A Technical Tip for Ensuring Parallel Screw Fixation of the Medial Malleolus

Edward Yates*, Giles Foley and Christopher Thomas

1Department of Orthopaedics, East Lancashire NHS Foundation Trust, Royal Blackburn Hospital, Blackburn, Lancashire, BB2 3HH, UK
2Department of Orthopaedics, East Lancashire NHS Foundation Trust, UK

*Corresponding author: Edward W Yates, Specialist Registrar in Trauma and Orthopaedics, Royal Blackburn Hospital, Haslingden Road, Blackburn, BB2 3HH, UK, Tel: 01254 736 029; Fax: 01254 293 512; E-mail: eddyates@doctors.org.uk

Received November 19, 2011; Accepted January 02, 2012; Published January 10, 2012

Copyright: © 2011 Yates E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract
Parallel screw alignment can be challenging. We describe a simple, reproducible technique for the fixation of the medial malleolar fragment with two parallel screws, using a 1.6mm K-wire and the small fragment AO drill-guide.

Keywords: Ankle; Fracture fixation; Internal

Introduction
Medial malleolus fractures with more than 2mm of displacement are associated with a non-union rate of 5-15% [1]. Surgical fixation of these fractures is considered standard practice in Orthopaedic trauma surgery. Whilst single screw fixation is an option, the AO Foundation recommend two parallel, partially threaded cancellous screws to prevent rotation of the fragment [2]. In order to maximise inter-fragmentary compression, the screws should be placed perpendicular to the fracture plane [2]. Achieving parallel screw alignment can be challenging.

Technique
Following anatomical reduction, a 1.6mm smooth K-wire is passed through the centre point of the malleolar fragment and into the tibial metaphysis perpendicular to the plane of the fracture. Once applied, we advise fluoroscopic assessment to ensure that the K-wire is in an adequate position and not penetrating the joint. The small fragment AO drill-guide has an aperture adjacent to the 2.5mm drill sleeve that is oriented parallel to the sleeve itself (Figure 1). When mounted over the guidewire using the described aperture, the drill-guide can then be rotated around the axis of the K-wire facilitating parallel drill holes that are perpendicular to the fracture plane (Figures 2 & 3). In cases where the malleolar fragment is too small to accommodate two screws, the initial stabilising K-wire can be eccentrically placed and left in situ to prevent rotation (Figures 2 & 3).

Discussion
Parallel screw alignment can be challenging. In our department...
this technique has improved our ability to stabilise the medial malleolar fragment with perfectly placed parallel screws. Importantly, we have found this an easy, safe and reproducible technique. In addition, our technique avoids the need for a relatively expensive cannulated screw system, where the K-wires are more flexible, less predictable and therefore difficult to place in parallel fashion.

References