q from eqns. (27) and (28) we have
2 2 2 2d tx dp px d tx p dt px

dx p dx t dx p t dx t

d dt px
dx dx t

   
− = ⇒ − =   
   

 ⇒ − = − 
 

 	                   (33)

Now introducing the polytropic variables h and q , defined by
1/ 22

5/ 2 5,
2

c
c

c

tp pc t t x
p

θ θ η
 

= = =  
 

Where pc and tc are the central pressure and temperature in non-
dimensional. Now putting the value of p, t and x in (3.4), we have

1/ 2 1/ 22 5/ 2 2
2 2

2 2

5 2 5 2 5
2 5 2 5 2

c c c c

c c c

p d t p d pc ttc
t d p t d pc

θ θη η
η η

      =        
3

2 2 3/ 2
2

5 2
2 5

c c
c

c c

p t d d t
t p d d

θη η θ
η η
 

⇒ = − 
 
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2 3/ 2
2

1 d d
d d
θ θη θ

η η η
 

⇒ = − 
 

 			                (34)

Which is the Lane-Emden equation with index
3
2

n =

The general solution eqn. (34) is

2 4 6

2 4 6

1 3 / 2 3 / 2(8 3 / 2 5)1 .....
6 120 42 360

1 1 11 ......
6 80 1440

θ η η η

θ η η η

× −
= − + − +

×

⇒ = − + − +

For small h this is a rapidly convergent series. We take
2 41 11

6 80
θ η η= − +

Introducing Schwarz child homology variables defined by 

2

2

2

2

2

2

1/ 25/ 2 2

1/ 22

2
3/ 2

2

3/ 2

2

ln (r) (r)
ln (r)

.

5
2

2 1
5

2 5 1
5 2

5
2

2 5 1
5 2

1

33 ...
10

c c

cc c

c

c

c c

c c

M r dMU d
d r M dr

xR Mdq
qM Rdx
x dq
q dx

x px
tx dp t
p dx
p x

dpt
dx

p x
p dtt
t dx
px

dtt
dx

p t
t dt p

dt
p

p t
dt p
d

d
d

θ η θθ
η

θ η θθ
η

θ η θ
η

η

= =

=

=

= −

= −

−
=

= −

 
=  

 
 
 
 

=

= −

≅ − +

2

2 4

4

1/ 22

5/ 2

5/ 2 2

5/ 2 2 2

5/ 2

.

ln P
ln

4
4

5
2

5
2

5 1 ...
6 60

c

c

c

c

d r dPandV
d r p dr
xR GM dp

GM R Rdx
R

x dp
p dx

t
p d

pc t d
p

d n
d

π
π

η
θ

θ
η

η θ η
θ η

≡ − = −

=

=

 
 
 −

 
 
 

 
= − ≅ + + 

 

So as to good approximation 183
50

U V= − 		               (36) 

This gives the core solution in the U-V plane.

Envelope solution of the matching point

The envelope of the model star is radiative equilibrium. This 
structure is determined by equations (27), (28) and (30). The equation 
(30) contains an unknown parameter C. Our aim is to determine the 
correct value of C and obtain the envelope solution for the value of the 
parameter. In order to do this we have to solve the envelope solutions 
for different trial value of C and find which value of C the solution just 
matches the core solution at the interface. However the solution is not 
straightforward. Because of the existence of singularity at the surface, 
integration cannot be started right from the surface (x=l). To avoid this 
difficulty we have to look for series expansion of the variables about the 
singular point. The envelope solutions we have calculated numerically, 
however since the equations are singular at the surface, p=t=0. We have 
chosen the series expansion of the variables near the singular point in 
the following way [1,3]. Let 

2

2 2 2

2

8.5 2 2 8.5 2

2
8.5 2

8.5

2 2 4

2

4

1 1

2_

(1 )

dx x d
x

dp qp dp qp dp qp
dx tx x d tx d t

dpt qp
d

dt p dt pC C
dx t x x d t x

dt p dtC t Cp
d t d

dp px dq px dq pxAnd
dx t x d t d t

dq P
d t

ξ ξ

ξ ξ

ξ

ξ

ξ ξ

ξ ξ

ξ ξ

− = ⇒ = −

∴ = − ⇒ = ⇒ =
−

⇒ =

= ⇒ = −
−

⇒ = ⇒ =

= ⇒ = ⇒ = −
−

⇒ =
+

Here the singular point is x=0, since x=1 i.e., x=0. Now the series 
expansion of variables about x=0 can be easily done. By Fuchs theorem, 
a convergent development of the solution in a power series about the 
singular point having a finite number of terms is possible. We therefore 
take

n
0 1 n

n
0 1 n

( .... )

( .... )

u

v

t a a a

p b b b 

ξ ξ ξ

ξ ξ ξ

= + + +

= + + +

And n
1 2q 1 c ... nc cξ ξ ξ= + + + +

We have

( )

n n
0 1 n 0 1 n

n n
1 2 0 1 n

1 1
0 0 1 0 0 1 0

( .... ) { ( .... )}

1 c ... { ( .... )}

( ) .... ( ) ...

u v

v
n

u v u v v v
1 0 1

da a a b b b 
d

c c b b b 

a  b v a b v a b b b +b + c
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⇒ + + + = + +

Since the two polynomial are equal must have

u+v-1=v and u+v=v+1 and a0b0v=b0

u=1 and a0v=1.

we have
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Again equating the powers and coefficients we

have

2v=8.5 and 2 9.5
0 0cb a=

0
1v 4.25

4.25
and a= =

Again we have 
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 

Therefore, in the first approximation we have about ξ=0 i.e., x=1
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≈

=

 = − 
 

And q ≈1.

These relations determine the values of the parameters at any 
point near the surface. With these values as the boundary values the 
envelope equations can easily be solved numerically for given of C. C 
is an unknown constant whose value for a start of given mass depends 
on its luminosity and radius. For solar type stars C is of the order of 
10-6. We shall treat C as a free parameter and consider of values of close 
to 10-6. We take a point x=0.99 very near to the surface. Appropriate 
for convection, by the fourth order Runge-Kutta method for a number 
of trial values of C. Some of these calculations, namely for C=1.56e-6 
,C=5.6e-7 C=9.46e-7. Together with the convective track, equation 
(36), are drawn in the (U–V) plane (Figure 3) at the junction between 
the convective core and the radiative envelope both (U, V) and their 
derivatives must be continuous. So the curve for the correct radiative 
solution must touch the convective curve at the interface. Form Figure 
4 it is found that this happens for C=9.46e-7. This is the correct value of 
C for our model star.

Then from equation (6) the values of the parameters that point are 
found to be.

9
0

3
0

0

3.5136 10

2.3767 10
1

p

t
q

−

−

= ×

= ×
=

.

Taking these values as the boundary values we have integrated the 
equations for the radiative envelop numerically inwards up to where 

0.168 1x≤ <

For this value of C the matching point is at xf=0 .168 The radiative 
solution for the envelop is 0.168 1x≤ <  for c=9.46e-7 is given in Table 1

Radiative structure of the model star M=2.5, X=0.90, Y=0.09, 
Z=0.01 (solar Unit).

Core Solution of the Model
From the Table 1 we find that

pf=57.5 qf=0.147 tf=0.708 Uf=2.6253 vf=1.2323 also lf=1 at x=xf

Since all the energy is produced in the core. With these values as 
our boundary conditions we have to solve the core equations, namely 
equations (27), (28), (29) and (31) inwards numerically. In order to do 
this we need the correct value of D. This can be done by integrating the 
equation. Total luminosity,
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Since p and t are continuous at xf
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And also we have
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Figure 4: The core solution and the envelope solutions with different values of 
C in the UV plane.  
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Now substituting the value of Uf and Vf we get from the above 
equations, nf=1.20167 and hence we get from the above equations, θf=0 
78539

Therefore 5/ 2
f cp p θ=

5/ 2 5/ 2

57.506 105.19723
(0.78539)

fp
pc

θ
⇒ = = =

f c fAnd t t θ=

0.70834 0.9019
0.78539

f
c

f

t
t

θ
⇒ = = = .

Now substituting the value of pc tc and hf in the equation (37) and 
evaluating the integrating using Simpson’s one third rules, we have 
D=1.875173. Using this D in equation (29) we have integrated the 
core again by the fourth order Runge-Kutta method from the interface 
downward up to x=0.001. The Convective structure of the model star 
for M=2.5, X=0.90, Y=0.09, Z=0.01.

The envelope solution and the core solution together give the 
complete internal structure of the star. The complete structures are 
shown in Table 2.

The Convective structure of the model star for

M=2.5, X=0.90, Y=0.09, Z=0.01.

However, we yet to find the luminosity and the radius of star. From 
equation (26) we have

7.57.5 0.5
0
3 5.5

3 1
256

LR RC
ac G M

κ
π µ

  = × ×   
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 		               (38)

And from equation
16 18

0
96 19

1( G).
4 10

CNXX MD
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Eliminating L from above equation we have
8.58.5 12.5

18.5 0
96

3 ( G) 1
1024 10 4

CNXX MR
CDac R

κε µ
π

 = ×  ×  

Substituting all the values of the constants and parameters in 
equation (37) we have, R=1 .5011R⊕. And using this value of R in 
equation (38) we have the value of L, that is, L= 6 .4957 L.

Conclusion
In this paper we have assumed a non-rotating and non-magnetic 

star with mass 2.5MÅ. The structure of the star with Kramer’s 
opacity with negligible abundances heavy element i.e., the pressure, 
temperature, mass, luminosity and density at various interior point are 
determined numerically and non-dimensional result of the radiative 
envelope are shown in Table 1 and convective core in Table 2. However, 
the complete structure is shown in Table 3. We also determined the 
actual radius  R=1.5011 RÅ and total luminosity L=6.4957LÅ. And our 

X P q=Mr/M T p logp 1=Lr/L
  1.00E+000.00E+001.00E+00   0.00E+00      
1.E+00   3.51E-091.00E+00 2.E-03 5.E-07 -6.290871.00E +00
1.E+00   4.24E-081.00E+00 4.E-03 3.E-06 -5.469721.00E +00
1.E+00   2.32E-071.00E+00 6.E-03 1.E-05 4.904341.00E +00
  1.74E-015.50E+01 2.E-01   6.96E-012.74E+011438158   1.00E+00
  1.73E-015.54E+01 2.E-01   6.98E-012.75E+011.440059   1.00E+00
  1.72E-015.58E+01 2.E-01   7.00E-012.77E+011.441941   1.00E+00
  1.71E-015.62E+01 2.E-01   7.02E-012.78E+011443804   1.00E+00
  1.70E-015.67E+01 2.E-01   7.04E-012.80E+011.446415   1.00E+00
  1.69E-015.71E+01 1.49E+01   7.06E-012.81E+011.448236   1.00E+00
  1.68E-015.75E+01 1.E-01   7.08E-012.82E+011450039   1.00E+00

Table 1: Radiative structure of the model star M=2.5, X=0.90, Y=0.09, Z=0.01(solar unit). 

x P q t p log p L
2.E-01 6.E+01 1.44E-017.10E-   128.30E+00 1.0 1.E+00
  1.66E-015.84E+01 1.42E-017.12E-   128.50E+00 1454337 1.E+00
  1.65E-015.88E+01 1.40E-017.15E-   128.50E+00 1455476 1.E+00
  1.64E-015.92E+01 1.38E-017.17E-   128.70E+00 1457207 1.E+00
  1.63E-015.96E+01 1.35E-017.19E-   128.80E+00 1458922 1.E+00
  1.62E-016.00E+01 1.33E-017.21E-01   3.E+01 1.0 1.E+00
9.E-02 9.E+01 2.04E-02842E-01   4.E+01 2.0 5.E-01
9.E-02 9.E+01 1.96E-02844E-01   4.E+01 2.0 5.E-01
8.E-02 9.E+01 1.58E-02849E-01   4.E+01 2.0 5.E-01
8.E-02 9.E+01 1.51E-028.50E-01   4.E+01 2.0 5.E-01
8.E-02 9.E+01 1.44E-028.51E-01   4.E+01 2.0 5.E-01
5.E-02 1.E+02 1.E-03   8.68E-013.81E+01 2.0 2.E-01
5.E-02 1.E+02 1.E-03   8.68E-013.81E+01 2.0 2.E-01
5.E-02 1.E+02 7.42E-02 9.E-01 4.E+01 2.0 2.E-01
5.E-02 1.E+02 5.E-04   8.68E-013.82E+01 2. 2.E-01
5.E-02 1.E+02 2.E-04   8.68E-013.82E+01 2. 2.E-01
0.00E+00   0.00E+00       0.00E+00

Table 2: The envelope solution and the core solution.
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x P Q T P log p L
1.00E+00 0.00E+00 1.00E+00 0.00E+00

5.12E- -
1.E+00 4.E-09 1.00E+00 2.E-03 7 6.290871.00E+00

2.45E- -
9.E-01 1.13E-051.00E+00 2.E-02 4 3.610641.00E+00

2.53E- -
9.E-01 2.38E-041.00E+00 3.E-02 3 2.597571.00E+00

1.16E- -
8.E-01 2.E-03 1.E+00 5.E-02 2 2 1.00E+00

3.74E- -
8.E-01 8.E-03 1.E+00 7.E-02 2 142662 1.00E+00

Table 3: The Convective structure of the model star for M=2.5, X=0.90, Y=0.09, Z=0.01.

calculated results are in good agreement with the recent published 
results book Bohm-Vitense (W. Brunish). If the mass varies and 
composition fixed, then Teff and Rare found to varies but L is increase 
quite sharp. Again if hydrogen and heavy elements are increase, then 
R is increase but decrease L and Teff. For an increase in M the position 
of the star in the HR diagram is slightly shifted to toward the upper 
end of the main sequence. If the mass is constant then a decrease in 
the hydrogen content of the star increases luminosity and effective 
temperature. But as time goes on in the main sequence lifetime of a 
star its hydrogen content gradually diminishes giving rise to the helium 
content. That means, as a main sequence star ages its position in the HR 

diagram slowly moves along the main sequence toward the hot end. 
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