
Volume 4 • Issue 4 • 1000190
J Stem Cell Res Ther
ISSN: 2157-7633 JSCRT, an open access journal 

Open AccessReview Article 

Orabi et al., J Stem Cell Res Ther 2014, 4:4 
DOI: 10.4172/2157-7633.1000190

Adipose Derived Stem Cells for treatment of Lower Genitourinary 
Dysfunction
Hazem Orabi1*, Cassandra Goulet1, Alexandre Rousseau1, Julie Fradette1,2,3 and Stephane Bolduc1,3

1Centre LOEX de l’Université Laval, Québec, QC, Canada
2Centre de recherche du CHU de Québec: Axe Médecine Régénératrice, Québec, QC, Canada
3Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada

*Corresponding author: Hazem Orabi, Centre LOEX de l’Université Laval, 1401, 
18e rue, Québec, Qc. Canada G1J 1Z4, Tel: 418-990-8255; Fax: 418-990-8248;
E-mail: hazem.osman.orabi@gmail.com 

Received March 12, 2014; Accepted April 02, 2014; Published April 04, 2014

Citation: Orabi H, Goulet C, Rousseau A, Fradette J, Bolduc S (2014) Adipose 
Derived Stem Cells for treatment of Lower Genitourinary Dysfunction. J Stem Cell 
Res Ther 4: 190. doi:10.4172/2157-7633.1000190

Copyright: © 2014 Orabi H, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Tissue regeneration is the focal point of intensive research efforts that are supported by the increasing number 

of stem cell sources available. In particular, multipotent mesenchymal stem cells feature many functional properties 
attractive for regenerative medicine strategies, including their paracrine activity. Adipose-Derived Stromal/Stem Cells 
(ASCs) have been the focus of extensive work recently, in order to evaluate their efficacy both as cellular therapies and 
for tissue engineering-oriented applications. The lower genitourinary tract is subjected to many pathologic conditions 
necessitating repair and treatment. Stem cells freshly extracted from adipose tissue (SVF) or their expanded ASCs 
counterparts are quite widely studied because they are easily harvested in abundant amounts, making them an 
excellent source for functional restoration. The therapeutic value of these cells has been evaluated using specific 
in vivo animal models recapitulating various dysfunctions of the genitourinary system. The aim of this review is to 
discuss the current status and potential of ASCs for repair and treatment of lower genitourinary tract conditions. 
Work pertaining to bladder replacement and voiding dysfunction, urinary incontinence, erectile dysfunction and tunica 
albuginea reconstruction will be discussed. In addition, recent studies concerning urethral tissue engineering and 
regeneration will be described.

Keywords: Adipose derived Stem cells; Mesenchymal stem cells;
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Introduction
ASCs potentials for regenerative medicine 

Many tissues have been investigated as a source of adult 
Mesenchymal Stem Cells (MSCs) including adipose tissue, bone 
marrow, periosteal tissue, peripheral blood, skeletal muscle and the 
synovium [1-5]. Of known MSC-containing tissues, adipose tissue is 
a particularly attractive source due to its availability and accessibility 
[6]. Adipose-Derived Stromal/Stem Cells (ASCs) have the advantage of 
being safely harvested in abundant quantity. Per gram of adipose tissue 
5 × 103 colony-forming stromal cells can be isolated, which is estimated 
to represent up to 500 times more cells than for bone marrow stromal 
cells [5,7]. ASCs display a fibroblast-like morphology in culture and meet 
the minimal criteria for MSC definition, according to the International 
Society for Cellular Therapy. They express the cell surface markers 
CD73, CD90 and CD105 while lacking the expression of CD11b, CD19, 
CD45 and feature variable expression of CD34. A basic phenotyping 
for ASCs has been suggested to include at least two molecules acting as 
negative markers and at least two cell surface positive markers [8,9]. In 
culture, ASCs have displayed good proliferative capacities as well as an 
impressive developmental plasticity, including the ability to undergo 
multi lineage differentiation [10].

ASCs have been reported to exert strong anti-inflammatory 
and immunosuppressive effects in vitro through their production of 
various soluble factors. Such immunomodulatory activity in culture 
models has been correlated with the ASCs expression of molecules like 
prostaglandin E2 and indoleamine-2,3-dioxygenase (IDO) [11-13]. 
ASCs have been shown to inhibit the proliferation of activated T cells, 
production of inflammatory cytokines and stimulate the production 
of anti-inflammatory cytokines and antigen-specific Treg cells [14]. 
Furthermore, cultured ASCs would be immuno privileged due to lack of 

expression of class II Major Histocompatibilty Complex (MHC-II) and 
co-stimulatory molecules on the cell surface [15,16]. Whether allogenic 
ASCs would actually be immunoprivileged or immune evasive in vivo 
awaits further investigation along with other types of MSCs [17].

The functional properties of ASCs are greatly associated with their 
paracrine effects. They have been reported to secrete a wide range of 
molecules that modulate local cellular activity and promote tissue 
regeneration at the injury site. For example, their release of Hepatocyte 
Growth Factor (HGF), Insulin-Like Growth Factor-1 (IGF-1), Vascular 
Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth 
Factor (bFGF), can promote angiogenesis and prevent cell death 
[10,18-21]. ASCs can be isolated easily from a donor’s subcutaneous fat 
depots during liposuction, lipoplasty, or lipectomy procedures, which 
are minimally invasive or painful. Enzymatic tissue digestion with 
collagenase, dispase, trypsin or related enzymes are routinely used to 
release the cells defined as the Stromal Vascular Fraction (SVF) and 
centrifugation allows their separation from the mature adipocytes 
[22,23]. The SVF consists of a heterogeneous mesenchymal population 
of cells that includes not only adipose stromal and hematopoietic stem 
and progenitor cells but also endothelial cells, erythrocytes, fibroblasts, 
lymphocytes, monocyte/macrophages and pericytes, among others 
[24]. When seeded in culture flasks, the ASCs adhere to the plastic 
surface and can be enriched further using a combination of washing 
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steps and culture expansion [25,26]. Both SVF and ASCs are been 
used in clinical trials ranging from myocardial infarction to perianal 
fistulas treatments [27]. Their efficacy in preclinical studies for a range 
of urologic conditions will be described later in the corresponding 
sections.

ASCs suitability for the regeneration of genitourinary system 

There are a number of conditions affecting the genitourinary system 
which can lead to loss of function. Congenital disorders, cancer, trauma, 
infection, inflammation, iatrogenic injuries or other conditions of the 
genitourinary system require extensive reconstructive procedures. 
However, current techniques may lead to a number of complications 
[28]. Tissue engineering and stem cell therapy is promising alternatives 
to current methods to perform genitourinary reconstruction. In 
addition to the previously mentioned advantages, ASCs do not express 
HLA-DR, which reduces their immunogenicity and render them 
more suitable for allogenic transplantation. ASCs express different 
biomarkers typical of smooth muscle and endothelial cells, which 
make them easily differentiated into these cell types which are major 
constituents of genitourinary system [29,30]. Moreover, ASCs secrete 
many potentially synergistic proangiogenic and antiapoptotic growth 
factors that are important for vascularization of ex vivo formed tissue 
constructs and restoring the erectile function [31]. The presence of 
automated commercially available devices that can isolate ASCs in 
sufficient numbers over short period of time should also be considered 
[29]. Lastly, ASCs can secrete and assemble/deposit extracellular matrix 
components, which can be used as a scaffold for tissue engineering of 
genitourinary structures [32]. As a result, ASCs could act at multiple 
levels in order to achieve tissue regeneration and restoration of 
function of the lower genitourinary tract including the formation of the 
scaffolds, specialized cell contribution and vascularization promotion 
(Figure 1).

The aim of this review is to discuss the current status and potential of 
ASCs for repair and treatment of lower genitourinary tract dysfunction 
and also to highlight present obstacles and prospective on this topic.

Urinary Bladder
Urinary bladder replacement

Urinary bladder substitution/augmentation is needed in many 
disease conditions. The current treatment options compromise the use 
of gastrointestinal segments, which results in numerous complications 
that affect the health and quality of life of the patients [28]. Tissue 
engineering approaches for urinary bladder rely on cell-seeded 
scaffolds with autologous urinary tract cells [33]. Clinical trials using 
autologous urothelial and smooth muscle cells along with exogenous 
biomaterials have been performed [34]. Urinary bladder specimen 
was the source of urinary tract cells in most of bladder regeneration 
researches. However, it cannot be used in case of bladder cancer 
and end-staged bladder [35]. Stem cells derived from many tissues 
including bone marrow, muscle and adipose tissue are possible sources 
for urinary tract cells in these conditions. Among those, ASCs are 
more favorable due to their previously mentioned advantages. ASCs 
have been differentiated into urothelial-like cells using coculture 
technique [36]. The urothelial differentiated cells exhibited urothelial 
biomarkers including cytokeratin 18 and uroplakin II. Also, ASCs were 
differentiated into smooth muscle cells, which showed SMCs markers 
including smooth muscle actin, myosin, calponin and caldesmon 
[37,38]. Both differentiated cell types survived and maintained their 

phenotype when implanted in vivo [38,39]. Unmodified cultured ASCs 
were seeded on bladder acellular matrix to replace bladder defects 
in rabbits. At 24weeks, the engineered bladders had a better bladder 
capacity and regeneration than the control group [40]. However, the 
lack of well-formed stratified urothelial layer in the graft would allow 
the urine leakage in large bladder defects as in human. 

The use of exogenous biomaterials (synthetic and or acellular 
matrices) is frequently associated with inflammation, immune 
responses and foreign body reaction. This may ultimately lead to 
fibrosis and contracture of the implant. That is why a biomatrix made 
from autologous cells and featuring favorable requirements (sufficient 
burst pressure, tensile strength and elasticity) can avoid these problems. 
Our team was able to construct a bladder equivalent made from dermal 
fibroblasts [41]. As ASCs showed advantageous matrix deposition 
during the self-assembly approach compared to dermal fibroblasts 
[42], it would represent another option as scaffold for urinary tract 
regeneration. ASCs are cultured with ascorbic acid to enhance the 
deposition of the collagen in the matrix (Figure 2). An in vitro study 
performed in our lab for reconstruction of vesical equivalent showed 

Figure 1: Possible applications of ASCs for treatment of genitourinary tract 
diseases.
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Figure 2: Schematic representation of the different steps for 3D reconstruction 
of bladder equivalent from ASCs. 
A: Adipose derived stem cells (ASCs) are cultivated with Ascorbic acid for 21 
days. B: Superimposition of cell sheets follows C: 4 days are allowed for fusion 
of the cell sheets to form the of the reconstruct. D: Urothelial cells are seeded 
on top of the reconstruct E: The reconstruct is cultured submerged for 7 days 
to give time for urothelial cells to proliferate. F:  The reconstruct is placed at the 
air-liquid interface for urothelial differentiation.
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that there is no significant structural difference between ASCs and 
fibroblasts Extracellular Matrix (ECM). Those cells were both able to 
produce a dense and well-organized ECM. When compared to matrix 
synthesized from fibroblasts cultured under the same conditions, 
ASCs matrix was thicker but displayed similar failure strain (Figure 
3). However, ASCs matrix alone was not able to support the formation 
of a well-differentiated urothelium under the culture conditions 
used. When a layer of fibroblasts was added to ASCs matrix, a well-
stratified epithelium was developed [32]. This is in contrast another 
study from our group where ASCs have been shown to support other 
type of epithelial cells [43]. Enhancement of urothelial and smooth 
muscle attachment to ASCs matrix without the use of any additional 
cell layer is our next goal. Additionally, ASCs promote vascularization 
of the grafts [19] which adds to their advantages for urinary bladder 
reconstruction.

Bladder voiding dysfunction

The inadequate efficiency of current pharmacological treatment 
and invasiveness of other modalities has supported the search for new 
stable therapeutic modalities for Bladder Voiding Dysfunction (BVD) 
including bladder overactivity or underactivity. Additionally, none 
of current treatments change the pathologic effects in the diseased 
bladders. Bladder Outlet Obstruction (BOO) causes bladder voiding 
dysfunction through increased collagen deposition, detrimental 
changes in ultrastructure of bladder smooth muscle cells and decrease 
blood flow [44]. All lead to impaired smooth muscle function and 

decreased bladder compliance. ASCs could potentially reverse many of 
the bladder pathologic changes in different animal models [45]. ASCs 
alleviated the symptoms of bladder overactivity in various animal 
models [46,47] or underactivity [48] or variable spectrum of voiding 
dysfunction [49]. 

Unmodified ASCs are thought to exert their beneficial effects 
mainly through paracrine action and less through cell engraftment 
and differentiation. In a rat model of BOO, human ASCs increased 
sequence-specific transcription of Oct4, Sox2, and Stella in the 
submucosal and muscle layer of the rat bladders. These are markers 
for primitive pluripotent stem cells. In addition, ASCs enhanced 
the expression of several genes, responsible for stem cell trafficking, 
including SDF-1/CXCR4, HGF/cMet, PDGF/PDGFR, and VEGF/
VEGFR signaling axis. Through these paracrine effects, ASCs caused 
the stimulation and mobilization of endogenous stem cells [47]. 
Also, ASCs seemed to preserve the bladder vascularity and decrease 
apoptosis [49]. Human ASCs decreased the frequency and irregularity 
of detrusor contractions and slightly increased their amplitude when 
injected into the rat bladders subjected to outlet obstruction [47]. This 
suggests the possibility of transfer of allogenic stem cells for people with 
perturbed stem cell depot as in diabetic or geriatric populations. There 
is no known human trial incorporating the use of ASCs for treatment 
of BVD.

ASCs differentiated into SMCs before local injection have been 
shown to survive and increase SMCs content at the injury site. However, 
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Figure 3: Histological cross-sections of the human tissue-engineered, characterization of the ECM and mechanical properties of vesical equivalents. A: Samples 
stained with Masson’s trichrome show urothelial cells (purple) firmly anchored to the underlying stroma composed of ECM (blue) of the ASC and Fb constructions. 
Scale bars: 100 µm B: Expression of type I and III collagens. Scale bars: 100 µm C: Stromal thickness of the Fb was found to be significantly smaller than for ASC 
in presence of urothelial cells. The UTS of the Fb group was significantly higher compared to the ASC. The failure strains were not significantly different between the 
two constructions. Tests were performed using 3 different cellular populations (N) for Fbs and ASCs and each construct was produced in triplicate (n). Each column 
represents mean +/-standard error of the mean, with p<0.05 indicating significance (*p<0.05, ** p<0.005).
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no record on the improvement of bladder function after injection was 
reported [38]. Although systemic injection of ASCs has improved 
BVD in animals, as seen with local injection into urinary bladder, like 
other MSCs, it may have serious side effects such as hemodynamic 
compromise, respiratory distress and impeding of pulmonary gas 
exchange that hinder its adoption as a regular route of delivery [50].

It is important to note that ASCs can be useful in early stages 
of BVD before severe affection of the bladder wall happens. This 
beneficial effect may be preventive (arrest of further pathologic effects) 
or ameliorative (correct existing pathologic effects) or both. The exact 
underlying mechanisms, the magnitude and type of positive outcomes 
and durability need to be further investigated.

Urethra
Urethral replacement

Multiple urethral illnesses including congenital, traumatic and 
inflammatory pathologies require extensive urethral reconstructive 
surgeries, which are limited by the availability of donor tissues. Tissue 
engineering, using scaffolds or cell seeded constructs, has been used 
with success in preclinical studies and clinical trials [33]. This is based 
mainly on the use of acellular matrices or synthetic scaffolds alone or 
seeded with urinary tract cells. However, this may carry the risk of 
transmission of infection or immunologic reaction with fibrosis. That 
is why a scaffold made from the patient’s cells would obviate these 
problems. A biomatrix made by the self-assembly technique of tissue 
engineering from dermal fibroblasts was fabricated and seeded with 
urothelial cells [51]. Based on the successful production of biomaterials 
from human ASCs using the self-assembly technique with favourable 
mechanical characteristics for bladder replacement [32], ASCs-based 
scaffold is another appealing alternative for urethral replacement. 

As a cell source for urethral engineering, ASCs have been used 
to replace urinary tract epithelium [39] and smooth muscle [52]. In 
the former study, ASCs were differentiated into urothelial cells and 
seeded on bladder acellular matrix to be implanted in rabbits. The 
urethral continuity was preserved with wide calibre and the labelled 
differentiated urothelial cells survived and formed a multilayer 
structure. In the latter study, ASCs were used to enhance and increase 
the uptake and survival of implanted urethral grafts [53]. This may be 
attributed to in situ differentiation of ASCs into endothelial cells and 
increased growth factors secretion by ASCs, such as VEGF and TGFβ3 
that enhance angiogenesis and wound healing.

Urinary incontinence 

Stress urinary incontinence affects both males and females and 
decrease quality of life [54]. Many injectable bulking agents are 
minimally invasive but have a poor long-term efficacy [55]. More 
invasive approaches, like sling procedures or artificial urinary sphincter 
implantation are more effective but have a higher morbidity [56,57]. 
More importantly, none of these therapies replace the deficient urethral 
sphincter. The ideal strategy for treating SUI using stem cell therapy 
besides being a bulking agent would be to allow for the regeneration of 
functional periurethral tissue, providing adequate mucosal coaptation 
and to restore resting urethral closure pressures [58]. ASCs carry future 
special importance in this regard due to its reported myoblast and 
neuronal-like differentiation capacity and neovascularization potential 
beside their ease of harvest and high stem cell content. Lin et al. [59] 
showed that therapeutic effects of unmodified ASCs were attributed 
to trophic factors that support host tissue regeneration as most of the 

delivered ACSs remained undifferentiated after injection. 

In another study, ASCs were differentiated into myoblasts using 
5-AZA and injected in the posterior urethra after induction of SUI in 
rats. Maximal bladder capacity and Abdominal Leak Point Pressure 
(ALLP) significantly increased 1 and 3 months after implantation with 
unmodified and differentiated rat ASCs with better results in case of 
differentiated ASCs [60]. ASCs coupled with biodegradable microbeads 
as carriers improved in Abdominal Leak Point Pressure (ALPP) and 
Retrograde Urethral Perfusion Pressures (RUPP) in a rat model of 
SUI [61]. ASCs in combination with Nerve Growth Factor (NGF) and 
PLGA resulted in significant improvements in ALPP and RUPP as well 
as the amount of muscle and ganglia when compared to ASCs alone 
[62]. Few clinical trials are incorporating the use of ASCs for treatment 
of SUI (www.clinicaltrials.gov). In a clinical trial, 11 male patients with 
persistent post-prostatectomy SUI received ASCs in 2 fractions; ASCs 
alone and mixed with fat. SUI improved progressively in eight patients 
during the 1-year follow up, as determined by a 59.8% decrease in the 
leakage volume in the 24h pad test, decreased frequency and amount of 
incontinence, and improved quality of life. One patient achieved total 
continence up to 12 months after stem cell injection [63].

Penis
Tunica albuginea reconstruction

The tunica albuginea is an important penile structure, which 
necessitates reconstruction in many diseases such as congenital penile 
curvature, hypospadias and Peyronie’s Disease (PD). It allows tunical 
expansion and help to determine stretched penile length. It protects 
erectile tissue, promotes penile rigidity and length and participates 
in veno-occlusive mechanism [64]. ASCs, with their advantages 
previously mentioned, can be an alternative therapeutic option. ASCs 
were injected intratunically during acute phase in a PD rat model. 
They prevented fibrosis and elastosis and maintained erectile function 
[65]. Current therapeutics for tunical replacement include either the 
use of autologous grafts (commonly fascia lata, tunica vaginalis and 
saphenous vein) or non-autologous materials (porcine Small Intestinal 
Submucosa (SIS), human dura mater and porcine and human dermis) 
[66]. However, both are associated with many problems including 
harvest-related complications with the former and possibility of 
transmission of infection and immunologic reactions with the latter. 
ASCs, being easily harvested, were amplified in culture and seeded on 
SIS and implanted in rats. This cell-seeded graft was recorded to result 
in considerable cavernous tissue preservation and maintained erectile 
responses better than SIS alone [67]. Innovative treatment choices 
include the autologous self-assembly technique which was developed to 
avoid the use of any exogenous material. We developed endothelialized 
self-assembled grafts for tunical replacement from Dermal Fibroblasts 
(DF) featuring adequate mechanical resistance [68]. Adipose stromal 
cells can also be stimulated with ascorbic acid to form the self-
assembled graft instead of DF. Moreover, ASCs could be a source of 
endothelial and smooth muscle cells for restoring erectile dysfunction, 
which may be associated with PD. Therefore, a single source (SVF or 
cultured ASCs) for both matrix and effective cells (endothelial and/or 
SMC) would be ideal to avoid multiple biopsies and steps needed for 
isolation of different cells for creation of optimal tunical graft. 

Erectile dysfunction

Erectile Dysfunction (ED) is defined as the persistent inability to 
attain and maintain penile erection sufficient for sexual intercourse [69]. 
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A prevalence of ED of no less than 52% was reported [70]. ED causes 
major morbidity and distress for men and their partners [71]. The main 
etiologies for ED include aging, diabetes mellitus and Cavernous Nerve 
Injury (CNI) during radical prostatectomy [72]. The insufficiencies 
and complications of the existing therapies for ED have urged many 
scientists to search for new modalities including stem cell replacement. 
All available therapies for ED tend to alleviate the symptoms rather than 
correcting the existing pathology. Stem cell therapy aims to replenish 
the damaged endothelial and smooth muscle cells and prevent further 
apoptosis and fibrosis. Among the different types of stem cells tested 
for ED treatment, ASCs were the most frequently investigated, due 
to easy harvest in abundance, established efficiency in other medical 
venues, the availability of separation devices. Both SVF and ASCs have 
been employed in ED research with success [73]. In an in vitro model of 
cavernous tissue, ASCs contributed to the repair of endothelial damage 
and decrease apoptosis resulting from Diabetes Mellitus (DM). ASCs 
showed the ability to undergo differentiation toward ECs and SMC 
[74]. When employed for treatment of ED due to type 1 or type 2 DM in 
rats, ASCs show increase in intracavernous pressure and improvement 
of ED, together with improvement in blood glucose level [75,76]. In 
crush injury of Cavernous Nerve (CNI), autologous ASCs were able to 
treat both acute (immediate) and chronic (4 weeks) CN injury-induced 
ED [73]. ASCs when used in combination with PDE-5 inhibitors or 
growth factors had additional intensity of therapeutic efficacy [77,78]. 
In case of resected CNI model, ASCs were seeded on autologous vein 
graft or adipose tissue biomatrix and had beneficial effect on penile 
histology and functional outcome [79,80].

Intracavernous injection of ASCs is the preferred method for stem 
cell delivery especially in case of CNI, however, it is associated with the 
rapid disappearance of the injected stem cells from penis, minimizing 

therapeutic efficiency in chronic disease model as DM [81]. Other 
routes of delivery include periprostatic injection [82], subtunical 
implantation [83] or coupled with biomaterial as nerve or tunical graft 
[67,79]. Although IV route of ASCs has shown efficacy in ED after 
irradiation [84], however, it may be associated with severe adverse 
effects. The main mechanism of ASCs-mediated repair in treating ED 
is largely dependent on paracrine actions with scarce evidence of cell 
engraftment [76]. 

Currently, there is only one registered clinical trial for use of ASCs 
for treatment of ED registered in USA (identifier NCT01601353). 

Hurdles and Future Directions
In spite of the great advantages of ASCs, there many challenges 

that face their wide spread use in clinical applications. Among those 
is the lower therapeutic efficacy of ASCs in case of chronic pathologies 
in comparison to their efficacy in case of acute injuries. This is may be 
explained by the fact that in the absence of an acute illnesses, ASCs 
are less likely to be attracted to the diseased tissues and therefore 
lower efficiency and less involvement in the regenerative process [85]. 
Additionally, the process of ASCs engraftment within the desired 
tissues needs to be enhanced. It would be interesting to investigate 
whether pre-differentiation of ASCs into the targeted tissue cell types 
would increase their benefits and help engraftment without affecting 
their secretomes. Moreover, there is no final agreement on the preferred 
form of cells to use (SVF cells or cultured and purified adipose-derived 
stem cells), number of cells per treatment or number of cell injections. 
Hence, more chronic animal models, consistent protocols and many 
clinical trials are required to make sure of ASCs therapeutic efficacy 
and safety.

Nature of the study; 
disease model Cells used Functional Assessment Notes References

Bladder 
replacement

In vitro study Human cultured unmodified 
ASCs Not available ASCs formed matrix graft Rousseau et al., 

2013 [32]

Normal rabbits
Autologous cultured ASCs 
were seeded on bladder 
acellular matrix.

Cystography. Normal bladder 
capacity was acquired . Exogenous scaffold was used. Zhu eta al., 2010 

[40]

Bladder voiding 
dysfunction

BOO

Cultured Human ASCs 
injected into rat bladder wall

UDS. Decrease bladder 
overactivity  (frequency and  
irregularity of contractions ) 
with increase in bladder voiding 
pressure. 

Song et al., 2013 
[47]

Autologous cultured ASCs 
and muscle precursor cells 
(MPCs) injected into rat 
bladder.

UDS. Micturiting pressure 
(maximum and threshold) and 
voided volumes increased. 

Tremp et al., 
2013 [48]

Diabetes Mellitus
Autologous cultured ASCs 
injected in bladder wall  or tail 
vein of diabetic type II rats.

UDS . It showed Diabetic Voiding 
dysfunction improvement  in 40-
60 %.

Improvement with local (bladder) 
injection is more effective than  
systemic (tail vein) injection

Zhang  et al., 
2012 [49]

Hyperlipidemia
Autologous cultured ASCs 
injected into bladder or tail 
vein of  hyperlipdemic rat

Improved micturition frequency 
and voided volumes

Improvement with direct( bladder) 
injection is more efficient than 
systemic (tail vein) injection

Huang et al., 
2010 [46]

Cryo-injury

Human ASCs differentiated 
into SMCs and injected into 
cryo-injured bladder wall of 
mice.

Not available

There was an Increase in the 
ASMA positive area of injured 
Bladder. The injected labeled 
cells were detected in vivo.

Sakuma et al., 
2009 [38]

Urethral 
replacement

Normal rabbits 

Autologous cultured ASCs 
and  urothelial -differentiated  
ASCs  were seeded on 
bladder acellular matrix.

Urethrography.  It revealed 
restoration of urethral continuity 
with  only urotheklial-differentiated 
cell seeded constructs 

BrdU-labeled cells survived in 
vivo transplantation. Li et al., 2014 [39]

Normal canine  model

Autologous SMC- 
differentiated ASCs and  oral 
epithelial cells  were seeded 
on PGA 

Urethrography. It showed 
slight strictures at the site of 
implantation

  The use of bioreactor improved 
the characters and outcome of 
engineered graft

Fu et al., 2014 
[52]
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Conclusions
In the search of new therapeutic options for lower genitourinary 

tract disorders, both SVF and cultured ASCs have been the focus 
of numerous studies in vitro and using various animal models. In 
addition, depending on the type of dysfunction to be treated, these cells 
can be used either as cellular therapies or combined with biomatrix for 
tissue-engineering applications. Few clinical trials showed promising 
results (Table 1), however, more future clinical trials will ensure proof 
of their efficacy for particular applications while shedding more light 
on the mechanisms ensuring their functional activity.
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