Adeno-Associated Virus-Based Transgene Delivery for Treating Progressive Vascular Diseases

Paul L Hermonat*
Central Arkansas Veterans Healthcare System, Little Rock, USA

Abstract
There has been much progress in the clinical treatment of Progressive Vascular Diseases (PVD) since the introduction of statins, calcium channel blockers, and other relevant drugs. Yet long term PVD still plagues much of our aged population. The use of gene therapy, delivering therapeutic transgenes, should provide both long-term and safe treatment, as well as more physiologically relevant treatments. Adeno-associated Virus (AAV) can provide long term and safe gene delivery, very appropriate for long term PVD. In regard to therapeutic transgenes for the treatment of PVD, there is a choice of several gene categories, all of which may provide a significant level of efficacy yet have different metabolic modes of action. As examples there are anti-inflammatory cytokine genes, blood lipoprotein-metabolism genes, and anti-oxidant genes.

Introduction
The various forms of PVD, most notably atherosclerosis, encompass a large percentage of the morbidity and mortality of the aged population, and challenges cancer for the highest position of mortality [1]. As opposed to small molecule drugs (pills), the uses of genes (and their encoded proteins) which act in regulating the disease process should provide more physiologically relevant treatments with higher efficacy. Atherosclerotic plaque, particularly in its intermediate, most common form, can be thought of as an immune cell tumor. Almost all types of immune cells have been found within atherosclerotic plaque and have been deemed as causative agents. Monocytes, macrophages and derived foam cells are present in abundance within developing atherosclerotic plaques, however it remains to be proven which of these immune cell types are the mechanistic driver, the etiologic agents, of atherogenesis and PVD [2,3]. For example T cells have also been found to be elevated in atherosclerotic plaque, and these cells have also been suggested as critical mechanistic drivers of PVD [4].

The Viral Vectors Available
There are three main virus types used for transgene delivery (gene therapy). These are adenoviruses (Ad) [5], retrovirus/lentivirus [6] (usually Human Immunodeficiency Virus-Based, HIV), and Adeno-associated Virus (AAV) [7]. Figure 1, shows the use of these three types over time for the treatment of PVD. It can be seen in Figure 1A that the use of Ad is on decline over time, and this is likely due to its short term expression, its association with inflammation, and its association with adverse reactions (death, inflammatory reactions) during its use (all negatives for the treatment of PVD. The use of lentiviral (retrovirus) vectors, in Figure 1B, are on the strong upswing, yet retroviruses as a source are credited. AAV types, as are various types of muscle. In arteries the arterial smooth muscle cells are the primary target for AAV type 2, as well as many other AAV types [12].

The Therapeutic Transgene Approaches
There are a number of gene therapy approaches which might be taken to prevent or slow down atherosclerosis. The three that will be covered here include transgenes which down-regulate the immune system, dyslipidemia in the circulation and arterial wall or inhibit reactive oxygen species.

Down-Regulation of the Immune System/Anti-Inflammation
As it is unclear which immune cell type, and which specific type of inflammation, is at the heart of atherogenesis the use of a general anti-inflammatory genes would seem to be advantageous for anti-therosclerosis effect [13,14]. The two most well known, well studied genes include transforming growth factor beta 1 (TGFβ1) and interleukin 10 (IL10). TGFβ1 is very pleiomorphic in its effects, yet its broad negative effects on the immune system are well documented [15]. Perhaps its most prominent adverse effect is its association with the induction of fibrosis [16]. Thus perhaps at this time TGFβ1 is not a desirable transgene for treating vascular disease due to its complicated and divergent effects.

IL10 [17] may be superior to TGFβ1 as fewer complications have been attributed to it, yet it has also been associated with it a number of adverse reactions such as anemia, and increased infections [18]. Regarding desirable therapeutic effect IL-10 has a broad effect on...

*Corresponding author: Paul L. Hermonat, Central Arkansas Veterans Healthcare System, 4300 West 7th St., Little Rock, AR 72205-5484, USA, Tel: 501-940-7034; Fax: 501-257-4821; E-mail: HermonatPaulL@uams.edu

Received January 13, 2014; Accepted January 16, 2014; Published January 18, 2014

Citation: Hermonat PL (2014) Adeno-Associated Virus-Based Transgene Delivery for Treating of Progressive Vascular Diseases. Clon Transgen 3: e111. doi:10.4172/2168-9849.1000e111

Copyright: © 2014 Hermonat PL. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
multiple immune cell types. In particular, IL-10 decreases Mo/Mac activation, recruitment and proliferation, which are likely involved in plaque development [19]. Moreover, and importantly, the IL10 transgene has been studied by multiple groups using AAV delivery, and all have shown it to have significant efficacy in animal models [20-24].

Like most cytokines, IL10 has a very short half-life in blood and because of this we consider that gene therapy is the most advantageous way to use IL10 therapeutically. This is because the gene has a much longer half-life than the protein. Again, AAV has the longest documented transgene life in patients [9].

Both IL-10 and TGFβ1 are Th1 response cytokines and there are other cytokines which are in this category which may be useful for inhibiting immune response within arteries. As cytokines are secreted proteins and largely act through diffusion and blood transport both the arterial wall and the liver are both appropriate platform tissues to target gene therapy, with the arterial wall, itself, being the most desirable approach.

Down-regulation of dyslipidemia

The level and makeup of lipoproteins in the blood are critical in directing vascular clinical outcome towards atherosclerosis or not [25]. High Density Lipoprotein (HDL), a complex assembly of proteins and lipids, gives desirable trafficking of lipids/lipoproteins which results in lower lipid levels (e.g. cholesterol) out of arterial walls. Apo A1 is one of the major protein components of HDL, thus higher Apo A1 levels would be one potential strategy for regulating dyslipidemia [26,27]. A number of studies have shown that Apo A1 gene delivery offers additional protection against PVD, particularly atherosclerosis. Additionally, there is one natural mutation to the ApoA1 gene, Milano, which appears to have higher athero-protective attributes than wild type [28]. This desirable mutant gene has also been used therapeutically by gene delivery and has shown efficacy against PVD/atherosclerosis [29].

Conversely, Low Density Lipoprotein (LDL) is undesirable at high levels, is associated with atherogenesis, and at high levels would be considered a dyslipidemia. ApoB100 is a major protein component of LDL. Thus lowering ApoB100 might be an approach towards lowering vascular disease. The use of shRNA genes, or other inhibitory gene-type agents inhibiting ApoB100 expression, might be an additional strategy to limit PVD/atherosclerosis [30].

Down-regulation of reactive oxygen species

When are present in all cells and are eliminated by antioxidants. When Reactive Oxygen Species (ROS) are produced at high levels, above what the normal endogenous antioxidant defenses can handle, then oxidative stress takes place. Of course ROS are very important because of the widespread damage it can cause through its alteration of cellular proteins, DNA, and lipids. Moreover, ROS is a factor in many diseases of aging, and its role in cardiovascular disease is well documented [31]. It is clear that ROS intersects with and promotes both inflammation and dyslipidemia in their roles in causing atherogenesis.

As ROS is an ever present problem cells encode a number of anti-oxidant genes. These include superoxide dismutases (SODs), glutathione peroxidases (GPXs), catalases, glutaredoxins, thioredoxin peroxidases (peroxiredoxins, eg. PRDX6), and others [32]. We have recently shown that AAV-delivered PRDX6 is able to inhibit atherosclerosis in Low Density Lipoprotein Receptor Knockout mice (LDLR KO) on high cholesterol diet [33].

Summary

In summary the future is promising for the development of AAV-based gene therapies for limiting PVD, with many possible approaches likely to show significant efficacy.

Acknowledgement

This study was funded by a VA Merit Review grant to PLH.

References

