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Introduction
The economic and social development of industrialized countries 

are accompanied by changes in lifestyle, more and more sedentary, and 
changes in eating habits that result in a dramatic increase in obesity. Just 
from 2008 to 2014 people with obesity increased from 1.4 to 2 billion 
of adults and these numbers are expected to increase [1].

Obesity is associated with a general dysregulation of metabolic 
equilibrium. It occurs with insulin resistance, dyslipidemia, impaired 
regulation of blood pressure (BP ≥ 160/90), hypertriglyceridemia (≥ 
150 mg/dl), reduced HDL cholesterol (<35 mg/dl, males, <39 mg/
dl, females), central obesity (WHR>0.9, Males, >0.85, females and/
or BMI>30), micro albuminuria (AER U-> 20 μg/min or albumin/
creatinine ratio > 20 mg/g). The combination of these parameters 
represents a preclinical condition known as metabolic syndrome, 
Syndrome X or Reaven’s syndrome  and represents the most 
important risk factor for cardiovascular diseases, diabetes, chronic 
liver disease and cancer [2-4].

In recent years, it has become clear that obesity is characterized 
by a low-grade systemic inflammatory state, which is a pathological 
basis for metabolic complications induced by obesity [5], this is 
shown by a change in the concentration of several mediators called 
adipokines. These molecules are produced preferentially by white 
adipose tissue (WAT) and mediate the cross-talk among different 
organs including brain, liver, heart, skeletal and cardiac muscle 
communicating the nutritional status. They have both pro-inflammatory 
and anti-inflammatory activities and when obesity occurs, it is an 
imbalance in the expression of adipokines that contributes to obesity-
related complications. 

The causes and mechanisms that induce the inflammatory 
state associated with obesity are not yet fully known, however, 
the dysfunction of the adipokine pathways has been recognized 
as a key etiological factor of diseases induced by obesity. It seems 
to represent the biochemical link between obesity, inflammation 
and metabolic syndrome. Furthermore, recent evidence shows that 
the pro-inflammatory adipokines are central to the initiation of 
pathophysiological processes related to the excess fat. 

The goal of research in this field is the identification of the role 
of adipokines, their cellular sources and the strategy to regulate their 
production in order to target obesity and obesity-related pathologies.

Adipose Tissue 
Over the past 20 years, there have been great strides in 

understanding the pathophysiological mechanisms by which obesity 
induces or amplifies its major adverse consequences. In particular the 
role of adipose tissue was highlighted, no longer regarded as a tissue 
with simply trophic and mechanical properties but as an organ with 
endocrine functions and ability to secrete bioactive molecules. It is now 
considered a key player in the development of lifestyle-related diseases 
[6].
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Abstract
Globesity is referred to a global epidemic of obesity, affecting millions of individuals. Molecules released by the 

enlarged adipose tissue, most of which are pro-inflammatory, have been named adipokines. The present review 
deals with function, molecular targets and the potential clinical relevance of adipokines. Currently, more than 
600 adipokines have been identified, many of them, including leptin, visfatin, resistin as well as Retinol Binding 
Protein4 may serve as informative markers for metabolic and cardiovascular diseases and play important roles in 
glucose homeostasis, insulin sensitivity as well as metabolic regulation of energy expenditure. Adiponectin on the 
contrary exerts anti-inflammatory and insulin sensitizing activity. Adiponectin has additional anti-atherogenic effects 
and low adiponectin serum concentrations are associated with increased risk for cardiovascular diseases. The 
understanding of the role of adipokines has provided a wealth of information that has opened great opportunities for 
new therapeutic advances. Adiponectin may be the most prominent example for the potential use of an adipokine in 
the treatment of obesity and obesity-associated metabolic diseases. In many studies, administration of recombinant 
adiponectin results in improved insulin sensitivity, increased insulin secretion and beneficial effects on body weight 
and hyperglycemia. Up-regulation of adiponectin/adiponectin receptors or enhancing adiponectin receptor function 
may be an interesting therapeutic strategy for obesity-linked insulin resistance. Moreover, the therapeutic use of 
combined amylin/leptin agonism (with pramlintide and metreleptin) demonstrated a significant weight-lowering effect 
in obese subjects. Therefore, adipokines may be clinically relevant either as therapeutic tools or as target in the 
treatment of obesity related diseases.
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In humans, there are two types of adipose tissue: white and brown 
adipose tissue. They have different composition and cellular localization 
and, together, constitute the adipose organ. Deposits of subcutaneous 
and visceral white adipose tissue constitute most of the adipose 
organ in the normal adult. The brown adipose tissue is less common 
and is found in the supraclavicular, laterocervical, paravertebral and 
mediastinal regions.

The two main types of cells that constitute the adipose tissue are 
white and brown adipocytes. The white adipocytes have a traditional 
role in the storage of high-energy molecules, while the brown adipocytes 
are involved in thermogenesis. In addition to adipocytes, other cell 
types constitute the white adipose tissue: pre-adipocytes, fibroblasts, 
vascular cells and immune cells. These cells are the stromal-vascular 
fraction of adipose tissue. Vascular cells include endothelial as well as 
smooth muscle cells, which are associated with major blood vessels, 
necessary for the supply of oxygen and nutrients to the adipocytes. 
Other active adipose tissue components include macrophages and T 
cells, which play important roles in determining the immune status of 
adipose tissue [7,8].

Obesity and Inflammation
In obese subjects the expansion of white adipose tissue takes place, 

determined by an increase in adipocyte size (hypertrophy) due to the 
storage of excess triglycerides in lipid droplets [9]. A recent study shows 
that the increase in fat mass following overfeed may also be due to the 
increase in the number of adipocytes (hyperplasia), but it occurs only in 
lower-body subcutaneous fat and not in the upper-body subcutaneous 
fat [10]. However the expansion of adipose tissue leads to an excessive 
release of free fatty acids by adipocytes. These molecules, while in 
normal conditions are transported to other tissues and used as a source 
of energy, in conditions of obesity enter directly into the liver via the 
portal circulation and increase the levels of free fatty acids inducing an 
increase of lipid synthesis, gluconeogenesis and insulin resistance in the 
liver. High levels of circulating free fatty acids can also cause peripheral 
insulin resistance in both animals and humans [11,12]. 

These alterations affect the function of adipose tissue [13-16] 
and induce changes in the microenvironment that contribute to the 
recruitment of inflammatory cell leading to a state of chronic low grade 
inflammation [17,18]. 

In particular free fatty acids bind to the receptor complex toll-like 
4 (TLR4) and stimulate the production of cytokines by macrophages, 
inducing the inflammation which contributes to the metabolic 
complications associated with obesity [19,20].

The TLR4 is a member of TLRs, a family of pattern-recognition 
receptors that play an essential role in the innate immune system by 
activating the cascade of events leading to the synthesis of inflammatory 
products [21]. It is the obligatory receptor for bacterial LPS but it plays 
an additional role into the pathogenesis of endogenous lipid-induced 
insulin resistance.19. The binding to TLRs induces the phosphorylation 
and the activation of the NFkB complex [22], which in turn activates 
the transcription of many pro-inflammatory genes encoding cytokines, 
chemokines, and other effectors of the innate immune response [23].

The metabolically dysfunctional adipose tissue is also characterized 
by higher number of adipocytes undergoing necrosis, and by 
macrophages distributed around these dead cells in a crown-like 
structure [7,24,25]. 

Normally adipose tissue contains 5-10% of macrophages, but 
in conditions of obesity, the macrophage infiltration reaches 60%. 

Macrophages residing in adipose tissue are classified into two distinct 
subtypes: M1, or classically activated, and M2, or alternatively 
activated. M1 macrophages secrete pro-inflammatory cytokines such 
as TNF-α and IL-6, produce NO and reactive oxygen species (ROS), 
that contribute to obesity-related insulin resistance [26,27]. M2 
macrophages produce IL-10, IL-1 receptor antagonist and arginase-1 
and have been implicated in tissue remodeling [28], including clearance 
of dead or dying adipocytes and the recruitment and differentiation of 
adipocyte progenitors [29].

In normal conditions, the macrophages of WAT express markers 
of alternatively activated macrophages (M2) and support the adaptive 
thermogenesis [30] and lipolysis [31]; on the contrary obesity leads 
to the recruitment and accumulation of M1 or classically activated 
macrophages, as well as T cells [24,25,32]. 

The presence of macrophages has provided an explanation for 
the origin of several cytokines derived from adipose tissue, and has 
also demonstrated the close relationship with systemic low-grade 
inflammation that characterizes obesity [7,26]. As a matter of fact, 
it has been shown that the decrease of macrophage infiltration or 
macrophage ablation results in decreased secretion of inflammatory 
cytokines in adipose tissue and in improved insulin sensitivity in diet-
fed obese mice [33,34] . In addition, weight loss reduces macrophage 
infiltration and pro-inflammatory gene expression in adipose tissue of 
obese subjects [35,36]. 

Adipokine Secretion from Adipose Tissue
Molecules such as cytokines and hormones, secreted by different 

cell types that constitute the adipose tissue are collectively called 
adipokines [37-40]. From a functional point of view, adipokines are 
polyvalent molecules, which act with paracrine and endocrine activity 
[41-44]. They play an important role in glucose metabolism, insulin 
sensitivity, hypertension, cell adhesion, vascular growth and function, 
adipogenesis and bone morphogenesis, growth, lipid metabolism, 
regulation of appetite and satiety and other biological processes [2,45]. 
These molecules are responsible for the cross-talk among adipose 
tissue, muscles, and adrenal glands and central as well as sympathetic 
nervous system. 

Currently, more than 600 adipokines have been identified [40,46] 
and the whole system is complex and redundant, i.e. more molecules 
partly overlap. But from their numerous functions it is evident the 
importance of their role in many physiological and pathological 
processes [2,45] (Table 1). Excess adiposity and adipocyte dysfunction 
contribute to the development of several metabolic diseases through 
the alteration of lipid and glucose metabolism and the induction of a 
low-grade chronic inflammation [47,48].

In obesity, adipose tissue generates large amounts of pro-
inflammatory factors, including leptin, resistin, retinol-binding protein 
4 (RBP4) and nicotinamide phosphoribosyltransferase (NAMPT), while 
in the healthy adipose tissue anti-inflammatory adipokines, including 
adiponectin, are preferentially produced (Figure 1). Adipokine may be 
clinically relevant either as therapeutic tools or as target in the treatment 
of obesity related diseases.

Leptin
Leptin is a 16-kDa polypeptide structurally related to cytokines 

[39]. It was discovered in 1994 by Zhang and coll [49]. It is secreted 
almost exclusively by adipocytes of WAT and communicates the 
nutritional status to other organs playing an important role in the 
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metabolic regulation of satiety, appetite, food intake, activity and 
energy expenditure [50].

Circulating leptin levels are directly proportional to the amount 
of body fat, reflecting the status of energy stores. It varies with caloric 
intake: decreasing in fasting and increasing with food intake. Then 
increased levels of circulating leptin are found in obese subjects.

The main site of action is arcuate nucleus of the hypothalamus [51]. 
At this level, leptin act on NPY/AgRP and POMC neurons. NPY and 
AgRP lead to increased food intake, while POMC synthesize alpha-
MSH anorexigenic peptide that activates the melanocortin receptors 
and decreases the food intake. Then leptin increases POMC mRNA 
levels while NPY/AgRP are inhibited [51-53].

Leptin has also important effects on glucose homeostasis and 
hepatic insulin sensitivity which are mediated by suppressing the 
expression of glucose-6-phosphate and phosphoenolpiruvate kinase 
51, that are key enzymes in the fatty acid pathway, and by increasing 
fatty acid oxidation and decreasing triglyceride storage in muscle by 
activating AMPK [54].

Recently, it has been highlighted the correlation between high levels 
of circulating leptin and increased cardiovascular risk. Leptin, in fact, 
can increase platelet aggregation and arterial thrombosis, promote 
angiogenesis, impair arterial distensibility and induce proliferation and 
migration of vascular smooth muscle cells [50,55,56]. 

Leptin, for its structure similar to cytokines, is also able to modulate 
the immune system. It acts on macrophages, T-cells and other immune 
cells to promote the production of pro-inflammatory cytokines such 
as IL 12 and TNF and inhibit the production of anti-inflammatory 
cytokines such as IL-4. This probably is one of the causes of chronic 
inflammation observed in obesity [57]. 

Nampt/Visfatin
Nicotinamide phosphoribosyltransferase (NAMPT), also known as 

visfatin and pre-B-cell colony-enhancing factor 1 (PBEF-1) has been 
described as an adipokine predominantly secreted from visceral WAT 
[58] with a potential glucose-lowering effect because of its nicotinamide 
phosphoribosyl transferase activity [58]. This is the rate-limiting 
enzyme that converts nicotinamide to nicotinamide mononucleotide 
(NMN) in the salvage pathway of NAD biosynthesis from nicotinamide 
in humans. Nicotinamide mononucleotide adenylyltransferase 1 
converts NMN to NAD [59,60].

However, subsequent studies in humans have also revealed that 
other tissues and cells can express NAMPT including lymphocytes, 
bone marrow, muscle, and liver and that the effects of this molecule as 
an insulin mimetic are controversial [60,61]. 

Later studies showed that plasma visfatin was related to various 
metabolic states [62,63]. It was increased in subjects with obesity, type 
2 diabetes mellitus, metabolic syndrome and cardiovascular diseases 

sources obesity Principal function Relevance References
Leptin adipocytes increase Decreases appetite; improves 

hypertrigliceridemia and insuln sensitivity
Marker of body fat mass; treatment of 
lipodystrophy;
treatment of genetic leptin deficency

[50,51]

NAMPT/
Visfatin

adipocytes increase Improves glucose metabolism Putative marker of systemic inflammation 
and atherosclerosis

[64,60]

Resistin monocytes
macrophages

increase Contributes to systemic inflammation 
and 
induces insulin resistance

Putative marker for metabolic disease 
in humans, particularly type 2 diabetes, 
myocardial infarct, atherosclerosis 

[71,73-79]
 

Vaspin Adipocytes
macrophages

increase Improves glucose metabolism; reduces 
food intake

Possible target for obesity and type 2 
diabetes

[80,81,89] 

Apelin Adipocytes
macrophages

increase Improves insulin sensitivity and glucose 
metabolism

Possible target for obesity and type 2 
diabetes

[101,103]

RPB4 adipocytes 
macrophages 

increase Improve insulin resitance and systemic 
inflammation

Putative marker of adipose tissue 
inflammation

[107,115]

Adiponectin adipocytes decrease Insulin sensitizer; anti-inflammatory Promising candidates for further 
development as therapeutics for insulin 
resistance. 

[118,119]

Table 1: Sources and function of key adipokines.

 

Figure 1: The obese adipose tissue (hyperplastic and hypertrophic) leads 
to the altered secretion of adipokines that contribute to the recruitment of 
inflammatory cells and the switch M2-M1. The M1 macrophages are arranged 
around the necrotic adipocytes in crown-like structures.
All this contributes to chronic inflammation of adipose tissue and finally to the 
development of obesity-related diseases.
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[64]. Visfatin was initially identified as a novel adipokine with insulin-
mimetic properties in mice. Enhanced circulating visfatin/Nampt levels 
have been reported in metabolic diseases, and their circulating levels 
correlate with markers of systemic inflammation. In cardiovascular 
diseases, visfatin/Nampt was initially proposed as a clinical marker of 
atherosclerosis, endothelial dysfunction, and vascular damage, with a 
potential prognostic value [65]. 

 Through binding to the insulin receptor, it is able to stimulate 
the production of IL-6 and MCP-1, important cytokines involved in 
inflammatory processes. Also it favors the activation of nicotinamide 
adenine dinucleotide phosphate oxidase (NADPH-oxidase) involved in 
the synthesis of reactive oxygen species, in particular superoxide anion 
[66,67,60].

 Recently it has been demonstrated that hypercaloric feeding as well 
as aging compromise NAMPT-mediated NAD+ (NMN)  biosynthesis 
and may therefore contribute to the pathogenesis of type 2 diabetes 
[60]. Yoshino et al. recently demonstrated that administration of 
NMN to mouse models of obesity and type 2 diabetes promotes NAD+ 

biosynthesis, thereby ameliorating glucose intolerance and improving 
hepatic insulin sensitivity [60]. The mechanism by which NAMPT/
visfatin contributes to alterations in glucose homeostasis may involve 
regulation of genes related to oxidative stress, inflammatory response, 
B cell function [59] and circadian rhythm, at least in part via SIRT1 
activation [60,68]. 

However, further studies are required to understand its physiological 
functions. 

Resistin
In 2001 Steppan and colleagues identified Resistin in a screen for 

adipocyte genes that are suppressed by insulin-sensitizing drugs in 
rodents [69]. This adipokine was initially identified as a product of 
mouse adipose tissue and has been associated with inflammation and 
insulin resistance. In obese mice the levels of circulating resistin are 
increased and it was shown that resistin knockout mice on a high-fat 
diet have improved glucose metabolism. This is due to the activation 
of suppressor of cytokine signalling 3 (SOCS3), an inhibitor of insulin 
signalling, in adipocytes [70]. 

However further analysis in humans have shown that resistin is 
mainly produced by monocytes and macrophages and not by adipocytes 
[71]. Mouse and human resistin shares less than 60% identity at the 
amino acid level [72], but interestingly, human resistin, when expressed 
in mouse macrophages, also induces insulin resistance [73] suggesting 
that human and mouse resistin might have similar function despite 
their molecular differences and different sites of production [74].

 Another important aspect is that in human mononuclear 
cells, transcription of the resistin gene (RETN) is induced by pro-
inflammatory cytokines, including IL-1, IL-6 and TNF-α, and Resistin, 
in turn, increases the expressions of cytokines and adhesion molecules 
in murine vascular endothelial cells. Another studies showed that in 
white adipose tissue resistin is inhibited by Rosiglitazone, a agonist, 
suggesting that the atteuation of RETN transcription mediates the anti-
inflammatory effect of rosiglitazone [75].

These studies support the idea that resistin levels may serve as 
an informative marker for metabolic disease in humans, particularly 
type 2 diabetes, myocardial infarction, and atherosclerosis [76-79,74]. 
Future studies are required to investigate the therapeutic potential of 

resistin inhibition.

Vaspin
Visceral adipose tissue-derived serpin (vaspin), is a member of 

serine protease inhibitor (SERPIN) family, first identified as a new 
gene, OL-64, expressed in visceral adipose tissue of Otsuka Long–Evans 
Tokushima Fatty (OLETF) rats, a model of abdominal obesity and type 
2 diabetes [80,81]. Vaspin expression was also found in hypothalamus, 
stomach and pancreatic islets [82] but is not expressed in the 
subcutaneous tissue, brown adipose tissue and other not fat tissues.

In humans, the vaspin is expressed in adipose tissue, stomach, liver 
and pancreas to a greater extent in overweight and obese compared 
to lean subjects81. Furthermore, there is a greater expression in white 
adipose tissue compared with the subcutaneous adipose tissue in 
accordance with the data of OLEFT rats [81,82]. Several research 
groups have found gender differences in serum vaspin. Healthy women 
have higher serum vaspin than men. These differences develop during 
puberty [83-85]. 

Expression of human vaspin in adipose tissue is regulated in a fat 
depot-specific manner and could be associated with parameters of 
obesity, insulin resistance, and glucose metabolism. In fact, low levels 
of vaspin seem to be typical of lean subjects and athletes, while high 
serum concentrations have been reported in people who are overweight 
as well as obese subjects with impaired insulin sensitivity.

Due to the significant correlation between vaspin and obesity 
and related metabolic diseases, studies on vaspin are geared toward a 
possible therapeutic application. 

In mice with high-fat diet induced obesity, vaspin administration 
improved insulin sensitivity, glucose tolerance and modulated gene 
expression of candidate genes for insulin resistance [80,86,87].

 Although central vaspin administration led to reduced food 
intake [82,88], the mechanism of action remains unclear. Bluher [89] 
suggested that vaspin inhibited proteases that degrade molecules with 
glucose lowering effects as well as anti-orexigenic factors. Vaspin was 
associated to inhibition of TNF-α induced expression of intercellular 
adhesion molecule (ICAM) by preventing ROS generation and 
subsequent activation of NF-kB [90]. Fat mass expansion was associated 
with increased vaspin expression and its circulating concentration 
[81,83,91]. In obese subjects, it was shown that serum vaspin decreased 
following modest weight loss accompanied by improved parameters 
relevant to insulin resistance [92]. These findings suggested that vaspin 
may provide a compensatory response to antagonize the action of 
proteases that could be up regulated in states of insulin resistance [93].

Although these rodent studies suggest vaspin as future 
pharmacological therapeutic agent anti-obesity and its related metabolic 
diseases, further molecular targets of vaspin have to be identified to 
fully understand its mechanism of action.

Apelin
Apelin, a 36 amino-acid peptide endogenous ligand of the 

G-protein-coupled receptor APJ receptor 94, has been identified in a 
variety of tissues, including central nervous system with high expression 
in the hypothalamus, stomach, heart, skeletal muscle, and white adipose 
tissue [95]. 

Apelin serum levels were shown to be higher in patients with obesity 
[96], insulin resistance [97,95] and liver cirrhosis [98]. The correlation 
with hyperinsulinemia and obesity, suggests that apelin may be another 
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adipokine mediator of impaired adipose tissue function in obesity [95].

However obesity itself, probably, is not the main determinant of 
increased plasma apelin, in fact circulating apelin concentration was 
not significantly correlated to BMI [99,100]. Other factors, such as 
inflammation and oxidative stress, could explain changes in plasma apelin 
observed in obesity [101,102]. Thus, increased apelin may be due to 
metabolic derangements that result from compensatory response to insulin 
resistance [101].

Peripheral apelin administration in obese insulin-resistant mice 
improved insulin sensitivity and glucose uptake in skeletal muscle 
[103,104]. However the treatment with apelin provoked fasted 
hyperglycemia and decreased insulin sensitivity in experimental 
models [105].

Overall, data obtained from apelin treatment in different rodent 
models indicate that reduced adipose tissue apelin expression and 
serum concentration may contribute to improved insulin sensitivity 
independently of significant weight loss [106], although the exact 
mechanism is not yet clear and no data are available in humans.

RBP4 
Retinol binding protein 4 (RBP4), secreted primarily by the liver 

and originally known as the only retinol transporter in blood, was 
recently identified as an adipokine apparently linked to obesity and 
its comorbidities in humans, including insulin resistance, T2D, MetS, 
cardiovascular diseases and inflammation. 

The mature adipocytes are the main source of RPP4, together with 
hepatocytes [107]. The relation of RBP4 to insulin resistance and obesity 
in human clinical studies remains controversial. It has been reported 
that plasma RBP4 is increased in subjects with obesity, impaired glucose 
tolerance, and diabetes mellitus [108,109], but other studies did not 
support the relation between RBP4 and insulin resistance [110,111].

RBP4 was also positively associated with some Met S components, 
including hypertriglyceridemia, reduced HDL cholesterol, elevated 
LDL cholesterol and hyperglycemia. These associations were not 
materially attenuated by further adjustment of adipokines and oxidative 
and inflammatory markers.

To date, many human studies have found a strong relationship 
between RBP4 and triglycerides, in association with insulin resistance 
or not. A study dealing with obese subjects (Caucasian) with MetS and 
T2D has confirmed that plasma RBP4 levels are elevated in obese patients 
and no correlation was observed to IR but rather to triglycerides. This 
evidence suggests a key role of RBP4 in lipid metabolism and shows 
that triglycerides are the main independent predictor for determining 
systemic RBP4 levels, regardless of the degree of insulin resistance. 

Moreover, it has been proposed a central role of this adipokine 
in the hypertriglyceridemia associated with insulin-resistant state 
[112]. RBP4, a pro-inflammatory adipokine, also plays a role in 
atherogenesis: RBP4 serum levels were significantly elevated in patients 
with carotid atherosclerosis and positively associated with its severity 
[113]. A correlation between RPB4 serum level and cardiovascular risk 
factors, and its specific role in women as an independent predictor of 
cardiovascular disease, has been reported [114]. 

A study of 18 patients with incident fatal or nonfatal IHD (Ischemic 
Heart Disease) or CVD (Cerebrovascular Disease), compared with 18 
matched control subjects showed that circulating RBP4 levels were 
significantly increased in CVD and decreased in IHD with respect to 
controls.

RBP4 is secreted by both adipocytes [107] and macrophages [115]. 
A study of middle-aged and elderly Chinese population, has showed 
a strong correlation between RBP4 levels and elevated inflammatory 
markers, including IL-6, MCP-1 and TNF-α and this correlation 
appears to play an important role in the initiation and development of 
inflammation in adipose tissue [112].

An unresolved inflammatory response associated with an 
inhibition of insulin signaling represents a high risk for cardiovascular 
events. Moreover, RBP4 may regulate lipid homeostasis through a 
classic mechanism of action (e.g. as a carrier of retinoids, or activation 
of nuclear receptors), or may induce inflammation though a novel 
mechanism responsible for a reduction in the size of HDL and a loss 
of their function.

Adiponectin
Several research groups identified adiponectin almost 

simultaneously as an abundantly secreted adipokine and referred it 
as Acrp30 adipoQ, and apM1, until the consensus name ‘adiponectin’ 
found widespread acceptance [116-118]. It is a protein secreted by white 
adipose tissue. Since its discovery, several different functions have been 
found for adiponectin. There is consensus that adiponectin generally 
exerts insulin sensitising, anti-inflammatory and anti-apoptotic actions 
on a number of different cell types [118].

In normal subjects, the mean serum levels of adiponectin are 
comprised between 5 and 10 µg/ml, under adverse metabolic conditions 
adiponectin release from adipocytes is down-regulated resulting 
in reduced circulating levels [118,119]. Furthermore, adiponectin 
expression and secretion increase upon improved insulin sensitivity 
and weight loss.

The role of adiponectin as an endogenous insulin sensitizer was 
discovered using experimental down-regulation of the adiponectin 
gene in knockout mice. Two independent studies demonstrated 
impaired insulin sensitivity in adiponectin knockout mice as compared 
to wild type controls. 

On the contrary, mice with transgenic adiponectin overexpression 
are protected against obesity, diabetes (ob/ob mice) and atherosclerosis 
(ApoE-deficient mice). The effects of adiponectin on glucose 
homeostasis may be mediated both by increased insulin sensitivity 
and secretion. Adiponectin plays a direct role in improving systemic 
insulin sensitivity and shows a paracrine activity on fat cells and 
hepatocytes. Adiponectin directly improves insulin sensitivity in that 
its globular C-terminal fragment reduces glucose levels by increasing 
fatty acid combustion in myocytes. Potential effects of adiponectin 
on insulin secretion in α-cells, has been examined in several recent 
studies. Transgenic ob/ob mice overexpressing the globular domain 
of adiponectin have increased insulin sensitivity and increased insulin 
secretion independently of body weight compared to control mice. These 
results suggest that adiponectin has in addition to its insulin-sensitizing 
properties, protective effects on α -cells. Adiponectin is able to mitigate 
the apoptotic effects of either palmitate- or ceramide-induced cell death, 
an effect that may critically depend on the formation of the downstream 
conversion product of ceramide, sphingosine-1 phosphate in α -cells 
in vitro. Further in vivo studies in C57BL/6 mice demonstrated that 
systemic adiponectin administration results in increased insulin 
secretion. Adiponectin has additional anti-atherogenic effects and low 
adiponectin serum concentrations are associated with increased risk 
for cardiovascular diseases. Endothelium dependent vasoreactivity is 
impaired in people with low adiponectin levels, which could contribute 
to the development of hypertension in visceral obese individuals.
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Interestingly, various hormones associated with insulin resistance 
and obesity including catecholamines, insulin, glucocorticoids, TNF- 
α and IL-6 down-regulate adiponectin expression and secretion in fat 
cells in vitro [120]. 

Obesity Therapy
To date, therapies for obesity is based on multidisciplinary 

approach that includes lifestyle modifications such as hypocalorie diet, 
increased physical activity and psychological interventions. When 
changes in lifestyle are not enough to lose weight, pharmacotherapy has 
to be used. Currently, however, only a few drugs are available for the 
treatment of obesity per se: Orlistat, Lorcaserin and the combination of 
Phentermine/Topiramate [121-123]. 

Orlistat reduces the intestinal digestion of fat by inhibiting 
pancreatic lipase. Lorcaserin is a selective serotonin 2C receptor agonist 
that suppresses appetite via stimulation of melanocortin receptor 
4. Phentermine is a psychostimulant drug indicated for short-term 
weight loss in overweight or obese adults. It acts through increasing 
norepinephrine in the hypothalamus. Phentermine, in association 
with topiramate, is also used for long-term treatment of obesity. 
Topiramate is indicated for seizures disorders and the prevention of 
migraine headaches. The mechanism is not thoroughly understood, 
although it act on GABA-receptors. Another drug for the treatment 
of obesity is Rimonabant, a cannabinoid receptor 1 inhibitors that 
reduces food intake and body weight [122]. Obesity leads to excessive 
endocannabinoid production by adipocytes, which drives CB (1) 
in a feed-forward dysfunction. Several CB (1) inverse agonists have 
been developed for the treatment of obesity, including rimonabant, 
taranabant, and surinabant. These drugs are efficacious at reducing 
food intake as well as abdominal adiposity and cardiometabolic risk 
factors [124]. Studies on the mechanism of action of rimonabant have 
shown that it blocks endocannabinoid receptors 1 affecting the action 
of leptin [125]. However this drug on 2008 was removed from the 
market due to its adverse neuropsychiatric effects. A high percentage 
of patients treated with rimonabant suffered from depression, anxiety, 
psychomotor agitation, and sleep disorders. A study reported 2 cases 
of completed suicide and 74 cases suicidality during treatment with 
rimonabant. All these drugs are accompanied by significant side effects 
and provide only limited long-term success. In fact, the majority of 
people who lose weight regain it within 1 year, and almost all within 5 
years [126]. Regarding the weight loss, bariatric surgery is much more 
effective, such as Roux-en-Y bypass or gastric banding, [127,128] but 
the use is restricted to subjects with severe obesity and is hampered 
by surgical complications and by the frequent need for reintervention 
[129]. 

More often obese patients require drugs for the treatment of obesity-
related diseases such as diabetes and hypertension even if the first line 
of treatment for these diseases is the weight loss. The failure of current 
therapies could be due to the fact that the pathogenetic factors that 
affect energy intake, expenditure metabolism cannot be directly targeted 
[127,130]. 

The understanding of the role of adipokines have provided a wealth 
of information that have opened great opportunities for new therapeutic 
advances. Numerous clinical studies have shown that many drugs used in 
therapy modulate the secretion of adipokines. To name a few, the PPAR- α 
agonists which are used for the treatment of type 2 diabetes, increase the 
secretion of adiponectin, whereas they reduce the expression of resistin 
[131,132]. Statins, HMG-CoA reductase inhibitor, used for the treatment 
of dyslipidemia, determine an increased secretion of adiponectin and 
reduce the levels of IL-6 [133,134]. Patients treated with atorvastatin show 

reduced levels of leptin [135].

Insulin-sensitizing thiazolidinediones (TZD) probably mediate part of 
their effect via adiponectin since they increase plasma concentrations of this 
adipokine in both subjects with normal insulin sensitivity and type 2 diabetes 
[118]. In contrast, various hormones associated with insulin resistance and 
obesity including catecholamines, insulin, glucocorticoids, TNF- α and IL-6 
downregulate adiponectin expression and secretion in fat cells in vitro 
[120]. 

Furthermore it is to be underlined that a modulation of adipokine 
levels is obtained with the improvement of lifestyle [136]. The beneficial 
effect of physical activity is mainly due to the reduction of oxidative 
stress and improvement of adrenergic receptor signaling. 

Physical exercise, in particular, promotes the oxidation of fatty 
acids by reducing insulin resistance constant aerobic exercise induces 
a decrease of adipokines and inflammatory cytokines (CRP, TNFalpha, 
IL-6) and increases IL-10 and adiponectin.

The majority of the studies on adipokine, since its discovery to 
date, are directed to the understanding their possible application in 
treatments of obesity and metabolic disorders [46,137,138]. In this 
connection, the most intensively studied adipokines have been leptin 
and adiponectin.

Leptin
 Leptin promotes weight loss in obese congenitally leptin-deficient 

mice [137]  and humans  [138], but in diet-induced obesity  both in 
rodents and humans [139], leptin has only little weight loss efficacy. 
Moreover, treatment with higher doses of native leptin or leptin analogs 
with sustained pharmacokinetics failed to enhance weight loss and 
increased adverse effects [140].

In 20 years of intensive research, it has been seen that the exogenous 
administration of leptin in obese individuals does not significantly 
affect the body weight, neither reduces food intake, nor improves 
hyperglycemia [50,140]. This is accompanied by paradoxical increase in 
circulating leptin levels in obese subjects secondary to the development 
of central leptin resistance [141] due to impaired leptin transport across 
the BBB and/or impaired leptin signal transduction in neurons [51]. 

At present, despite difficulties, recombinant leptin and the analogue 
metreleptin are available for the treatment of congenital leptin deficiency 
and lipodystrophy in Japan and in the USA [46,142]. Metreleptin is 
used also for the treatment of diabetes and/or hypertriglyceridemia, 
in patients with rare forms of congenital lipodistrophy [143] and has 
been suggested also for the treatment of rabson-mendenhall syndrome 
[144,145]. Several leptin analogs have been designed to increase its 
potency and lead to enhanced weight loss in high fat diet fed mice [146].

Recent findings suggested that amylin, a pancreatic α -cell-
derived hormone, is able to restore leptin sensitivity and when used 
in combination with leptin to enhance body weight loss in obese 
rodents and humans [147]. This therapeutic use of combined amylin/
leptin agonism (with pramlintide and metreleptin) demonstrated a 
significant weight-lowering effect in obese subjects. However, the latest 
randomized clinical trial on pramlintide/metreleptin as novel strategy 
in obesity treatment has been recently stopped because of significant 
problems with antibody generation and skin reactions.

In summary, even if the mechanism of action of leptin is well 
established and the treatment concept has been successfully proven in 
rodent models, an efficacious and safe treatment of human diseases is 
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not guaranteed. 

Adiponectin
Adiponectin may be the most prominent example for the potential 

use of an adipokine in the treatment of obesity and obesity-associated 
metabolic diseases. In many studies, administration of recombinant 
adiponectin results in improved (hepatic) insulin sensitivity, increased 
insulin secretion [148] and beneficial effects on body weight and 
hyperglycemia118. Adiponectin exerts insulin-sensitizing effects 
through binding to its receptors, leading to activation of AMPK, 
PPAR-α, and potentially other unknown molecular pathways [149]. 
In obesity-linked insulin resistance, both adiponectin and adiponectin 
receptors are down regulated, leading to activation of signaling 
pathways involved in metabolism regulation. Up-regulation of 
adiponectin/adiponectin receptors or enhancing adiponectin receptor 
function may be an interesting therapeutic strategy for obesity-linked 
insulin resistance [41]. 

In a recent study, no effect of recombinant adiponectin on glucose 
levels, HbA1c, plasma lipids or body weight has been found  [150]. 
However, this failure to lower blood glucose in animal models of 
type 2 diabetes could be due to ineffective recombinant adiponectin 
preparations [150]. Very recently, Okada-Iwabu and coworkers 
reported the production of an orally active, synthetic small-molecule 
adiponectin receptor agonist that they have termed AdipoRon. This 
molecule binds to adiponectin receptors and ameliorates insulin 
resistance and glucose intolerance in mice. Importantly, AdipoRon 
ameliorates diabetes and prolonges lifespan of  db/db mice on a 
high-fat diet [151,152]. Taken together, adiponectin or adiponectin 
receptor agonists are promising candidates for further development as 
therapeutics for insulin resistance. 

In 2013 Chen analyzed the molecular interaction network of 
adiponectin and the topological properties of these network through 
Hub Object Analyzer (Hubba) an open sources software [149]. The 
Hubba method facilitates the elucidation of adiponectin related 
signaling pathway and will be helpful for the identification of key 
signaling molecules, but more efforts are required to distinguish 
between functional and non-functional protein-protein interactions.

Conclusion
Obesity and its complications have reached epidemic proportions 

and raised the need to develop new pharmacological treatments. 
It is very important to find new drugs which target the mechanisms 
underlying the pathogenesis of obesity and the rational manipulation 
of adipokines is becoming a promising approach for the therapies of 
obesity and associated metabolic diseases. 

Most adipokines may be involved in the etiopathogenesis of 
metabolic syndrome and are certainly useful predictive and prognostic 
biochemical markers. However, further studies are needed to elucidate 
their possible use in therapies for obesity, and to adopt a strategy to 
rebalance their production.
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