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Introduction
Breast cancer is one of the common malignant tumors among 

women. According to the statistics, the number of new breast cancer 
for the women worldwide is about 1.67 million in 2012. This high 
morbidity accounts for about 25% in all cancers [1]. If breast cancer 
can be early detected, it is one of the most treatable malignancies [2]. 
From 1990s, the mortality of breast cancer has an obvious decrease in 
developed countries, such as in Europe and America [3,4]. Different 
imaging modalities are under different theories and show different 
characteristics in breast cancer detection. The mammography is one 
of the most widely used methods for breast cancer screening [5]. 
When taken a mammogram, the breast needs to be compressed. In 
screening mammography, two breasts are imaged and two different 
views are taken for each breast. The two views are cranio-caudal 
(CC) and mediolateral-oblique (MLO). An example for the four view
mammograms is shown in Figure 1. The CC view is taken from a top
view. Only few mammograms show the pectoral muscle. The MLO
view is taken from an oblique view. The pectoral muscle is depicted
obliquely and stretches down to the level of the nipple or further down. 
The shape of the muscle should be curve or bulge outward.

Computer-aided detection (CAD) systems employ image 
processing technique and pattern recognition theory to detect and 
classify abnormalities in mammograms, which can provide an objective 
view to the radiologist [6]. The abnormalities in mammograms include 
micro-calcifications (MCs), masses, architectural distortion, and 
asymmetry. In the past several years, many related techniques for 
abnormalities detection and classification have been studied. The aim 
of this paper is to provide an overview of some CAD methods. The 
rest of this paper is organized as follows. In Section II, abnormalities 
detection methods are given. In Section III, abnormalities classification 
methods are introduced. In Section IV, content-based image retrieval 
(CBIR) in mammogram is briefly reviewed. The discussions are given 
in Section V, and conclusions are given in Section VI.

Abnormality Detection
MCs detection

MCs are tiny deposits of calcium that appear as small bright spots 
in mammograms. Extensive researches have been conducted for MCs 
detection.

Nakayama et al. [7] first decomposed the mammogram by 
filter bank. Then regions of interest (ROIs) were selected from the 

image. Eight features were extracted for each ROI. Finally the Bayes 
discriminant function was employed for distinguishing MC ROIs from 
normal ROIs. Kavitha et al. [8] presented an approach using filter 
bank, DCT and Bayesian classifier. The author applied the method to 
40 mammograms and 99% detection accuracy was reported. Halkiotis 
et al. [9] combined mathematical morphology and artificial neural 
network (ANN) for MC detection. Bhattacharya et al. [10] put forward 
a method based on wavelet transform, top-hat transformation and 
fuzzy c-means clustering to detect MC. A multi-stage detection system 
was given in Pal et al. [11]. First a back-propagation neural network 
was used to find the candidate calcified regions. Then the network 
output was cleaned using connected component analysis and an 
algorithm for removing thin elongated structures. Finally, a measure 
of local density was used for a final classification. Oh et al. [12] first 
segmented the breast region using grey level co-occurrence matrix 
(GLCM). Then, foveal method was used to extract candidate of MC. 
Finally, false positive (FP) MCs were removed using a set of 8 features. 
Peng et al. [13] employed stochastic resonance (SR) noise to detect 
MCs. Mohanalin et al. [14] presented a detection method using a type 
II fuzzy index. Tested on 247 mammograms, the author reported a true 
positive (TP) rate is 96.55% with 0.4 FPs per image. Harirchi et al. [15] 
gave a two-level system for MC detection in mammograms. In the first 
step, six features consisting of four wavelet and two gray level features 
were used as the inputs to a multilayer neural network classifier to 
detect candidate MC pixels. Then, 25 features from candidate MCs were 
extracted and geometric linear discriminant analysis (GLDA) was used 
to reduce the features to 10. Finally, diverse Adaboost support vector 
machine (SVM) was used as second level classifier. Oliver et al. [16] 
detected the MCs based on extracting local features for characterizing 
the morphology of the MCs. The developed approach automatically 
learns and selects the most salient features. Then a boosted classifier 
was used to detect individual MCs. Zhang et al. [17] first enhanced the 
MCs using well-designed filter. Then the subspace learning algorithm 
was used for feature selection. Finally a twin support vector machine 
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area under the receiver operating characteristics (ROC) curve is 0.988 
for 512 ROIs. Gargouri et al. [29] proposed a new local pattern model 
named gray level and local difference (GLLD) to represent a ROI. 
Using 1000 ROIs from Digital Database for Screening Mammography 
(DDSM) database, the author reported the area under the ROC curve 
is 0.95. Nascimento et al. [30] presented a system using a polynomial 
classifier and wavelet coefficients to differentiate normal from abnormal 
tissues. Tai et al. [31] put forward a system using local and discrete 
texture features for mammographic mass detection.

Multi-view detection

For interpreting the mammogram, a radiologist normally compare 
four mammograms of a case. When a suspicious region is found in LCC 
view, the corresponding regions in the LMLO and RCC are checked. 
If the region in LMLO is also suspicious, the likelihood of this region 
being abnormal is increased. If the region in RCC is normal tissue, the 
likelihood of this region being abnormal is also increased. Combing 
different projection views of the same breast called ipsilateral analysis. 
Combing the same projection view of the left breast and the right breast 
is called bilateral analysis. Methods combining information from 
multiple mammographic views simulate the radiologist interpreting, 
which may improve the CAD performance using single view. A number 
of abnormal detection methods using multiple views were also studied.

Sun et al. [32] presented an ipsilateral multi-view CAD scheme 
for mass detection. Concurrent analysis was first developed for CC-
MLO matching. Then a supervised ANN was employed as a classifier. 
Sahiner et al. [33] gave an MC detection scheme combining the CC 
view and the MLO view. Both the features of the CC-MLO pair and 
that of the candidate in the single-view were classified. The final 
detection result is the combination of these two classifiers. The author 
reported that the highest mammogram-based sensitivity by the CC-
MLO pair classifier was 69%. The single-view classifier had a maximum 
mammogram-based sensitivity of 93% with a higher FPs. The fusion 
method got a better performance compared with the CC-MLO pair 
classifier and the single-view classifier. Engeland et al. [34] built a 
cascaded multiple-classifier system for mass detection. First the pixel 
level features were extracted and classified. Then the suspicious pixel 
was located and segmented. Region level features were extracted and 
input to another classifier. Finally, regions in different views were 
linked and two-view features were extracted. The final output is the 
third classifier with two-view features as input. The results showed 
that the lesion based detection performance was improved compared 
with the single view CAD. However, case based sensitivity did not 
improve. An FP reduction method based on bilateral analysis was 
presented [35]. GLCM-based texture features and morphological 
features were extracted from the suspicious ROI and its corresponding 
ROI on the contralateral mammogram. Then bilateral features were 
computed. Linear discriminant analysis (LDA) classifiers were trained 
for unilateral features and the bilateral features, respectively. The final 
result was the third classifier with unilateral-LDA and bilateral-LDA 
as inputs. Velikova et al. [36] employed a Bayesian network to model 
the relationship between the CC view and the MLO view. Li et al. [37] 
developed a CC-MLO MC detection system based on spatial matching 
and feature matching. Samulski et al. [38] presented a multi-view CAD 
system in order to optimize the case-based detection performance. 
After the suspicious ROIs in each view were found. Geometry-based 
matching, features in single view and the malignancy score for the ROI 
were employed to extract the similarity feature. Then a correspondence 
classifier was trained using the similarity feature. The final result was 
the combination of two two-view classifiers. The author reported a 

(TWSVM) was developed for classification. Recently, Zhang et al. [18] 
presented a method based on a morphological image processing and 
wavelet transform. Zhang et al. [19] gave a method using mathematical 
morphology and SVM. The author reported a detection rate of 94.85% 
at 0.53 FPs/I.

Mass detection

The general procedure for mass detection has three steps. First, the 
suspicious regions are detected. Then the shape and texture features of 
the region are extracted. Finally FP regions are removed based on the 
extracted features.

Petrosian et al. [20] used the texture features computed from 
GLCM to distinguish between mass and non-mass regions. Tested on 
a small database, a difference in the training and testing results was 
found. Petrick et al. [21] obtained potential masses using an adaptive 
density-weighted contrast enhancement (DWCE) filter and Laplacian-
Gaussian (LG) edge detection. Then morphological features were 
extracted and input to a classifier to differentiate normal ROIs and 
mass ROIs. Campanini et al. [22] employed wavelet decomposition 
and SVM to detect masses in mammograms. The multi-resolution 
over-complete wavelet representation was first performed to the 
image. Then three expert systems were obtained under different SVM 
classifier. The final result was achieved by majority voting among the 
three systems. The author reported a detection rate of 80% with 1.1 
FPs/I. Cascio et al. [23] first used an edge-based algorithm to segment 
the boundary of a ROI. Then geometrical features and shape features 
were extracted. Finally a neural network was trained for recognizing 
true mass. The author reported a detection rate of 82% with 2.8 FPs/I 
under 3762 mammograms. Pereira et al. [24] used sixteen texture 
features to represent a ROI. Then nonparametric KNN classifier was 
trained to discriminant normal ROIs from abnormal ROIs. Guo et 
al. [25] compared five fractal dimension (FD) estimation methods in 
describing mass ROIs and normal ROIs. The author reported that FD 
of mass ROI was statistically significantly lower than that of normal 
ROIs for all five methods. Ke et al. [26] first employed bilateral analysis 
to detect mass candidate. Then FD and two-dimensional entropy were 
extracted from the ROI. Finally a SVM classifier was trained. Tested on 
106 mammograms, the author reported a detection rate of 85.11% at 
1.44 FPs/I. Giordano et al. [27] employed a 2D Haar wavelet transform 
and region-based segmentation for mass detection. Hussain et al. 
[28] used multi-scale Weber local descriptor (MSWLD) and SVM for 
differentiating normal ROIs and mass ROIs. The author reported the 

    
(a) LCC    (b) LMLO   (c) RCC       (d) RMLO 

Figure 1: Four mammograms for a case. Figure 1: Four mammograms for a case.
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significant increase of case-based detection performance. Tanner et al. 
[39] compared the performance of several common methods to define 
the search region for matching masses in CC and MLO mammograms. 
Ericeira et al. [40] first detected asymmetric ROIs in one mammogram 
based on bilateral analysis. Then the asymmetric ROIs were classified 
as normal or mass based on variogram. Li et al. [41] used the 
bilateral similarity analysis to reduce the FPs. Tested on a set of 332 
mammograms, the methods shows a 34% FP reduction compared with 
the single-view CAD, with the detection sensitivity at 85%.

The aforementioned methods combine two mammograms to 
improve the detection performance. Wei et al. [42] presented a four-
view CAD system. The CAD system consists of single-view detection, 
two-view analysis and bilateral analysis. The author reported the 
performance of the four-view CAD system is higher than the other 
three systems.

Abnormality Classification
MCs classification

Benign and malignant MCs are shown in Figure 2. Singh et al. 
[43] first segmented the ROI by edge detection and morphological 
operations. Then shape, texture and statistical features were extracted. 
Finally a SVM classifier was trained to classify MC clusters as either 
benign or malignant. Karahaliou et al. [44] tested the performance of 
texture features extracted from the tissue surrounding MCs. The author 
reported the best classification accuracy is 89%. Verma et al. [45] used 
14 features to represent the ROI. Then a neural-genetic algorithm 
was proposed for feature selection. Geetha et al. [46] used GLCM 
to extract the Haralick features. Then two feature selection methods 
Genetic Algorithm (GA) and New Particle Swarm Optimization 
(NPSO) algorithms were employed. Wei et al. [47] presented a 
MC classification scheme assisted by content-based mammogram 
retrieval. Chen et al. [48] first analyzed the connectivity and topology 
of the MCs. Then graph theoretical features were extracted. Recently, 
Raghavendra et al. [49] employed Gabor wavelet and locality sensitive 
discriminant analysis (LSDA) to classify normal, benign and malignant 
abnormalities.

Mass classification

Based on the extracted features, mass classification can be divided 
into shape feature-based method and texture feature-based method. A 
precise mass contour segmentation is a preprocessing for shape-based 
classification. However, the texture-based classifications are more 
robust to the mass contour segmentation.

Shape-based classification: Benign masses are usually round or 
oval and possess well-defined edges. Malignant masses are typically 
spiculated and possess ill-defined edges. Benign masses and malignant 
masses are shown in Figure 3. Rangayyan et al. [50] proposed an edge 
acutance feature to describe the gray transition of the contour pixels. 
Then masses were classified as benign or malignant combining the 
acutance, compactness and the Fourier descriptor. Later, Rangayyan 
et al. [51] gave another mass classification method. First, the mass 
contour was modeled by the polygonal. Then two new features 
concavity fractions and spiculation index were computed. Finally, the 
classification performance using different combinations of concavity 
fractions, spiculation index and compactness were tested. Fractal 
dimension (FD) shows good performance in characterizing the shape 
complexity. Thus the performance of the FD in mass classification was 
tested [52]. In Rangayyan and Nguyen [52], four methods to compute 
the FD were given. This method was tested to a dataset of 111 breast 

masses. For FD, the area under the ROC curve is 0.89. For computing 
shape-based features, the mass contours should be known. In these 
three methods, manually segmentation was employed to get the 
mass contours. Liu et al. [53] gave an automated mass segmentation 
method. Then several shape-based features were compared for mass 
classification. 292 images from the DDSM database were used for 
experiments. The method achieved an accuracy of 86.6% with mutual 
information based feature selection and SVM classifier.

Texture-based classification: Mudigonda et al. [54] extracted 
features from the GLCM to implement the mass classification. The 
GLCM features were extracted from both the whole mass region and 
the ribbon width across the mass contour. A total of 54 images were 
used to test the result. The author reported the better result is obtained 
using GCLM-based features computed from the ribbon. Other 
texture features includes independent component analysis (ICA) [55], 
wavelet transform coefficient [56], Curvelet transform coefficient [57], 
Contourlet transform coefficient [58] and Krawtchouk moment [59]. 
Texture descriptors show good performance in many classification 
tasks. Thus local ternary pattern (LTP), local phase quantization (LPQ) 
[60] and texton [61] were employed to classify a mass as malignant or 
benign.

  
(a) Benign MCs                                                      (b) Malignant MCs 

Figure 2: Benign MCs and malignant MCs. Region in the red rectangle is MCs.

  
 (a) Benign mass                    (b) Malignant mass 

Figure 3: A benign mass and a malignant mass. Region in the red rectangle 
is a mass.
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Recently, a combination of shape features and texture features were 
tested. Mu et al. [62] evaluated a set of 22 features including 8 shape 
features and 14 texture features. Using selected combinations of these 
22 features, the classification performance was improved. Rouhi et al. 
[63] extracted intensity, texture, and shape features from a segmented 
tumor. Then the GA method was used to select features and ANN was 
used for classification.

Content-Based Image Retrieval (CBIR) in Mammography

CBIR is to choose images from a database such that the retrieved 
images are most relevant or similar to the query image. From the 
retrieval mammograms, the radiologist can get more comprehensive 
information. The most important issue in CBIR is similarity definition 
between two images. For this topic, a number of methods were studied.

Wei et al. [64] gave a calcification retrieval method. Gabor filtering 
was used to extract textural features as the similarity. In Wei et al. [65], a 
supervised learning approach was employed to retrieve mammograms. 
They defined the most meaningful measure as the one that matches 
the perception of the radiologist’s interpretation. Alto et al. [66] 
first segmented the mass contour. Then the shape, edge sharpness 
and texture features were employed to retrieve benign masses and 
malignant masses. A hierarchical correlation approach was presented 
to retrieve masses and normal tissues in Wei et al. [67]. Siyahjani et al. 
[68] put forward a retrieval method for masses and normal tissues. In 
his method, multi-level wavelet transforms were applied to the ROI. 
Then the GLCM was computed for each sub-band. The texture features 
extracted from the GLCM were used to compute the similarity between 
different images. Georgia et al. [69] compared several similarities in 
masses and normal tissues retrieval. These similarities included joint 
entropy, conditional entropy, mutual information, normalized mutual 
information, average Kullback-Leibler divergence (KLD), maximum 
KLD, Jensen divergence and arithmetic-geometric mean divergence. 
T﻿﻿he author reported that the mutual information and KLD are better. 
A preliminary study of multi-instance learning (MIL) was given for 
mass retrieval in Lu et al. [70]. Liu et al. [71] employed Anchor Graph 
Hashing (AGH) to represent a ROI. Then the Hamming distance of 
AGH was used to retrieve mass and normal tissues. A good retrieval 
performance was shown in their results. Later, Li et al. [72] gave 
a modification of AGH. As the original AGH representation did 
not consider pathological relevance, DAGH was put forward as a 

new representation [72]. Current CBIR systems analyze each view 
independently, a two-view CBIR system was proposed in Dhahbi 
et al. [73]. CBIR retrieval for a mass region and a normal tissue with 
[72] are shown in Figure 4. The left-top image is the query image. The 
remaining 19 images are the retrieval results. The query image in Figure 
4(a) is a normal tissue. The query image in Figure 4(b) is a mass. The 
regions with red rectangle are the non-relevant images.

Discussion
For abnormalities detection, MC can get decent detection 

performance. However, the detection performance for mass is not 
satisfying. In previous studies, masses are detected using single view 
information. Recently, multi-view based detection draws more 
attention. For multi-view based detection, many problems are not 
well solved. As the breast is compressed during imaging, finding the 
corresponding regions in different views are not easy. The second 
problem is a good fusion strategy. Existing multi-view CAD normally 
employ two mammograms, ipsilateral mammograms or bilateral 
mammograms. Using four mammograms to detect simulates the 
radiologist’s interpretation. Thus develop the four-view based CAD 
method is demanding. Another problem in existing CAD is the lack 
of fusing detection and CBIR. CBIR retrieves similar images from the 
database. How to effectively combine the retrieval results with the 
detection results can be studied. For abnormalities classification, the 
performance of existing methods still needs to be improved. Recently, 
deep learning methods have been applied to this topic and a good result 
was obtained. More researches for classification using deep learning 
may be another direction.

Conclusion
CAD can be served as a second view in the early detection of breast 

cancer. A large amount of work has been done in this field. This paper 
presented an overview of the recent development in CAD methods. 
Abnormalities detection, abnormalities classification and CBIR are 
briefly reviewed. Single-view based detection is the foundation of multi-
view based detection and has been studied deeply. Multi-view based 
detection simulates the radiologist’s interpretation. However, many 
problems including region matching and fusion strategy are not well 
solved. Another problem in existing CAD is the lack of fusing detection 
and CBIR. Besides, the performance of deep learning methods for 
abnormalities classification needs to be tested and improved.

  
(a) Normal tissue retrieval                                      (b) Mass retrieval 

Figure 4: CBIR retrieval for a normal tissue and a mass region.
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