Acute Myelopathy Associated with Hashimoto’s Disease

Mnaili Mohamed Amine1, El Kassimi Ilyas2 and Bourazza Ahmed3

1Neurology Department, Mohammed V Military Hospital, Rabat, Morocco
2Internal Medicine Department, Mohammed V Military Hospital, Rabat, Morocco
3Corresponding author: Mnaili Mohamed Amine, Neurology Department, Mohammed V Military Hospital, Rabat, Morocco, Tel: +212660558267; E-mail: aminedmed08@gmail.com

Received Date: September 23, 2018; Accepted Date: September 25, 2018; Published Date: September 30, 2018

Copyright: © 2018 Mnaili Mohamed Amine, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Letter to Editor

Acute Myelopathy associated with Hashimoto’s disease is a rare. It is characterized by the presence of elevated antithyroid peroxidase antibody and anti-microsomal antibody. The exact role of the antibody in the genesis of the myelopathy is not clear although a vasculitic process as the basis of Hashimoto’s encephalopathy has been proposed [1]. Spine magnetic resonance imaging (MRI) can show intramedullary high-intensity signals extending involved segments on T2-weighted image with gadolinium enhancement, but may also be normal. It is a highly steroid responsive disease. There is only one reported cases of Hashimoto’s myelopathy until date [2-4]. In this case, we report a patient with an acute myelopathy associated with Hashimoto’s disease.

A 36-year-old woman was admitted to the emergency room with acute weakness of both lower limbs. She could no longer walk and Standing was impossible. She also complained of numbness in both lower limbs with tingling and dysesthesia. She also complained of chest tightness under the nipple line. Neurological examination indicated a decrease of pain and temperature sensations on both sides and decrease of position and vibration sensations on the left side of the body below the Th8 level. Her muscle strength was evaluated as 1/5 in the left lower limb and 2/5 in the right lower limb by manual muscle test. The plantar extensor response was present on both sides.

The serum free triiodothyronine, 2.8 pg/ml (normal range 2.4 to 4.5), free thyroxine, 1.22 ng/dl (normal range 0.7 to 1.48) and thyroid stimulating hormone (TSH) concentrations, 4.84 µU/l (normal range 0.4 to 4.0), were normal. The anti-thyroid peroxidase antibodies (TPO) 406 µ/ml (positive>5, 61) and the anti-thyroglobulin antibodies 36 µ/ml (normal range 0.2 to 4.1) were positive. Total creatine kinase, 38 µ/l (normal range: 30-135) was normal. Antiphospholipid antibody was negative and angiotensin converting enzyme levels were normal (10; range 3-52). MRI of the spine did not reveal any cord signal changes in either cervical or dorsal spine. Serological tests for syphilis and HTLV-1 were negative. Vitamin B12, folate, ANA and anti-ds-DNA were normal. A lumbar puncture showed normal pressure, four DNA were normal. A lumbar puncture showed normal pressure, four

References