A Tool with a Great Future Potential

Ilknur Tanboga*
Department of Pediatric Dentistry, Dental School, Marmara University, Turkey

Dear Colleagues,

The idea of substituting a drill with a laser light which has less adverse effects on patients, without vibration, noise and pain, has led to its introduction in dentistry. As we mentioned in our previous survey, conventional mechanical cutting and drilling is the potential factor in provoking pain and discomfort during tooth preparation [1,2]. Beside, lasers are extremely safe compared with rotating instruments, especially in pediatric dentistry, when used in the treatment of very young children, due to the lower risk of accidental damage to soft tissues and pulp tissue. Lasers bring new possibilities for safe and minimal removal of carious tissue with better acceptance compared to conventional methods in children. As reported by Martens and emphasised by Gutknecht et al. [3-5], children are the first in line to receive dental laser treatment' and based on micro-dentistry’s comment 'filling without drilling’. Thus, the philosophy of laser-supported dental diagnosis and treatment is becoming a gold-standard to treat children successfully, according to the latest extensive publications in paediatric dentistry [4,6]. Coming back to my own survey, and literature on this, I strongly recommend becoming informed about this new technology.

Low level laser therapy (LLLT) is also known as ‘soft laser therapy’ and bio-stimulation. The use of LLLT in health care has been documented in the literature for more than three decades. The typical power output for a low level laser devices used for LLLT have poor absorption in water and thus penetrate soft and hard tissues from 3-15mm [7]. Positive reports of the benefit of LLLT used in dental surgery to treat disorders including TMJ pain, trigeminal neuralgia and muscular pain have been presented [8].

An additional area of interest in this field is the use of LLLT to achieve an analgesic effect in the dental pulp prior to restorative procedures. The laser, if used correctly, generates an analgesic effect in the irradiated area caused by a temporary loss of conductance of the nervous impulse due to the disruption of the Na’/K’ pump of the cell membrane of the nervous fibre. This results in an impulse conduction, and therefore an analgesic effect occurs. First noted with Nd:YAG laser in the early 1990’s, the clinical use of ‘pre-emptive laser analgesia’ is becoming more widespread now as a clinical technique with the Er:YAG and Er,Cr:YSGG laser [7]. On our paper in 2011 (Tanboga et al.) [1], we evaluated the analgesic effect of LLLT on pain during primary molar cavity preparation with Er:YAG laser in pediatric dental patients. Following achieving laser analgesia, all cavities were restored. Immediately after treatment, children were instructed to rate their pain on the visual analogue scale (VAS) from 0 to 5 points and the scores were noted. The results revealed a statistically significant difference between LLLT and non-LLLT groups. What we reported at the conclusion was, ‘LLLT application prior to cavity preperation with laser, makes cavity preparation more comfortable and effective and has special advantages in the treatment’.

In Cauwels and Martens report [4,9], LLLT was used in a group of pediatric patients with cancer for the management of chemotherapy-induced OM, supplementary to basic oral health. LLLT is known to relieve pain, having an anti-inflammatory effect and the property to enhance wound healing. Regarding the preventive capacity of LLLT, the incidence of OM seemed to be significantly reduced. In agreement with other studies, the reduction in pain found in this study was the most remarkable effect reported.

The use of lasers in pediatric dentistry is still not widespread despite their great versatility. This could be due to the high cost of laser units, the lack of education about lasers in undergraduate/postgraduate courses. But it should be noted that the training is required. I believe in great future potential in this field.

References

*Corresponding author: Ilknur Tanboga, Department of Pediatric Dentistry, Dental School, Marmara University, Buyukciftlik Sok No.6 Nisantasi, Istanbul 34365, Turkey, Tel: +90 212 2366847; Fax: +90 212 2588190; E-mail: itanboga@marmara.edu.tr

Received December 25, 2013; Accepted December 28, 2013; Published December 31, 2013


Copyright: © 2013 Tanboga I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.