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Introduction
Accurate data on cancer stage at diagnosis is essential for evaluating 

quality of care and associated prognosis, for monitoring trends in cancer 
stages, for assessing effectiveness of early detection interventions, and 
for measuring disparities in access to cancer care. Unknown stage 
cases might bring in a bias to data analysis especially when the stages 
are not missing at random. Using the 2004-2007 incidence data from 
population-based cancer registries, the Data Assessment Work Group 
of the NAACCR’s Data Use and Research Committee found that the 
proportion of unknown stage cases varied substantially across cancer 
sites and cancer registries: 1.0%-13.7% for breast cancer, 0.6%-18.1% 
for prostate cancer, 2.4%-18.8% for colorectal cancer, 2.1%-18.7% 
for lung cancer, and 0.5%-14.4% for cervix cancer. Many factors are 
associated with the variation in proportions of unknown stage. Using 
multiple additive regression trees (MART) guided linear mixed effects 
model, Fan et al. [1] found that unspecific histology, non-microscopic 
confirmation, non-hospital reporting source and certain demographic 
characteristics were associated with high proportion of unknown 
stage. Since the missingness of cancer stage is associated with many 
factors that are not controllable by cancer registries, it is impossible 
to completely record stage information for cases in registry database. 
It is necessary to minimize the bias induced by unknown stage cases 
using statistical adjustment. The goal of this manuscript is to accurately 
estimate the population distribution of cancer stage based on the 
cancer registry databases. In this paper, we use the SEER summary 
stage 2000 to categorize the cancer stages (Young et al., 2001). In situ 
tumors fulfill all microscopic criteria for malignancy except invasion 
of the basement membrane of the organ. We consider only non-in situ 
cancer cases which leaves the stages localized, regional or distant. A 
“localized” tumor is confined to the organ of origin without extension 
beyond the primary organ. “Regional extension” of tumor can be 
by direct extension to adjacent organs or structures or by spread to 

regional lymph nodes. If the cancer has spread to parts of the body 
remote from the primary tumor, it is recorded as “distant” stage. For 
a single observation, cancer stage and/or some associated factors may 
be missing.

According to the general missing data mechanisms [2], stage 
information could be missing in the following patterns: 1) missing 
completely at random (MCAR), in which the stage distribution 
of unknown stage cases is the same as that of known stage cases; 2) 
missing at random (MAR), where the probability of missing a stage 
depends directly upon variables other than stage information; and 3) 
missing non-ignorable (MNI), where the probability of missing a stage 
depends not only on other variables but also on the stage itself even 
after controlling for all predictors, for example, when later stages are 
more likely to miss than early stages.

Statistical methods are available to deal with the MCAR and MAR 
missing problems. There are mainly three sets of methods: ad-hoc 
method [3], multiple imputations [4], and weighting method [5]. With 
the ad-hoc method, any observation with unknown stage is deleted 
from further data analysis. Multiple imputations are to predict/estimate 
missing values in the data set. The estimated values replace the missing 
data, and then the complete data sets are used for further analysis. There 
are two major approaches to impute multivariate data: joint modeling 

*Corresponding author: Qingzhao Yu, Associate professor, Biostatistics Program, 
School of Public Health, Louisiana State University Health Sciences Center, USA,
Tel: (504) 568-6086; E-mail: qyu@lsuhsc.edu

Received July 28, 2015; Accepted August 07, 2015; Published August 14, 2015

Citation: Yu Q, Zhu H, Wu X (2015) Adaptive Robust Estimators to Handle Missing 
Values in Estimating Tumor Stage Distributions in Population-Based Cancer 
Registration. J Biom Biostat 6: 243. doi:10.4172/2155-6180.1000243

Copyright: © 2015 Yu Q, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Adaptive Robust Estimators to Handle Missing Values in Estimating 
Tumor Stage Distributions in Population-Based Cancer Registration
Qingzhao Yu1*, Han Zhu1 and Xiaocheng Wu2

1Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, USA
2Louisiana Tumor Registry, Louisiana State University Health Sciences Center, USA

Abstract
Accurate cancer stage at diagnosis is essential not only for assessing quality of care and associated prognosis but 

also for monitoring trends in cancer stages and for assessing effectiveness of early detection interventions. Because 
the cancer stage is associated with many factors that are not under control of cancer registries, it is infeasible to 
completely record stages in all cases from registry database. It is necessary to reduce the bias in stage analysis 
induced by unknown stage cases through statistical adjustment. In this paper, we propose a new adaptive robust 
method that estimates the distribution of unknown stage cases using both essential and nonessential predictors of 
cancer stage. Multiple additive regression trees were used to assess the association of explanatory variables (including 
patient demographics, tumor characteristics, and treatment) with unknown stage. The 2004-2009 incidence data on 
invasive lung cancer from 38 population-based cancer registries that met NAACCR’s high data quality criteria were used 
to estimate the population stage distribution of lung cancer over the years. Multiple artificial incomplete datasets with 
unknown stages and predictors were created from the complete datasets, with varying missing data mechanism and 
different proportions of missingness. The simulated datasets were used to test the efficiency of the proposed method 
in estimating population stage distribution. In general, the proposed method is more efficient in terms of estimation 
accuracy and time consumption, compared with the traditional methods such as multiple imputation method and 
weighting method.
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in model building. In such situation, nonparametric models are safer 
than parametric predicting/weighting models as fewer assumptions, 
such as linear relationship and normal distribution, are made. However, 
the predicting model for multiple imputations can be very complicated 
and it requests long computing time, especially that MI requires many 
repetitions to account for the randomness of the process [18]. Weight 
method is more convenient, but since the nonparametric model tend 
to over fit the data, some estimated probability of non-missing may be 
very small. Consequently, some known cases are assigned with large 
weights, which results in unstable estimation of stage distributions [19].

Another special character of stage information collected by the 
population-based cancer registration is that the stage levels are not 
directly observed, but are derived from essential tumor characteristics 
such as tumor extension, lymph nodes status, metastasis condition and 
other factors related to specific cancer sites. Therefore, stage may be 
coded as unknown if any one of the essential characteristics is missing, 
even when other characteristics may provide useful information on 
staging. Moreover, the stage distributions vary at different levels and 
different missing patterns of the risk factors, especially the essential 
tumor characteristic factors. In this paper, we propose a novel AR 
strategy to estimate the stage distribution of cancer population. 
The method can also be used in other fields to estimate population 
distributions.

The algorithm for AR estimation of population distributions

As discussed in Section 1, to estimate population stage distribution, 
ad-hoc method is most efficient when the missing of stage is completely 
at random or if the proportion of missing in stage is ignorable (e.g., 
smaller than 0.5%). If the missing of stages is not completely at random 
and the proportion of missing is significant, the weighting method 
is efficient when the weighting model is accurate and when there is 
no very large weight assigned to observed cases. MI is useful when 
the weighting method is not stable. The main idea of the proposed 
AR method is to split the covariate space into sub regions based on 
important factors related with stage, and then in each sub region, 
adaptively choose an effective method for distribution estimation. The 
method is robust since if any of the weighting or predictive models are 
not accurate, the influence of the model is only locally, but not globally.

To split the estimation region, we first group all observations 
according to the missing patterns of the essential cancer characters. 
For example, if there are two essential variables A and B. Then 
all observations are divided into four groups: 1: both A and B are 
observed; 2: only A is missing; 3: only B is missing; and 4: both A and 
B are unknown. Group 1 is defined as an “upper” group of group 2 if 
the observed essential factors in group 2 are a subset of the observed 
essential factors in group 1. As in the previous example, group 1 is 
an “upper” group of groups 2, 3, and 4, and groups 2 and 3 are both 
“upper” groups of group 4.

As a next step, the categorical and regression tree (CART) is 
adapted within each group for further split where the binary indicator 
of missing stage is the response variable and all known essential factors 
within the group and other related risk factors are predictors. After the 
split, we expect similar stage distribution within each sub region. Then 
within each sub region, adaptively use an efficient method to estimate 
the stage distribution. Specifically, ad hoc method is adapted if the 
proportion of unknown is very small, say <5%. Weighting method 
is used if the proportion of unknown is not too much (say, between 
5% and 10%). Stabilized weights [21] can be used to avoid very large 
weights. For large proportion of unknown stages, multiple imputations 

(JM) [6] and multivariate imputation by chained equations (MICE) [8]. 
JM method assigns a multivariate distribution for the missing data, and 
then imputes the missing values from the conditional distributions by 
Markov Chain Monte Carlo (MCMC) [7] method. In MICE algorithm, 
a multivariate imputation model is specified separately for each 
variable treating all other variables as predictors in the model. Stage by 
stage, one variable is selected, of which all missing values are imputed 
using the imputation model, then in turn the imputed variables are 
used to estimate the missing data in the next selected variable. This 
process repeats until certain convergence criteria is met [8]. To deal 
with the uncertainties in the multiple imputation process, several sets 
of imputations have to be generated, on each of which further analysis 
is implemented and the results are consolidated for the final inferences 
[8,9]. Weighting method excludes unknown stage cases from analysis. 
However, known stage cases are weighted to represent all cases in 
the population. Weights of the known cases are calculated through a 
weight model, where the response variable is the binary indicator of 
missing stage, and all the related risk factors are used as explanatory 
variables [10]. Typically, the weight of an observation is the inverse of 
the probability that the stage is known [5].

It is well known that the ad-hoc approach is simple and efficient 
when missing pattern is MCAR or the rate of missing is ignorable. 
Otherwise, the ad-hoc method could produce bias in estimating 
population stage distribution [11]. Multiple imputations could yield a 
valid estimation for stage distribution when the MCAR or MAR missing 
patterns applies [12], but multiple imputations can be very complicated 
and the stage wise imputations often bring in more uncertainties. 
Weighting method is generally simpler than the imputation method. 
However, the weighting method is very unstable when the weight 
model produces very large weights on a few observations [13]. The 
essence of the imputation method is that the predictive model has to 
be correct [8]. Similarly, it is important to have accurate weight model 
to apply the weighting method. There are methods that combine the 
weighting and multiple imputation methods so that as long as at least 
one of the predictive and the weight models is correct, the estimation 
is reliable. The method is called double robust (DR) procedure [14,15].

The purpose of this study is to apply an adaptive robust (AR) 
estimator to handle missing values in estimating cancer stage 
distributions. The rest of the paper is organized as following: Section 2 
introduces the special characteristics in estimating stage distributions 
and then proposes the AR method. We apply the method to estimate 
the stage distribution of lung cancer patients diagnosed between 2004 
and 2009 in Section 3. In Section 4, we conduct a simulation study 
based on the lung cancer data to assess the accuracy and efficiency of 
the proposed method in comparison with traditional methods. Finally, 
we discuss the strength and limitation of the proposed method and the 
direction of future research in Section 5.

Adaptive Robust Estimators
We propose an adaptive robust process to estimate the population 

cancer stage distributions. Dataset on cancer stage distribution has 
many special characteristics [16,17]. First, since we are dealing with 
population-based data, the number of cases is normally large. For 
example, the estimated number of new cancer cases per year ranges 
from 2, 460 other oral cavity cancer to 238, 590 prostate cancer (the 
American Cancer Society website http://www.cancer.org/research/
cancerfactsstatistics/cancerfactsfigures2013/index). The big sample 
size results in high powers of finding true predicting/weighting models, 
even for nonparametric models that do not make special assumptions 
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are chosen. We allow borrowing information from observations in 
the “upper” groups that have similar missing pattern when necessary. 
For example, if the proportion of unknown is large in a leaf, we use 
the CART to predict all observations in the “upper” groups. The 
observations that are predicted to be in the same leaf are combined for 
the estimation of the stage distribution in the leaf.

Finally, the distributions in each leaf are combined to estimate 
the stage distribution of the whole population. In detail, the following 
algorithm describes the method

Algorithm 4.1: Adaptive robust method to estimate population 
distribution:

 (1) Split observations to groups according to essential variables’ 
missing status. 

(2) For each group:

(a) If the proportion of unknown is very small (<.5%), use ad hoc 
method to estimate the group distribution, otherwise go to 2b;

(b) Build a tree, ft, in the group where the binary indicator of 
missing stage is the outcome and all other variables are predictors;

(c) In each leaf of ft, follow the procedure described by Figure 1:

(d) Combine the leaf estimates weighted by numbers of observations 
in leaves to estimate the stage distribution in the group.

(3) Combine the group estimates weighted by numbers of 
observations in groups to estimate the population stage distribution.

We use CART to split the covariate space into subspaces, in 
which different methods are chosen to estimate the stage distribution 
according to the proportion of unknowns.

CART is a binary recursive partitioning algorithm that provides 
an alternative to traditional parametric models for regression and 
classification problems. The term “binary” implies that at each step, 
CART splits a multidimensional covariate space into two regions, and 
models the response as a constant for each region. Then an optimal 
variable and split-point are chosen to achieve the best fit again on one 
or both of these regions. Thus, each node can be split into two child 
nodes, in which the original node is called a parent node. The term 
“recursive” refers to the fact that the binary partitioning process can be 
applied over and over again. Thus, each parent node can give rise to two 

child nodes and, in turn, each of these child nodes may themselves be 
split to generate additional children. CART represents information in 
a way that is intuitive and easy to be visualized [20].

Build weight/predictive model in algorithm 4.1

The predictive or weight models in the procedure can be chosen 
according to the needs of data analysis. To estimate the cancer stage 
distribution for population-based cancer registries, several features of 
the data present substantial challenges. First, the linear relationship is 
not adequate to describe the association of the stage distribution with 
other covariates. Second, complicated interactions might exist among 
covariates. Third, lots of observations miss one or more values in some 
covariates. As discussed above, when the sample size is large, it is more 
beneficial to build nonparametric predictive/weighting models. In this 
paper, we propose to use multivariate additive regression trees (MART) 
established by Friedman [22]. MART is an ensemble technique that 
aims to improve the performance of a single model by fitting many 
models and combining them for prediction. MART employs two 
algorithms: “regression tree” from classification and regression tree 
[23] (CART) and “boosting” that builds and combines a collection of 
models, i.e. trees [24].

Boosting is one of the recent enhancements to tree-based methods 
that have achieved considerable success in prediction accuracy. In 
boosting, models such as regression trees are fitted iteratively to 
the training data, using appropriate methods to gradually increase 
emphasis on observations modeled poorly by the existing collection of 
trees.

Empirical results indicate that MART achieves high accurate 
prediction performance compared with its competitors. Moreover, 
compared with the classical parametric regression methods, MART 
has the following advantages: (1) MART is able to capitalize on the 
nonlinear relationships between the dependent and independent 
variables with no need for specifying the basic functions. Unlike many 
automated learning procedures, which lack interpretability and operate 
as a “black box”, MART provides results that represent valuable tools 
for interpreting the nature and magnitude of the covariate association 
with the outcome [25,26]. (2) Due to the hierarchical splitting scheme 
in regression trees, MART is able to capture complex and/or high order 
interaction effects. (3) As a tree-based method, MART can handle 
mixed-type predictors (i.e. quantitative and qualitative covariates) 
and missing values in covariates. Therefore MART addresses all the 
challenges in estimating the stage distribution.

In Algorithm 2.1, we use MART to build weighting models, 
where the binary indicator of missing stage is the response variable 
and all known essential variables and other factors are explanatory 
variables. We also use MART in MI to build predictive models based 
on observations with known stage, where the stage is the outcome and 
all other variables are covariates in the model.

Estimating the Lung Cancer Stages
We applied the proposed AD method to estimate the lung cancer 

stage distribution based on 38 population-based cancer registries 
over the year 2004 to 2009. The data were from the CINA Deluxe 
Analytic file, collected by North American Association of Central 
Cancer Registries (NAACCR). NAACCR receives resident cancer case 
information from its member registries across the US and Canada. For 
this study, 38 member registries in US signed the active consent form 
that permitted NAACCR to combine the incidence data from these 
registries into a single comprehensive data file. The study was based 

 

Figure 1: Procedure plot.
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Figure 4 compares the estimates of stage distributions by different 
methods. The imputation methods were implemented using the 
R package “mice” 8, where predictive mean matching was used 
for numeric data, logistic regression for binary data, polytomous 
regression for unordered categorical data and proportional odds model 
for ordered categorical data with more than two levels. In comparison, 
we also used the MI with random forest as the predictive model (rf 
imputation). Five complete data sets were created for analysis. Figure 
4 shows that estimates based on the proposed AR method are closer to 
those from ad-hoc method and from imputation, compared with the 
weighting and rf imputation.

 Also the weighting methods and the rf imputation show very large 
variations over the years. By majority voting from different methods, 
the proportions of localized stages increased, while the proportions of 
regional and distance staged lung cancer cases decreased over the years. 
Without knowing the true distributions, we were unable to determine 
which method is better. To make comparisons, we did a simulation 
study in ‘Simulations section’.

Simulations
This simulation was based on the lung cancer data from the CINA 

Deluxe Analytic file as described above. The missing data sets were 
created based on the complete data set where all essential variables were 
observed and the SEER stages abstracted. We followed the following 
steps to create the missing data set:

1.	 Create missing predictors other than the essential variables: 
The missing in predictors other than the essential variables was created 
independently for each variable. Each predictor was made to miss at 
the same rate as in the original data set.

2.	 Create missing in essential variables: Essential variables were 
made to miss with probabilities depending on non-essential predictors. 
There were three essential variables, so there were eight potential 
patterns of data missing: no missing, missing any one, missing any two, 
or missing all of the essential variables. Based on the original data set, 
we built models to calculate the probabilities of an observation having 
each of the eight missing patterns, where all nonessential predictors 
were used in building the model. Missing in a predictor was counted 
as a special category of the predictor. Eight models were built for the 
missing patterns. The models predicted the probabilities of every 
missing pattern for each observation in the missing data set created 
from the first step. A missing pattern was then randomly picked for the 
observation based on the standardized probabilities.

on the combined cancer incidence data. For more information about 
CINA Deluxe Analytic file, the reader is referred to the NAACCR 
website (http://naaccr.org/Research/CINADeluxe.aspx).

The collaborative staging (CS) of lung cancer is extracted from 
three essential elements: the extension of tumor (CS extension, T), 
lymph nodes involvement (CS lymph nodes, N), and metastasis 
condition at diagnose (CS mets at DX, M). If all the essential elements 
are missing, CS stage cannot be obtained. If any but not all essential 
variables are missing, CS stage can be known or unknown depending 
on the values of observed essential factors. There are a total of 997,683 
lung cancer cases from the 38 cancer registries over the five years, 
death certificate only and autopsy only cases excluded. Figure 2 shows 
the stage distributions by year with and without missing data. Table 
1 shows that when different essential variable(s) is unknown, the 
proportion of unknown stage cases varies. Therefore, we need different 
analysis strategies when different combinations of essential variables 
are missing in estimating stage distributions. Meanwhile, we have to 
use as much information as possible in estimation.

Other factors that potentially relate to missing stage can be 
grouped to five categories: data collection information such as 
year of diagnosis, information sources, and confirmation method; 
demographic information such as age at diagnosis, sex, and race; tumor 
characters such as tumor size, grade, and histology; treatment types 
such as surgery, radiation, chemotherapy, and hormone therapy; and 
census-tract level social-economic information such as employment, 
education and poverty [1,27]. As examples, Figure 3 shows that the 
stage distributed differently at different levels of age groups, tumor 
grades and radiation therapy respectively. To accurately estimate the 
stage distribution of lung cancer in the population, we should take into 
account these important factors.

 

Figure 2: Stage distributions with and without missing information.

 

Figure 3: Stage distributions by age groups, tumor grades, and radiation 
therapy respectively.

CS Lymph Nodes CS Extension CS Mets at DX % Missing in Stage
known known known 0
known known missing 0.15
known missing known 15.44
known missing missing 26.49
missing known known 1.09
missing known missing 5.58
missing missing known 13.63
missing missing missing 99.97

Table 1: The proportion of unknown stages when different essential variables are 
missing.
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3.	 Create missing in stage: Finally the missing of stage was 
created based on the data set created from step 2. A model was built 
based on the original data set where the response variable was the 
binary indicator of missing stage, and all essential variables and other 
variables were predictors. Again, missing a predictor was counted as 
a special category of the predictor. MART was used for the model 
building. Then the model was used on the data set created from step 2 
to generate missing in stage.

The missing data sets were created for each year of 2004–2009 
independently. The estimated distribution from the proposed AR 
methods were compared with the true value from the complete data 
set, and compared with the estimates from traditional methods such 
as ad hoc method, weighting method and the multiple imputation 
method. For the MI method, we used both multinomial logit regression 
and random forest as the predictive models. We repeated the MI 
process 50 times and the reported stage distribution was the average 
of the 50 repetitions. The comparisons of the estimate are shown in 
Figure 5. The relative sum of absolute errors compared with the AR 
method, defined as the sum of absolute errors from the corresponding 
methods divided by that from AR, are shown in Table 2. We found that 

on average, the proposed method produced much better estimates of 
the stage distributions over the years, followed by weighting method 
and multiple imputations. Within multiple imputations, random forest 
performed a little worse than logistic regression as predictive models. 
This indicated that linear relationship might be sufficient in describing 
the associations between stages and other variables. However, the multiple 
imputation methods were most time consuming as shown in Table 3. 
Weighting method took least time but was not as stable compared with 
AR method. All the analyses were carried out in R version 2.8.

 

Figure 4: Estimated distributions of lung cancer stages over the year 2004-2009.

 

Figure 5: Estimated distributions of lung cancer stages over the years 2004-2009 from simulated data.

Year Adhoc MI(logistic) MI(rf ) Weighting
2004 4.57 1.73 1.79 1.42
2005 3.44 0.77 1.49 0.74
2006 11.86 4.10 5.28 3.90
2007 3.59 1.04 0.99 0.62
2008 5.99 1.16 2.10 0.60
2009 302.35 84.08 102.03 128.90

Table 2: Relative sum of absolute errors (RAE) for each method compared with the 
AR method. RAE is defined as the AE of the corresponding method divided by that 
of the AR method. The RAE for the year 2009 is very high since the sum of absolute 
error for AR is very small (0.006%).
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Conclusion and Future Work
Accurately estimate stage distribution is important in cancer 

research. Effectively deal with the unknown stage in population-based 
cancer register center is essential for the estimation. To handle the 
missing values in population cancer stage is special in that the sample 
size is big, and the stages are not directly observed but are abstracted 
from essential tumor information. Depending on the availability of 
the essential tumor factors, the missed stages can have very different 
distributions. In the paper, we propose a robust estimation method 
that adaptively chooses an efficient method to estimate the missing 
information according to the missing pattern of the essential factors. 
We apply the AR method to estimate the lung cancer stage distribution 
over the year 2004 to 2009 for 38 combined major US tumor registries. 
Simulations show that the proposed method is efficient in estimating 
the cancer stage in that it consistently gives more accurate estimations 
while takes acceptable short amount of computing time, when 
compared with traditional methods such as weighting and multiple 
imputation. In the AR method, we use MART to build the predictive 
model for multiple imputations or to estimate weights for weighting 
method. MART is effective since it can automatically identify 
significant nonlinear relationship and important interactions. MART 
is a nonparametric method and it is efficient when the sample size is 
large, which is especially useful for estimating cancer stage distribution 
in population. The proposed method can be extended to deal with 
complex missing data in population distribution estimation.

There are some limitations with the proposed method. We adapt 
different strategies to handle missing values by stratify the data set 
according to the proportion of missing. The choice of threshold is 
ad hoc. A cross-validation method might help to choose the tuning 
parameters. Also we provide only point estimations in the paper. 
To make inferences on the point estimates, we can use bootstrap to 
measure the uncertainties.

All the analyses in the paper were performed with R codes. As a 
future research, we will write the process with SAS macros. So that 
when original data set is imputed, and the response variable and 
essential factors are positioned, the SAS macro will output the estimated 
distribution of the response variable. In the meantime, the macro will 
output data sets with weights on known observations and imputations 
for some observations with missing response. The output data sets with 
weights will then represent the population.
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