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Introduction
In quantum mechanics, it is generally believed that in static 

sense the geometric symmetry of a Hamiltonian is responsible for 
the degeneracy of energy levels. If this situation does not occur, we 
customarily claim that there is an accidental symmetry that causes the 
accidental degeneracy of energy levels. Sometimes, the term “hidden 
symmetry” is also used as the synonym of accidental symmetry in the 
literature. In non-relativistic quantum mechanics, the well known 
example of accidental degeneracy is the hydrogen atom with Coulomb 
1/r potential, in which the degree of degeneracy for a bound-state of 
principal quantum number n is equal to n2 but not the expected 2l+1 
value as anticipated from a generic central potential. Here, we ignore 
the spin degree of freedom.

Pauli was the pioneer who introduced the Runge-Lenz operator 
of the hydrogen atom to explain the accidental degeneracy in the 
energy levels [1]. The mystery of that accidental symmetry was then 
disclosed by Fock, who found that all the bound-state eigenfunctions 
in ordinary three-dimensional space can be translated into so(4) 
hyperspherical harmonic functions constructed in a fictitious four-
Euclidean space [2]. As a result, eigenfunctions with the same value 
of n, but different orbital angular momentum quantum number l, can 
be transformed into one another by rotations in this four-dimensional 
mathematical space. Later, Bargmann gave a Lie algebraic approach of 
the so(4) hyperspherical symmetry to demonstrate that the accidental 
degeneracy of the hydrogen atom is indeed due to a hidden symmetry, 
which is not completely realized in the original three-Euclidean space [3].

To be more specific, the Hamiltonian of hydrogen atom in ordinary 

three-dimensional space is of the form 
2

=
2

H
r
κ

µ
−

p , yielding the 

time-independent Schrödinger equation =n n nH Eφ φ . Obviously, the 
potential energy and kinetic energy separately obey the so(3) rotational 
symmetry. Therefore, the so-called so(4) hyperspherical symmetry 
of the bound-state eigenfunctions is definitely not a symmetry of the 
potential energy, nor is it a symmetry of the kinetic energy. It is a 
symmetry of the entire Hamiltonian itself! In such away, rotations of 
so(4) hyperspherical symmetry will leave the Hamiltonian H invariant, 
hence the energy eigenvalues En, too.

We remark that in reality the so(4) hyperspherical symmetry is 
not the maximal symmetry the Hamiltonian H can possess when it 
is in motion. It was discovered in the 60’s that the time-dependent 
Schrodinger equation i = H

t
ψ ψ∂

∂


 admits an even larger “dynamical 

symmetry” than the accidental symmetry realized by the corresponding 

time-independent one [4-11]. The reason is that in time-dependent 
Schrödinger equation the energy eigenvalues En can be treated as a 
variable. So, there exists an additional spectrum-generating so(2,1) 
symmetry that can be used to vary among different energy levels 
[12,13]. In effect, this so(2,1) symmetry is combined with the originally 
so(4) hyperspherical symmetry to form an irreducible representation 
of an extended so(4,2) dynamical symmetry, normally known as the 
conformal symmetry. For complete tabulations of so(4,2) dynamical 
symmetry of the hydrogen atom [14,15].

In this paper, we revisit accidental symmetry of hydrogen-like 
atoms in the framework of time-independent Schrödinger equation. 
Some analytical properties associated with that symmetry are explored. 
Rescaled Runge-Lenz vectorial operator is introduced, to simplify 
the presentations. The algebra of the symmetry is briefly reviewed. 
Differential equations of the eigenstates, when acted on by ladder-type 
generators of the algebra, are inspected. Analytical properties of the 
ladder generators constructed in dimensionless spherical coordinates 
are examined, particularly for both bound states and continuous states. 
This results in the discovery of some unfamiliar nevertheless notable 
functional relations for the radial eigenfunctions of the Hamiltonian. 
Moreover, similar analytical properties of the radial eigenfunctions in 
two-dimensional hydrogen atoms are subsequently demonstrated.

The paper is organized as follows. In section 2, we briefly review 
the main algebraic structures of the accidental symmetry. In section 
3, we analyze analytical properties of accidental symmetry and deduce 
several functional relations for the radial eigenfunctions. We show 
analytical similarity between two-dimensional and three-dimensional 
hydrogen atoms in section 4. Finally, section 5 contains the conclusion.

Symmetry of Coulomb Potential
In this section, we briefly review for the purpose of completeness 

the main algebraic structures of a charged particle in the presence of 
Coulomb 1/r potential. The Hamiltonian that we will consider is the 
hydrogen-like atom of atomic number Z, which takes the same form 
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positive variable for the bold-plus (E>0) ase and n Z +∈  a positive 
integer for the bold-minus (E<0) case. Note that, for the E>0 case, the 

continuous variable n is related to the wave number k of positive energy 

eigenvalue 
2 2

=
2

kE
µ

  at infinity by = Z cn
k

αµ


.

With such a choice, the eigenvalue equations for L2 and Lz are 
the standard ones found in quantum mechanical textbooks, while 
that for operator A2 can be established from the operator identity: 

2 2 2 2 2= ( )( ) n± + +A L  

. It is
2 2 2 2| , > = [( )( 1) ]| , > .n nl m l l n l m± + + +A 

                (7)

To further analyze algebraic properties of the symmetry, it 
proves convenient to introduce ladder-type operators for both 
L and A by ix yL L L± ≡ ±  and ix yA A A± ≡ ± , from which we 
immediately arrive at the operator identities: 2 2= z zL L L L± +L



   
and 2 2= ( )z zA A A L± + ± ±A



 . As a result, the commutation relations 
in eqns. (3)-(5) can be reformulated in terms of these ladder-type 
operators into:

[ , ] = 2 ,    [ , ] = ,z zL L L L L L+ − ± ±± 

                   (8)

[ , ] = 2 ,    [ , ] = ,    [ , ] = ,z z zL A A L A A A L A± ± ± ± ±± ± ±


  

               (9)

[ , ] = ( )2 ,    [ , ] = ( ) .z zA A L A A L+ − ± ±− ± ±                  (10)

some other commutators not shown above are trivially zero.

The action of ladder-type operators on the designated eigenstates 
is again standard for L, that is, | , > = | , >z n nL l m m l m  and 

| , > = C ( , ) | , >n nL l m l m l m±
± 

, with C ( , )l m± = ( )( 1)l m l m± + . 

As regards to those for A, we have already in mind that it is a spin-one 
tensor operator. Therefore, according to general rules for addition of 
angular momenta, we may formally write the corresponding equations by

1 | , > = ( , ) | 1, 1 > ( , ) | 1, 1 > ,n n nA l m l m l m l m l mα β+ + ++ + + − +


  (11)

1 | , > = ( , ) | 1, 1 > ( , ) | 1, 1 > ,n n nA l m l m l m l m l mα β− − −+ − + − −


  (12)

0 0
1 | , > = ( , ) | 1, > ( , ) | 1, > .z n n nA l m l m l m l m l mα β+ + −


             (13)

here, the coefficients αi(l.m) and βi(l.m) (for = , ,0i + − ) also depend on 
the parameter n, though it is suppressed in the expressions.

The coefficients αi(l.m) and βi(l.m) can be directly determined from 
the commutation relations listed in eqns. (9) and (10). For instance, 
applications of the first commutator of eqn. (9) give rise to the following 
coefficients relations

0 0
2 1( , ) = ( , ),    ( , ) = ( , ).
1

l m l ml m l m l m l m
l m l m

α α β β± ±

± + −
±

+ ±






  (14)

Furthermore, other commutators or identities will give the explicit 
forms for both α0(l.m) and β0(l.m). After some manipulations, we get

1/ 22 2 2 2

0 0 0
( ( )( 1) )(( 1) )( , ) = ,    ( , ) = ( 1, ).

(2 1)(2 3)
n l l ml m l m l m

l l
α β α

 + ± + + −
− + + 

  (15)

The relations below reflecting the symmetry of Coulomb 1/r 
potential can be deduced easily

0 0( , ) = ( , ),    ( , ) = ( , ).l m l m l m l mα α α α− +− − −                          (16)

Likewise, we have ( , ) = ( , )l m l mβ β− +− − . Let us remind once more 
that the boldfaced ( )±  in eqn. (15) is for E>0 and E<0 cases, respectively.

as: 
2

=
2

H
r
κ

µ
−

p , in which p is the momentum operator, µ the reduced 

mass and 
2

0

=
4
Ze Z cκ α
πε

=  , with 
2

0

=
4

e
c

α
πε 

 the fine structure 
constant.

It is known from textbooks of quantum mechanics that the algebra 
of accidental symmetry of the Hamiltonian H is generated by the 
angular momentum operator = ( , , )x y zL L LL  and the so-called Runge-
Lenz vectorial operator = ( , , )x y zR R RR  given by [16-18]:

1= ( ) .
2

rp L L p
rµκ

× − × −R                  (1)

The commutation relations among the two sets of L and R operators 
become simplified, if we are tempted to work on the representation of 
eigenstates of the Hamiltonian. In this way, H can be directly replaced 
by the energy eigenvalue E of the corresponding eigenstate considered. 
Owing to this fact, let us define the rescaled Runge-Lenz operator that 
has the dimensions of 



, similar to the angular momentum L does, as:
2

= ( ) .
2E
µκ

±A R                 (2)

In eqn. (2), because the eigenvalues E of H contains a discrete 
set and a continuous energy variable, we are led to distinguish these 
two different spectra by introducing the (±) symbol. It means that the 
boldfaced plus sign in the parenthesis stands for the case of continuous 
states (E>0). whereas the boldfaced minus sign for that of bound states 
(E<0). Thereinafter, we shall adopt this neat convention of the symbol 
(±) throughout the paper, unless it is otherwise emphasized. That is to 
say, if an equation appears to not have any (±) symbol, it simply means 
that this equation holds true for both E>0 and E<0 cases.

In terms of L and = ( , , )x y zA A AA , the algebra of Coulomb 
symmetry can be derived in a straightforward manner as (for 
, , = , , = 1,2,3i j k x y z )

[ , ] = i ,i j ijk kL L Lε                    (3)

[ , ] = i ,i j ijk kL A Aε                    (4)

[ , ] = ( )i .i j ijk kA A Lε− ±                    (5)

The convention of bold-plus for E<0 and bold-minus for E<0 in 
eqn. (5) is understood. Needless to say, the commutation relations in 
above equations describe an so(3,1) symmetry for E>0 and an so(4) 
symmetry for E<0. In is noted that for E<0 the so(4) algebra may be 

translated to so(3) × so(3) by transforming L and A into 1= ( )
2± ±J L A  

which furthermore admits another realization in terms of two sets 
of bosonic spin operators [19-21]. As a byproduct, eqn. (4) implies 
that the Runge-Lenz operator A transforms in the spin-one (vector) 
representation under three-dimensional spatial rotations.

In quantum mechanics, the symmetry of a system is encoded in 
the maximal set of mutually commuting operators that includes the 
Hamiltonian inside of it. The set is responsible for the degeneracy of 
energy spectrum and results in various constants of motion in dynamics. 
For the accidental symmetry of hydrogen atoms we considered, the 
commuting set can take, for example, to be 2 2{ , , , }zH LL A . Hence, let us 
designate the simultaneous normalized eigenstates of these commuting 
operators by | , >nl m  with the corresponding energy eigenvalues

2
2

2

1 ( )
= ( ) .

2
Z

E c
n
α

µ±                    (6)

Depending on the sign of E, we demand that n R +∈  be a real 
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Properties of the Symmetry
The algebraic structures of Coulomb potential presented in section 

2 enable us to investigate some analytical properties of the eigenstates 
| , >nl m  in the spherical coordinates, r=(r,θ,φ). Before going into 
the details, let us make one more variable change to simplify our 
presentations. Instead of r, we define the dimensionless position vector 

by α≡ rρ = ( , , )ρ θ φ  for 2

2=
n
µκα


, so that the eigenfunctions we are 

interested will be denoted by ( ) =< | , >nlm nl mψ ρ ρ . Since L2 is still a 
good observable, it is again legal to separate ψnlm(ρ)into the radial Rnl(ρ)
and angular ( , )m

lY θ φ  parts as

( ) = ( ) ( , ),m
nlm nl nl lA R Yψ ρ θ φρ                (17)

where Aln is the normalization factor that depends on both l and n.

In the dimensionless spherical coordinates ρ=(ρ,θ,φ), the Runge-
Lenz operators (Az,A+,A-) are expressed as follows

2 2
i i

2

1 1 1 1= 2cos [ ] sin [ (1 )] sin [ (1 )] ,
2

z z z
z

n L L LA e L e Lφ φ
ρ ρ ρθ θ θ

ρ ρ ρ
−

− +

−
− ∂ + − + ∂ − + − ∂ − −

L
   

  (18)
2

i
2

1 1= 2cos 2 sin [ (1 ) ],
2

zL L nA e φ
ρ ρθ θ

ρ
±±

± ± ∂ − ∂ ± + −
L

   

         (19)

where =ρ ρ
∂

∂
∂

 is used.

Having found eqns. (18) and (19), we now analyze on what 
analytical constraints that are set by algebraic eqs. (11) to (13) are 
imposed on the eigenfunctions ψnlm(ρ). Let us answer this question 

by first taking the differential operator 
1

zA


 and acting it on the state 

ψnlm(ρ). Bearing in mind in advance with the algebraic eqn. (13), we 
would expect the neat result below

0 , 1 , 1 1 0 , 1 , 1 1
1 = ( , ) ( , ) .m m

z nlm n l n l l n l n l lA l m A R Y l m A R Yψ α β+ + + − − −+


           (20)

Now, back to the corresponding differential operation the 
computation is straightforward. We obtain

( )

( ) ( )

2
0 0

1 1

1 1 1 1

1 ( 1) 1= 2 {[ ] D ( , ) D ( , ) [ ]C ( , )
2 2

1D ( , 1) D ( , 1) [ ]C ( , ) D ( , 1) D ( , 1) } ,
2

m m
z nlm nl l l

m m m m
l l l l nl

n l l m mA A l m Y l m Y l m

ml m Y l m Y l m l m Y l m Y R

ρ ρ

ρ

ψ
ρ ρ

ρ

−
+ + − −

+ + + − −
+ + − − + + − −

+ −
− ∂ + − + − ∂ −

− + − + ∂ + + + +

 (21)

where the coefficients D j
i  (for , = , ,0i j + − ) come from the combination 

of a factor of cosθ or i sine φ θ±  with the m
lY  factor. Eqn. (21) is not very 

nice-looking, however it can be simplified. For instance, in the second 
and third lines of that equation the product of C±  and D j

i  can be 
arranged into either 0D ( , )l m+  or 0D ( , )l m− , that are subsequently related 
to the coefficients α0(l.m) and β0(l.m) given in eqn. (15). See Appendix 
A for the detailed relations and computations of these coefficients.

After the arrangement, we are left with

0 12 2

0 12 2

1 2 ( 1)= ( , ) [( 1) ]
2( )( 1)

2 ( 1)( , ) [ ] .
2( )

mnl
z nlm nl l

mnl
nl l

A n l lA l m l R Y
n l

A n l ll m l R Y
n l

ρ

ρ

ψ α
ρ

β
ρ

+

−

− +
+ ∂ + − +

+ ± +

− +
− ∂ + −

+ ±

   (22)

remember that eqn. (22) must be identical to eqn. (20). For such 
assertion to hold, there are in general two alternative options in the 
discussion of the Coulomb 1/r potential. It depends on whether E<0 or 
E>0, Let us discuss them separately.

1. The case of E<0. The spectrum of negative energy values is 
discrete and depends on the principal quantum number n. The degree 
of degeneracy of the n-th energy level is n2, for l=0 to n-1 and m=-l to l. 
This case corresponds to take the boldfaced minus in the symbol (±) in 

eqn. (22), in which the normalization factor Anl is normally chosen to 
satisfy the recurrence relation

2 2
, 1 , 12 2

1= ( 1) = .nl n l n lA n l A A
n l

+ −− +
−

                (23)

It hence implies the general expression for Anl as

, 1
( 1) 1[( 1) ] ( ) = ( ),

2 2nl n l
n l ll R Rρ ρ ρ

ρ +

+
+ ∂ + − −                 (24)

where An0 is an n dependent constant, not completely fixed by the 
purely algebraic method. In eqn. (24), the product is replaced by unity 
for l=0.

Turn to eqn. (22), the recurrence relation (23) additionally 
determine two first-order linear differential equations that are satisfied 
by the radial functions Rnl(ρ). They are respectively

, 1
( 1) 1[( 1) ] ( ) = ( ),

2 2nl n l
n l ll R Rρ ρ ρ

ρ +

+
+ ∂ + − −                (25)

2 2
, 1

( 1) 1[ ] ( ) = ( ) ( ).
2 2nl n l
n l ll R n l Rρ ρ ρ

ρ −

+
− ∂ + − − −                 (26)

Now, the radial eigenfunctions for E<0 is known to be
/ 2 2 1

1( ) = ( ),l l
nl n lR e Lρρ ρ ρ− +

− −                   (27)

where ( )Lβ
α ρ  are the associated Laguerre polynomials. When 

substituting Rnl(ρ) into both (25) and (26) and making use of the 

identity 1
1( ) = ( )xL x L xβ β

α α
+
−∂ − , we arrive at two unfamiliar but notable 

functional relations of ( )Lβ
α ρ

2 3 2 2 2 1
2 2 1

1( ) = ( 1) ( ) ( 1) ( ),
2 2

l l l
n l n l n lL l L n l Lρ ρ ρ ρ+ + +
− − − − − −− − + + − −               (28)

2 2
2 1 2 2 2 1

2 1
(2 1)( ) = ( ) ( ) ( ).

2 2
l l l

n l n l n l
n l n l l lL lL Lρ ρ ρ

ρ ρ
− + +
− − − − −

− + +
− + −            (29)

Here, both equations can be verified by tools of computational 

software, such as the Mathematica. By the way, the factor 
1/ 23

0 2=
2nA

n
α 

 
 

  

is fixed by the orthonormality condition: * 3( ) ( ) =n lm nlm nnd rψ ψ δ′ ′∫ ρ ρ , 

where =αrρ  and 2

2=
n
µκα


 have been defined previously.

2. The case of E>0. The spectrum of positive energy eigenvalues is 
continuous from zero to infinity. Each of these eigenvalues is of infinite 
degeneracy, with l running from 0 to ∞ and with all possible values 
of m for a given l. We pick the boldfaced plus in the symbol (±) in 
eqn. (22). To be consistent with the conventional radial eigenfunctions 
for continuous spectrum, we need to select this relation fulfilled by the 
factor Anl

2 2
, 1 , 12 2

1= = ,
( 1)

nl n l n lA A n l A
n l

+ −+
+ +

              (30)

which inferring that

2 2 1/ 2
0

=1

= ( ) ,
l

nl n
s

A A n s+∏                (31)

where An0 is another n dependent constant, not completely fixed by 
algebraic methods. Similarly, the product have to be replaced by unity 
for l=0.

In the same vein, the recurrence relation (30) additionally determine 
two first-order linear different equations of the radial functions Rnl(ρ).
They are:
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2 2
, 1

( 1) 1[( 1) ] ( ) = ( ( 1) ) ( ),
2 2nl n l
n l ll R n l Rρ ρ ρ

ρ +

+
+ ∂ + − − + +       (32)

, 1
( 1) 1[ ] ( ) = ( ).

2 2nl n l
n l ll R Rρ ρ ρ

ρ −

+
− ∂ + − −                (33)

For the continuous spectrum, the radial eigenfunctions is of the 
form

i / 21( ) = ( 1 i ,2 2; i ),
(2 1)!

l
nlR e F l n l

l
ρρ ρ ρ+ − + −

+
                (34)

where F(α;β;z) for z a complex variable are the confluent hypergeometric 

functions. When substituting (34) into both (25) and (26) and making 

use of the identity ( , ; ) = ( 1, 1; )zF z F zαα β α β
β

∂ + + , we obtain two 

more unfamiliar functional relations

1 i ( 2 i ,2 4; ) =
(2 2)(2 3)

( 2 i ,2 3; ) ( 1 i ,2 2; ),

l n zF l n l z
l l

F l n l z F l n l z

+ +
+ − +

+ +
+ − + − + − +

               (35)

i( i ,2 ; )=(1 ) ( 1 i ,2 2; )
2 (2 1)

1 i ( 2 i ,2 3; ),
(2 1)(2 2)

l nF l n l z z F l n l z
l l

l n zF l n l z
l l

+
− − + − + +

+
+ −

+ − +
+ +

               (36)

where z=-ip Combining eqns. (35) and (36) renders another functional 
relation similar to that of eqn. (35). It is

1 i ( 2 i ,2 3; ) =
(2 1)(2 2)

( 1 i ,2 1; ) ( 1 i ,2 2; ),

l n zF l n l z
l l

F l n l z F l n l z

+ −
+ − +

+ +
+ − + − + − +

              (37)

Finally, the normalization factor for E>0 is found to 

be 
1/ 2

0 2

8 /=
1n n

nA
e π

π
−

 
 − 

, provided that the normalization 

* 3 1 1( ) ( ) = 2 ( )n lm nlm d r
n n

ψ ψ πδ′ −
′∫ ρ ρ  is used.

So many discussions on the analytical properties of the operator 
1

zA


. Let us turn our attention toward the other two, that is, 1 A±


, and ask 

whether we get any new properties out of the associated differential 
equations generated by them. To answer it, we take the differential 

operators 
1 A±


 given in eqn. (19) and act the both on the eigenfunctions 

( )nlmψ ρ . We arrive at

( )

( ) ( )

1 1
1 1

1 1 0 1 0 1
1 1 1 1

1 ( 1)= 2 {[ ] D ( , ) D ( , ) (1 )
2

D ( , ) D ( , ) C ( , ) D ( , 1) D ( , 1) } .

m m
nlm nl l l

m m m m
l l l l nl

n l lA A l m Y l m Y m

l m Y l m Y l m l m Y l m Y Rρ ρ

ψ
ρ

± ± ± ±
± + + − −

± ± ± ± ± ± ±
+ + − − + + − −

+
− − + + ±

+ ∂ ± + ± ∂





  (38)

Similar to the simplification procedure for 1
zA



, both equations 

above can be done so. By combining the coefficients 0D±  and 0D±  into 
either D ( , )l m±

+  or D ( , )l m±
−  and eventually arranging all of them into 

either ( , )l mα±  or ( , )l mβ± , we at the end of the day come up with

1 1
, 1 , 1 1 , 1 , 1 1

1 = ( , ) ( , ) .m m
nlm n l n l l n l n l lA l m A R Y l m A R Yψ α β± ±

± ± + + + ± − − −+


       (39)

See Appendix A for the combining details. Unfortunately, going 
from (38) to (39) reveals no new analytical features except for those 

ones that have been established previously for the operator 1
zA



. In 

the other words, all three operators 1
zA



, 1 A−


 and 1 A−


 are found to 

share the same amount of information as far as analytical perspective 
is concerned.

Analytical Similarity in Two-Space
The analytical structures presented in section 3 are not peculiar 

at all to the hydrogen-like atoms in three-dimensional space, we 
demonstrate in this section that some similarity also appear in the 
theory of two-dimensional hydrogen-like atoms.

In two-space, the Hamiltonian H takes the exactly same form as 
its counterpart in three-space. The accidental symmetry in two-space 
is described by the z-component angular momentum Lz and the two-
component Runge-Lenz vector R=(Rx,Ry) defined exactly in eqn. (1). 
To simplify the presentations, we as usual rescale the vector R into 

= ( , )x yA AA  of the dimensions of   by the transformation (2) and 
then introduce the corresponding ladder-type operators: = ix yA A A± ± . 
With A± , the algebra of accidental symmetry becomes

[ , ] = ,    [ , ] = ( )2 ,z zL A A A A L± ± + −± − ±                  (40)

where the convention for the symbol (±) is still applied. Apparently, 
the above commutation relations present an so(2,1)symmetry for E>0 
and an so(3) symmetry for E<0, precisely the symmetry of angular 
momentum in three-space.

The simultaneous eigenstates of mutually commuting operators 
2{ , , }zH L A  will be denoted by | , >n m , so that we have three eigenvalue 

equations: | , >= | , >H n m E n m , | , >= | , >zL n m m n m

, and

2 2 2 21| , >= [( )( ) ] | , >.
4

n m m n n m± + +A 

                 (41)

Here, the energy eigenvalues E is given in eqn. (6) with n a real 
positive variable as usual for E>0 but for E<0 we have to choose 

1=
2

n l +  for l=0,1,2,3…It is worth mentioning that eqn. (41) comes 

from the operator identity: 2 2 2 2 21= ( )( )
4zL n± + +A  

 in two-space. 

Incorporating that identity with this one: 2 = ( ) zA A L± ± ±A


 , we 
deduce algebraic equations for the ladder-type operators A±  right 
away

2 2 1/ 21 1| , >=[ ( )( ) ] | , 1 >.
2

A n m n m n m± + ± ± ±


                (42)

In two-space, analytical properties of the eigenstates | , >n m  can 
be studied by projecting them into the plane-polar coordinates, r=(r,φ). 
To present the results, we likewise prefer to adopt the dimensionless 
position vector α= rρ , instead of r. Consequently, the eigenfunctions 

( ) =< | , >nlm n mψ ρ ρ  admit the separation of variables

i1( ) = ( ) ,
2

m
nm nm nmA R e φψ ρ

π
ρ                 (43)

where Anm is the normalization factor that depends on both n and m.

The ladder-type operators A±  in the coordinates ρ=(ρ,φ) take the 
forms

i1 1= 2 ( )( ) .
2 2

z zL L nA e φ
ρ

±
±

 − ∂ ± +  


  

                (44)

now, acting the differential operators (44) on the eigenfunctions ψnm(ρ)
(43) and comparing the obtained result with the algebraic ones (42), we 
reach the following two valuable functional relations

2 2 1/ 2
, 1 , 1

1 12 [( )( ) ] = [ ( )( ) ] .
2 2 2nm nm n m n m

m nA m R n m A Rρ ρ ± ±− ± ∂ + + ± ±

  (45)

Similar to that in three-space, there are two options for the choice 
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of the factor Anm. It again depends on whether E<0 or E>0 .We shall 
examine the case of E<0 only, since the discussion for E>0 is closely 
analogous to that for E<0. The spectrum of negative energies is 

discrete and depends on the quantum number 1=
2

n l + . The degree 

of degeneracy of the n-th energy level is 2l+1 because m can run from 
–l to +l. The radial eigenfunctions for E<0 are given by

| | / 2 2| |
| | 1/ 2( ) = ( ),m m

nm n mR e Lρρ ρ ρ−
− −                      (46)

where ( )L xβ
α  are the associated Laguerre polynomials. In the E<0 case, 

we set the normalization factor Anm to be

| |
2 2 1/ 2 1/ 2

0
=1

1( | | )!1 2= [ ( ) ] = [ ] ,12 ( | | )!
2

m

nm n
s

n m
A A n s

n m

−
− −

− −
+ −

∏               (47)

for both m>0 and m<0. Again, the product is replaced by unity for m=0. 

In addition, 
2

0 =
2nA

n
α

, though it is not fixed by the algebraic method.

An important observation in eqns. (46) and (47) is that Rnm and 
Anm both respect the reflection symmetry m→-m. Interestingly, with the 
help of this symmetry, the upper equation in eqn. (45) gets transformed 
to the lower one. Therefore, one such equation is indeed enough. Let 
us take the upper equation and discuss the situations for m>0 and m<0 
separately. We begin with the m>0 case.reena

1. In the case of > 0m , we obtain the functional relation of nmR , 
when plugging eqn. (47) into eqn. (45),

, 1
1 1[( )( ) ] = .
2 2 2nm n m

m nm R Rρ ρ ++ ∂ − + −                 (48)

now, the substitution of explicit form of the radial eigenfunctions nmR  
(46) into the above relation would certainly render another functional 

relation satisfied by the associated Laguerre polynomials 2
1
2

( )m

n m
L ρ

− −
. 

Surprisingly, the latter relation is exactly identical to that in eqn. (28), 

after the change of parameter 1
2

m l→ +  is made.

2. In the case of = | |< 0m m− , we get after eqn. (47) is used

2 2
, 1

1 | | 1 1[( | |)( ) ] = [ (| | ) ] .
2 2 2 2nm n m

m nm R n m Rρ ρ +− ∂ + + − − −         (49)

then, the substitution of Rnm (46) into this relation results in another 

functional relation satisfied by 2| |
1| |
2

( )m

n m
L ρ

− −
, from which eqn. (29) can 

be directly recovered by the substitution 1| |
2

m l→ + .

Both notable functional relations (28) and (29) established from 
accidental symmetry also appear in the hydrogen-like atoms in two-
dimensional space.

Conclusion
In this paper, we study accidental symmetry of the hydrogen-

like atoms, based on the time-independent Schrödinger equation. 
The rescaled Runge-Lenz vectorial operator is adopted to reduce 
cumbersome notations. The algebra described by the angular 
momentum L and Runge-Lenz operator A is briefly reviewed. 

The representation of eigenstates for the commuting operators 
2 2{ , , , }zH LL A  are inspected, as well. Acted on by the ladder-type 

operators such as A±  and Az analytical properties of the eigenfunctions 
ψnlm(ρ) constructed in the dimensionless spherical coordinates are 
accordingly deduced, especially for both bound states and continuous 
states. Some unfamiliar functional relations of the radial eigenfunctions 
of the Hamiltonian are established. Similar analytical properties shared 
by both two-dimensional and three-dimensional hydrogen atoms are 
illustrated and analyzed. To conclude, it seems that functional relations 
in both equs. (28) and (29) for the radial eigenfunctions are quite 
general in the theories of hydrogen-like atoms. Though it is not shown 
here, same conclusion will be reached for eqns. (35) and (36), too.
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